Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Definition of Land Use System Types/Subtypes Used in the Study Area
2.2.2. Rainfall Simulation Experiments
2.2.3. Soil Cover and Soil Analysis
2.3. Data Analyses
3. Results
3.1. Soil Properties and Vegetation Cover
3.2. Runoff and Soil Erosion Response
3.3. Runoff and Soil Erosion Influencing Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Anache, J.A.; Wendland, E.C.; Oliveira, P.T.; Flanagan, D.C.; Nearing, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total. Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Steffan, J.J.; Brevik, E.C.; Burgess, L.C.; Cerdà, A. The effect of soil on human health: An overview. Eur. J. Soil Sci. 2018, 69, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Gessesse, B.; Bewket, W.; Bräuning, A. Model-Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Ligonja, P.J.; Shrestha, R.P. Soil Erosion Assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach. Land Degrad. Dev. 2015, 26, 367–379. [Google Scholar] [CrossRef]
- Ochoa, P.; Fries, A.; Mejía, D.; Burneo, J.; Ruíz-Sinoga, J.; Cerdà, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Petrlic, K.; Verachtert, E.; Bochet, E.; Poesen, J. Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland: Topography-induced patterns of vegetation in a humid badland area. Earth Surf. Process. Landforms 2014, 39, 1705–1716. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension. Earth Surf. Process. Landforms 2009, 34, 1393–1407. [Google Scholar] [CrossRef]
- Cerdà, A. Parent Material and Vegetation Affect Soil Erosion in Eastern Spain. Soil Sci. Soc. Am. J. 1999, 63, 362–368. [Google Scholar] [CrossRef]
- Sinoga, J.R.; Murillo, J.M. Hydrological response of abandoned agricultural soils along a climatological gradient on metamorphic parent material in southern Spain. Earth Surf. Process. Landforms 2009, 34, 2047–2056. [Google Scholar] [CrossRef]
- Martínez-Hernández, C.; Rodrigo-Comino, J.; Romero-Díaz, A. Impact of lithology and soil properties on abandoned dryland terraces during the early stages of soil erosion by water in south-east Spain. Hydrol. Process. 2017, 31, 3095–3109. [Google Scholar] [CrossRef]
- Bughici, T.; Wallach, R. Formation of soil–water repellency in olive orchards and its influence on infiltration pattern. Geoderma 2016, 262, 1–11. [Google Scholar] [CrossRef]
- Nunes, A.N.; Coelho, C.O.A.; de Almeida, A.C.; Figueiredo, A. Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degrad. Dev. 2010, 21, 260–273. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chen, L.; Fu, B.; Huang, Z.; Wu, D.; Gui, L. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J. Hydrol. 2007, 335, 247–258. [Google Scholar] [CrossRef]
- Yue, L.; Juying, J.; Bingzhe, T.; Binting, C.; Hang, L. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. J. Hydrol. 2020, 584, 124694. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Comino, J.R.; Senciales, J.; Ramos, M.; Martínez-Casasnovas, J.; Lasanta, T.; Brevik, E.; Ries, J.; Sinoga, J.R. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Bogunovic, I.; Trevisani, S.; Seput, M.; Juzbasic, D.; Durdevic, B. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena 2017, 154, 50–62. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; López, J.; Almagro, M.; Albaladejo, J.; Castillo, V.; Ortiz, R.; Boix-Fayos, C. Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. Catena 2012, 94, 36–42. [Google Scholar] [CrossRef]
- Taguas, E.; Ayuso, J.; Pérez, R.; Giráldez, J.; Gómez, J. Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern Spain. Geoderma 2013, 206, 49–62. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.; Feng, T.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total. Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y.; Rossel, R.A.V.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total. Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Beguería, S.; Lanarenault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and Emerging Questions in Water Erosion Studies. Land Degrad. Dev. 2017, 28, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Novara, A.; Stallone, G.; Cerdà, A.; Gristina, L. The Effect of Shallow Tillage on Soil Erosion in a Semi-Arid Vineyard. Agronomy 2019, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Riva, M.J.; Daliakopoulos, I.N.; Eckert, S.; Hodel, E.; Liniger, H. Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 2017, 86, 8–21. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total. Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Roxo, M.J. A Ação Antrópica No Processo de Degradação de Solo. A Serra de Mértola. Ph.D. Thesis, Faculdade de Ciências Sociais e Humanas, Universidade Nova de Lisboa, Lisboa, Portugal, 1994. [Google Scholar]
- Cerdà, A.; Novara, A.; Moradi, E. Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula. Sci. Total. Environ. 2021, 787, 147549. [Google Scholar] [CrossRef]
- Jie, C.; Jing-Zhang, C.; Man-Zhi, T.; Zi-Tong, G. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.; Battany, M.; Renschler, C.; Fereres, E. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manag. 2003, 19, 127–134. [Google Scholar] [CrossRef]
- Gómez, J.A.; Infante-Amate, J.; González De Molina, M.; Vanwalleghem, T.; Taguas, E.V.; Lorite, I. Olive Cultivation, its Impact on Soil Erosion and its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty. Agriculture 2014, 4, 170–198. [Google Scholar] [CrossRef] [Green Version]
- Vanwalleghem, T.; Amate, J.I.; de Molina, M.G.; Fernández, D.S.; Gómez, J.A. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 2011, 142, 341–351. [Google Scholar] [CrossRef]
- Ibáñez, J.; Martínez-Valderrama, J.; Taguas, E.V.; Gómez, J.A. Long-term implications of water erosion in olive-growing areas in southern Spain arising from a model-based integrated assessment at hillside scale. Agric. Syst. 2014, 127, 70–80. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Taguas, E.V.; Gómez, J.A. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: A study case in Southern Spain. Land Use Policy 2015, 42, 683–694. [Google Scholar] [CrossRef]
- Cerdà, A.; Morera, A.G.; Bodí, M.B. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surf. Process. Landforms 2009, 34, 1822–1830. [Google Scholar] [CrossRef]
- Li, X.H.; Yang, J.; Zhao, C.Y.; Wang, B. Runoff and Sediment from Orchard Terraces in Southeastern China: Soil Loss from Orchard Terraces. Land Degrad. Dev. 2014, 25, 184–192. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Rodrigo-Comino, J. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrol. Hydrobiol. 2020, 20, 59–72. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total. Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, H. Gully erosion associated with the expansion of unterraced almond cultivation in the coastal Sierra de Lujar, S. Spain. Land Degrad. Dev. 1995, 6, 179–200. [Google Scholar] [CrossRef]
- Doni, S.; Macci, C.; Peruzzi, E.; Masciandaro, G.; Ceccanti, B.; Mennone, C.; Garcia, C.; Hernandez, M.T.; Moreno-Ortega, J.L. Almond tree and land management practices for soil erosion protection in mediterranean areas. Spain. In Proceedings of the Third International Meeting on Environmental Biotechnology and Engineering, Palma de Mallorca, Spain, 21–25 September 2008. [Google Scholar]
- Cerdà, A.; González-Pelayo, Ó.; Giménez-Morera, A.; Jordán, A.; Pereira, P.; Novara, A.; Brevik, E.C.; Prosdocimi, M.; Mahmoodabadi, M.; Keesstra, S.; et al. Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Res. 2016, 54, 154–165. [Google Scholar] [CrossRef]
- Abrisqueta, J.; Plana, V.; Mounzer, O.; Mendez, J.; Ruiz-Sánchez, M. Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agric. Water Manag. 2007, 93, 11–18. [Google Scholar] [CrossRef]
- Jianjun, W.; Quansheng, L.; Lijiao, Y. Effect of Intercropping on Soil Erosion in Young Citrus Plantation—A Simulation Study. Chin. J. Appl. Ecol. 2017, 8, 143–146. [Google Scholar]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Sci. Total. Environ. 2021, 798, 149212. [Google Scholar] [CrossRef]
- Sousa, A.A.R.; Muñoz-Rojas, J.; Brígido, C.; Prats, S.A. Impacts of agricultural intensification on soil erosion and sustainability of olive groves in Alentejo (Portugal). Landsc. Ecol. 2023. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Science Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.; Asseline, J.; Leprun, J.; Arshad, M.; Roose, E. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136. [Google Scholar] [CrossRef]
- Rosário, L. Indicadores de Desertificação Para Portugal Continental. Lisboa: Direcção-Geral Dos Recursos Florestais; Direcção-Geral dos Recursos Florestais: Lisboa, Portugal, 2004; p. 56. [Google Scholar]
- FAO-UNESCO. Soil Map of the World. 1974. Available online: https://www.fao.org/3/as354e/as354e.pdf (accessed on 8 August 2023).
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Serviço de Reconhecimento e Ordenamento Agrário (SROA). A Utilização Do Solo Em Portugal Continental; Secretaria de Estado da Agricultura: Lisboa, Portugal, 1970. [Google Scholar]
- Branco, D. Evolução do uso do solo na bacia do rio Pônsul nos últimos 60 anos: Estudo de caso do perímetro hidroagrícola de Idanha (Beira Baixa). Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2022. [Google Scholar]
- Gonçalves, J.P. Mudanças no uso do solo na Bio-Região da Idanha: Avaliação da resposta hidrológica e erosiva dos solos. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2023. [Google Scholar]
- Cerdà, A.; Ibáñez, S.; Calvo, A. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technol. 1997, 11, 163–170. [Google Scholar] [CrossRef]
- Doerr, S.H. On Standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ Techniques to Classify Soil Hydrophobicity: A Case Study Using Medium Textured Soils. Earth Surf. Process. Landf. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Tinsley, J. Determination of Organic Carbon in Soils by Dichromate Mixtures. In Transactions 4th International Congress of Soil Science; Hoitsemo Brothers: Gronigen, The Netherlands; Volume 1, pp. 161–169.
- Brown, M.B.; Forsythe, A.B. Robust Tests for the Equality of Variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [Google Scholar] [CrossRef]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Capetillo, C.; Márquez-Villagrana, H.; Pacheco-Guerrero, A.; González-Trinidad, J.; Júnez-Ferreira, H.; Zavala-Trejo, M. Cropping System Diversification: Water Consumption against Crop Production. Sustainability 2018, 10, 2164. [Google Scholar] [CrossRef] [Green Version]
- Caraveli, H. A comparative analysis on intensification and extensification in mediterranean agriculture: Dilemmas for LFAs policy. J. Rural. Stud. 2000, 16, 231–242. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Niu, Y.; Li, X.; Wang, H.; Liu, Y.; Shi, Z.; Wang, L. Soil erosion-related transport of neonicotinoids in new citrus orchards. Agric. Ecosyst. Environ. 2020, 290, 106776. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S.; Navas, A.; Machín, J. Splash erosion under natural rainfall on three soil types in NE Spain. Geomorphology 2012, 175–176, 38–44. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Martínez, J.R.F.; Pleguezuelo, C.R.R.; Raya, A.M.; Rodríguez, B.C. Soil-erosion and runoff prevention by plant covers in a mountainous area (se spain): Implications for sustainable agriculture. Environmentalist 2006, 26, 309–319. [Google Scholar] [CrossRef]
- Durán-Zuazo, V.H.; Francia-Martínez, J.R.; García-Tejero, I.; Tavira, S.C. Implications of land-cover types for soil erosion on semiarid mountain slopes: Towards sustainable land use in problematic landscapes. Acta Ecol. Sin. 2013, 33, 272–281. [Google Scholar] [CrossRef]
- Marques, M.J.; Bienes, R.; Pérez-Rodríguez, R.; Jiménez, L. Soil degradation in central Spain due to sheet water erosion by low-intensity rainfall events. Earth Surf. Process. Landf. 2008, 33, 414–423. [Google Scholar] [CrossRef]
- Koulouri, M.; Giourga, C. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 2007, 69, 274–281. [Google Scholar] [CrossRef]
- Rodríguez, B.C.; Zuazo, V.H.D.; Galán, J.F.H.; Lipan, L.; Soriano, M.; Hernández, F.; Sendra, E.; Carbonell-Barrachina, Á.A.; Ruiz, B.G.; García-Tejero, I.F. Soil Management Strategies in Organic Almond Orchards: Implications for Soil Rehabilitation and Nut Quality. Agronomy 2023, 13, 749. [Google Scholar] [CrossRef]
- Fullen, M.A. Compaction, hydrological processes and soil erosion on loamy sands in east Shropshire, England. Soil Tillage Res. 1985, 6, 17–29. [Google Scholar] [CrossRef]
- Botta, G.; Rivero, D.; Tourn, M.; Melcon, F.B.; Pozzolo, O.; Nardon, G.; Balbuena, R.; Becerra, A.T.; Rosatto, H.; Stadler, S. Soil compaction produced by tractor with radial and cross-ply tyres in two tillage regimes. Soil Tillage Res. 2008, 101, 44–51. [Google Scholar] [CrossRef]
- Becerra, A.T.; Botta, G.; Bravo, X.L.; Tourn, M.; Melcon, F.B.; Vazquez, J.; Rivero, D.; Linares, P.; Nardon, G. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res. 2010, 107, 49–56. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B.; Lü, Y.; Wang, Z.; Gao, G. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China. Geomorphology 2012, 138, 404–414. [Google Scholar] [CrossRef]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dan, C.; Liu, G.; Zhao, Y.; Shu, C.; Shen, E.; Liu, C.; Tan, Q.; Zhang, Q.; Guo, Z.; Zhang, Y. The effects of typical grass cover combined with biocrusts on slope hydrology and soil erosion during rainstorms on the Loess Plateau of China: An experimental study. Hydrol. Process. 2023, 37, e14794. [Google Scholar] [CrossRef]
- Poesen, J.; Lavee, H. Rock fragments in top soils: Significance and processes. Catena 1994, 23, 1–28. [Google Scholar] [CrossRef]
- Rubio, J.L.; Recatalá, L. The Relevance and Consequences of Mediterranean Desertification Including Security Aspects. In Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; NATO Security Through Science Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 3, pp. 133–165. [Google Scholar] [CrossRef]
- Martínez-Zavala, L.; Jordán, A. Effect of rock fragment cover on interrill soil erosion from bare soils in Western Andalusia, Spain. Soil Use Manag. 2008, 24, 108–117. [Google Scholar] [CrossRef]
- Zavala, L.M.; Jordán, A.; Bellinfante, N.; Gil, J. Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Sci. Plant Nutr. 2010, 56, 95–104. [Google Scholar] [CrossRef]
- Baartman, J.E.M.; Masselink, R.; Keesstra, S.D.; Temme, A.J.A.M. Linking landscape morphological complexity and sediment connectivity. Earth Surf. Process. Landforms 2013, 38, 1457–1471. [Google Scholar] [CrossRef]
- Insua-Costa, D.; Senande-Rivera, M.; Llasat, M.C.; Miguez-Macho, G. A global perspective on western Mediterranean precipitation extremes. npj Clim. Atmospheric Sci. 2022, 5, 9. [Google Scholar] [CrossRef]
Land Use Systems | Intensive Almond Orchards (IAOs) | Extensive Olive Groves (EOGs) | Levene’s Test for Equality of Variances | t-Test for Equality of Means | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min. | mean | max. | SD | min. | mean | max. | SD | Z | Sig. | t | Sig. (2-tailed) | |
Slope (%) | 2.0 | 19.2 | 39.0 | 12.4 | 3.0 | 10.3 | 17.0 | 3.9 | 6.31 | 0.021 | 2.361 | 0.028 |
Soil moisture (%) | 1.4 | 5.1 | 10.0 | 2.8 | 1.2 | 4.3 | 6.0 | 1.5 | 1.498 | 0.235 | −0.849 | 0.406 |
Water repellence | 0.0 | 7.1 | 24.0 | 8.2 | 0.0 | 4.8 | 13.0 | 5.2 | 3.779 | 0.066 | 0.801 | 0.432 |
Resistance to penetration (g m−2) | 2.5 | 3.9 | 4.5 | 0.6 | 1.5 | 3.6 | 4.5 | 1.2 | 9.772 | 0.005 | −0.742 | 0.467 |
Bulk density (g cm−3) | 1.1 | 1.3 | 1.5 | 0.1 | 0.9 | 1.1 | 1.6 | 0.2 | 4.924 | 0.038 | 1.538 | 0.140 |
Silt + clay (%) | 3.8 | 10.9 | 26.2 | 8.1 | 6.6 | 30.5 | 59.2 | 20.2 | 7.45 | 0.013 | −2.88 | 0.009 |
Sand (%) | 46.9 | 61.5 | 89.4 | 15.6 | 12.6 | 39.9 | 67.4 | 17.3 | 0.076 | 0.786 | 3.062 | 0.006 |
Stoniness (%) | 5.3 | 27.7 | 45.8 | 13.8 | 13.3 | 29.9 | 40.6 | 8.1 | 3.824 | 0.065 | −0.461 | 0.650 |
Natural plant-residue mulch layer (%) | 0.0 | 45.4 | 90.0 | 43.6 | 10.0 | 59.9 | 95.0 | 34.9 | 4.79 | 0.045 | −0.662 | 0.449 |
Land Use System | Intensive Almond Orchards (IAOs) | Extensive Olive Groves (EOGs) | Levene’s Test for Equality of Variances | t-Test for Equality of Means | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min. | mean | max. | SD | min. | mean | max. | SD | Z | Sig. | t | Sig. (2-tailed) | |
Runoff initiation (s) | 45 | 249 | 720 | 212 | 135 | 302 | 960 | 252 | 0.155 | 0.698 | −0.506 | 0.619 |
Runoff coefficient (%) | 4.4 | 43.0 | 81.5 | 31.8 | 1.1 | 41.6 | 69.5 | 22.2 | 2.953 | 0.101 | 0.121 | 0.905 |
Soil loss (g m−2 h−1) | 1.6 | 118.0 | 440.0 | 156.5 | 1.0 | 12.2 | 37.6 | 11.2 | 36.964 | 0.000 | 2.347 | 0.029 |
Sediment concentration (g L−1) | 0.3 | 3.1 | 10.3 | 3.6 | 0.1 | 0.7 | 1.8 | 0.6 | 26.921 | 0.000 | 2.33 | 0.030 |
Runoff Initiation (s) | Runoff Coefficient (%) | Soil Loss (g m−2 h−1) | Sediment Concentration (g L−1) | |
---|---|---|---|---|
Slope | −0.450 * | 0.439 * | 0.445 * | 0.101 |
Soil moisture | −0.047 | 0.088 | −0.095 | −0.075 |
Water repellency | −0.090 | 0.047 | −0.263 | −0.350 |
Resistance to penetration | 0.054 | −0.124 | −0.024 | −0.001 |
Bulk density | 0.011 | 0.005 | −0.288 | −0.337 |
Silt + clay | 0.032 | 0.039 | 0.028 | −0.058 |
Sand | 0.267 | −0.379 | 0.442 * | −0.080 |
Stoniness | −0.258 | 0.374 | −0.556 ** | 0.190 |
Natural plant-residue mulch layer | 0.642 ** | −0.633 ** | −0.862 ** | −0.639 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.N.; Gonçalves, J.P.; Figueiredo, A. Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal. Land 2023, 12, 1591. https://doi.org/10.3390/land12081591
Nunes AN, Gonçalves JP, Figueiredo A. Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal. Land. 2023; 12(8):1591. https://doi.org/10.3390/land12081591
Chicago/Turabian StyleNunes, Adélia N., João Pedro Gonçalves, and Albano Figueiredo. 2023. "Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal" Land 12, no. 8: 1591. https://doi.org/10.3390/land12081591
APA StyleNunes, A. N., Gonçalves, J. P., & Figueiredo, A. (2023). Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal. Land, 12(8), 1591. https://doi.org/10.3390/land12081591