Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Land Use Dataset
2.2.2. Economic and Demographic Data
2.2.3. Precipitation Data
2.3. Methods
2.3.1. Land Use Intensity
2.3.2. Selection of Spatial Pattern Indices
2.3.3. Mann–Kendall Trend Test
2.3.4. Pettitt Change-Point Detection Test
3. Results and Discussion
3.1. Temporal Changes in Land Use Characteristics for Five Representative Years
3.1.1. Changes in Land Use Area
3.1.2. Conversion of Land Use Types
3.1.3. Land Use Intensity
3.2. Analysis of Spatial Pattern Evolution of Land Use
3.2.1. Changes of Landscape Metrics at Landscape Level
3.2.2. Changes of Landscape Metrics at Class Level
- Cropland
- 2.
- Forest
- 3.
- Grassland
- 4.
- Impervious
3.3. Trend Analysis and Mutation Point Test of Land Use
3.3.1. Trend Analysis of Land Use Change
3.3.2. Mutation Point Test of Land Use Change
3.4. Analysis of Driving Forces
3.4.1. Natural Driving Forces
3.4.2. Social Driving Forces
4. Conclusions and Policy Suggestions
- (1)
- The main land use types in the YRB are cropland, forest, and grassland, with 18.27%, 9.15%, and 72.02%, respectively. During the study period, cropland and forest land showed significant decreasing and increasing trends, respectively, with abrupt changes occurring in 2005 and 2004. The land use transformation mainly involved the conversion from cropland to grassland and from grassland to forest.
- (2)
- In the YRB, land use patches exhibited a trend of regularization, simplification, and aggregation, indicating the strengthening impact of human activities on spatial patterns. The shape of cropland and forest land patches became increasingly simplified with stronger connectivity. Grassland developed into larger patches and exhibited aggregation processes in the upstream and downstream areas. The impervious showed an aggregation trend throughout the basin.
- (3)
- Both social and natural factors contribute to land use change in the YRB. The growth of the economy and population is strongly associated with land use change, with the Grain for Green (GfG) program being the dominant driving force.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes—Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review. Land 2022, 11, 2163. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, Y.; Morrison, A.M. The Influence of Land Use Evolution on the Visitor Economy in Wuhan from the Perspective of Ecological Service Value. Land 2022, 11, 1. [Google Scholar] [CrossRef]
- Western, D. Human-Modified Ecosystems and Future Evolution. Proc. Natl. Acad. Sci. USA 2001, 98, 5458–5465. [Google Scholar] [CrossRef] [PubMed]
- Napoli, M.; Massetti, L.; Orlandini, S. Hydrological Response to Land Use and Climate Changes in a Rural Hilly Basin in Italy. CATENA 2017, 157, 1–11. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Zhang, Z.; Wang, D. Model-Based Assessment Soil Loss by Wind and Water Erosion in China’s Loess Plateau: Dynamic Change, Conservation Effectiveness, and Strategies for Sustainable Restoration. Glob. Planet. Chang. 2019, 172, 396–413. [Google Scholar] [CrossRef]
- Yu, S.; Xu, Z.; Wu, W.; Zuo, D. Effect of Land Use Types on Stream Water Quality under Seasonal Variation and Topographic Characteristics in the Wei River Basin, China. Ecol. Indic. 2016, 60, 202–212. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Zhang, Y.; Bing, M.; Liu, Y.; Wu, J.; Hai, X.; Li, A.; Wang, K.; Wu, P.; et al. Effects of Vegetation Restoration Types on Soil Nutrients and Soil Erodibility Regulated by Slope Positions on the Loess Plateau. J. Environ. Manag. 2022, 302, 113985. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-Ecological Changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity and Vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Wu, J.G.; Hobbs, R. Key Issues and Research Priorities in Landscape Ecology: An Idiosyncratic Synthesis. Landsc. Ecol. 2002, 17, 355–365. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Ostwald, M.; Chen, D. Land-Use Change: Impacts of Climate Variations and Policies among Small-Scale Farmers in the Loess Plateau, China. Land Use Pol. 2006, 23, 361–371. [Google Scholar] [CrossRef]
- Carlson, T.N.; Arthur, S.T. The Impact of Land Use—Land Cover Changes Due to Urbanization on Surface Microclimate and Hydrology: A Satellite Perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Long, H.; Heilig, G.K.; Li, X.; Zhang, M. Socio-Economic Development and Land-Use Change: Analysis of Rural Housing Land Transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar] [CrossRef]
- Dalle, S.P.; de Blois, S.; Caballero, J.; Johns, T. Integrating Analyses of Local Land-Use Regulations, Cultural Perceptions and Land-Use/Land Cover Data for Assessing the Success of Community-Based Conservation. For. Ecol. Manag. 2006, 222, 370–383. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the Effects of Land Use and Topography on Soil Erosion on the Loess Plateau in China. CATENA 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Křováková, K.; Semerádová, S.; Mudrochová, M.; Skaloš, J. Landscape Functions and Their Change—A Review on Methodological Approaches. Ecol. Eng. 2015, 75, 378–383. [Google Scholar] [CrossRef]
- da Silva, A.M.; Huang, C.H.; Francesconi, W.; Saintil, T.; Villegas, J. Using Landscape Metrics to Analyze Micro-Scale Soil Erosion Processes. Ecol. Indic. 2015, 56, 184–193. [Google Scholar] [CrossRef]
- Herzog, F.; Lausch, A.; Muller, E.; Thulke, H.H.; Steinhardt, U.; Lehmann, S. Landscape Metrics for Assessment of Landscape Destruction and Rehabilitation. Environ. Manage. 2001, 27, 91–107. [Google Scholar] [CrossRef]
- Chang, X.; Huang, X.; Jiang, X.; Xiao, R. Impacts of Transportation Networks on the Landscape Patterns-A Case Study of Shanghai. Remote Sens. 2022, 14, 4060. [Google Scholar] [CrossRef]
- Schindler, S.; Poirazidis, K.; Wrbka, T. Towards a Core Set of Landscape Metrics for Biodiversity Assessments: A Case Study from Dadia National Park, Greece. Ecol. Indic. 2008, 8, 502–514. [Google Scholar] [CrossRef]
- Fan, Q.; Ding, S. Landscape Pattern Changes at a County Scale: A Case Study in Fengqiu, Henan Province, China from 1990 to 2013. CATENA 2016, 137, 152–160. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Changes in Landscape Spatial Pattern in the Highly Developing State of Selangor, Peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial Patterns and Driving Forces of Land Use Change in China during the Early 21st Century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Guo, L.; Di, L.; Tian, Q. Detecting Spatio-Temporal Changes of Arable Land and Construction Land in the Beijing-Tianjin Corridor during 2000–2015. J. Geogr. Sci. 2019, 29, 702–718. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Wang, H.; Hu, M. Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sens. 2021, 13, 1168. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of Soil Erosion Models Used to Study the Chinese Loess Plateau. Earth-Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, B.; Xu, X.; Liu, T.; Duan, Y.; Zhao, Y. Spatial and Temporal Variations in Surface Soil Moisture and Vegetation Cover in the Loess Plateau from 2000 to 2015. Ecol. Indic. 2018, 95, 320–330. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the Effects of Changes in Land Use and Climate on Runoff and Sediment Yields from a Watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef]
- Liu, D.; Hao, S.; Liu, X.; Li, B.; He, S.; Warrington, D.N. Effects of Land Use Classification on Landscape Metrics Based on Remote Sensing and GIS. Env. Earth Sci 2013, 68, 2229–2237. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying Landscape Pattern and Ecosystem Service Value Changes: A Case Study at the County Level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, Z.; Zhang, X.; Yu, Y. Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China. Land 2019, 8, 180. [Google Scholar] [CrossRef]
- Wang, D.; Fu, B.; Lu, K.; Xiao, L.; Zhang, Y.; Feng, X. Multifractal Analysis of Land Use Pattern in Space and Time: A Case Study in the Loess Plateau of China. Ecol. Complex. 2010, 7, 487–493. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G. Spatial Variation in Sediment Connectivity of Small Watershed along a Regional Transect on the Loess Plateau. CATENA 2022, 217, 106473. [Google Scholar] [CrossRef]
- Ling, Z.; Jiang, W.; Lu, Y.; Ling, Y.; Zhang, Z.; Liao, C. Continuous Long Time Series Monitoring of Urban Construction Land in Supporting the SDG 11.3.1—A Case Study of Nanning, Guangxi, China. Land 2023, 12, 452. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, S.; Guo, Y.; Liu, X. Runoff Responses of Various Driving Factors in a Typical Basin in Beijing-Tianjin-Hebei Area. Remote Sens. 2023, 15, 1027. [Google Scholar] [CrossRef]
- Lu, M.; Tan, Z.; Yuan, C.; Dong, Y.; Dong, W. Resilience Measurements and Dynamics of Resource-Based Cities in Heilongjiang Province, China. Land 2023, 12, 302. [Google Scholar] [CrossRef]
- Lyu, J.; Yin, S.; Sun, Y.; Wang, K.; Luo, P.; Meng, X. Flood Runoff Simulation under Changing Environment, Based on Multiple Satellite Data in the Jinghe River Basin of the Loess Plateau, China. Remote Sens. 2023, 15, 550. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Zhao, X.; Shi, S.; Xu, L. Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin. Remote Sens. 2023, 15, 743. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Erb, K.-H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A Conceptual Framework for Analysing and Measuring Land-Use Intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Huang, C. Dynamic Changes Analysis and Hotspots Detection of Land Use in the Central Core Functional Area of Jing-Jin-Ji from 2000 to 2015 Based on Remote Sensing Data. Math. Probl. Eng. 2017, 2017, e2183585. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K.; Neel, M.C. Parsimony in Landscape Metrics: Strength, Universality, and Consistency. Ecol. Indic. 2008, 8, 691–703. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, X.; Xiao, D.; Liu, M.; An, R.; Fan, L. Evolution and Influencing Factors of Landscape Pattern in the Yellow River Basin (Henan Section) Due to Land Use Changes. Water 2022, 14, 3872. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Luo, S.; Xu, B.; Zhou, Q. Land Use Changes in the Zoige Plateau Based on the Object-Oriented Method and Their Effects on Landscape Patterns. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef]
- Burn, D.H.; Hag Elnur, M.A. Detection of Hydrologic Trends and Variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of Impacts of Climate Variability and Human Activity on Streamflow for a River Basin in Arid Region of Northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhou, Z.; Li, M.; Jing, C. Spatial Quantitative Model of Human Activity Disturbance Intensity and Land Use Intensity Based on GF-6 Image, Empirical Study in Southwest Mountainous County, China. Remote Sens. 2022, 14, 4574. [Google Scholar] [CrossRef]
- Potschin, M. Land Use and the State of the Natural Environment. Land Use Policy 2009, 26, S170–S177. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, X.; Wang, Y. Understanding the Impacts of ‘Grain for Green’ Land Management Practice on Land Greening Dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Zhao, H.; He, H.; Wang, J.; Bai, C.; Zhang, C. Vegetation Restoration and Its Environmental Effects on the Loess Plateau. Sustainability 2018, 10, 4676. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Luo, X.; Liu, M. Complex Anthropogenic Interaction on Vegetation Greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. [Google Scholar] [CrossRef]
- Xu, F.; Bao, H.X.H.; Li, H.; Kwan, M.-P.; Huang, X. Land Use Policy and Spatiotemporal Changes in the Water Area of an Arid Region. Land Use Policy 2016, 54, 366–377. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Fu, B.-J.; Chen, L.-D.; Zhao, W.-W.; Yang, Q.-K.; Liu, G.-B.; Gulinck, H. Dynamics and Driving Factors of Agricultural Landscape in the Semiarid Hilly Area of the Loess Plateau, China. Agric. Ecosyst. Environ. 2004, 103, 535–543. [Google Scholar] [CrossRef]
- Du, X.; Zhao, X.; Liang, S.; Zhao, J.; Xu, P.; Wu, D. Quantitatively Assessing and Attributing Land Use and Land Cover Changes on China’s Loess Plateau. Remote Sens. 2020, 12, 353. [Google Scholar] [CrossRef]
- Wang, F.; Hessel, R.; Mu, X.; Maroulis, J.; Zhao, G.; Geissen, V.; Ritsema, C. Distinguishing the Impacts of Human Activities and Climate Variability on Runoff and Sediment Load Change Based on Paired Periods with Similar Weather Conditions: A Case in the Yan River, China. J. Hydrol. 2015, 527, 884–893. [Google Scholar] [CrossRef]
- Guo, B.; Xie, T.; Subrahmanyam, M.V. The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau. Sustainability 2019, 11, 5336. [Google Scholar] [CrossRef]
- Kroll, F.; Haase, D. Does Demographic Change Affect Land Use Patterns?: A Case Study from Germany. Land Use Policy 2010, 27, 726–737. [Google Scholar] [CrossRef]
Category | Indices | Description |
---|---|---|
Area metrics | Largest Patch Index (LPI) | The size of the largest patch. |
Shape metrics | Perimeter-Area Ratio (PARA) | The ratio between the perimeter (boundary length) and the area of each patch, describing the regularity of patch shape. |
Perimeter-Area Fractal Dimension (PAFRAC) | A fractal dimension index that can reflect to a certain extent the degree of human activities interfering with landscape patterns. | |
Contiguity Index (CONTIG) | The index measures the degree of connectivity between patches, which represents the spatial contiguity of the patches. | |
Distribution metrics | Aggregation Index (AI) | The index measures the degree of spatial aggregation of patches. |
Diversity metrics | Shannon’s Diversity Index (SHDI) | Uncertainties and landscape heterogeneity of patches. |
Land Use Types | 1985 | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | |
cropland | 2205.84 | 28.70 | 2144.46 | 27.90 | 1111.43 | 14.46 | 777.12 | 10.11 | 783.28 | 10.19 |
forest | 506.28 | 6.59 | 505.81 | 6.58 | 517.33 | 6.73 | 696.30 | 9.06 | 1288.84 | 16.77 |
shrub | 9.32 | 0.12 | 8.59 | 0.11 | 11.53 | 0.15 | 7.00 | 0.09 | 5.92 | 0.07 |
grassland | 4947.78 | 64.37 | 5009.96 | 65.18 | 6016.99 | 78.28 | 6161.54 | 80.16 | 5543.81 | 72.13 |
water | 1.84 | 0.02 | 1.82 | 0.02 | 3.41 | 0.04 | 1.69 | 0.02 | 4.43 | 0.06 |
impervious | 14.92 | 0.19 | 15.37 | 0.20 | 25.51 | 0.33 | 42.56 | 0.55 | 59.36 | 0.77 |
barren | 0.29 | 0.00 | 0.25 | 0.00 | 0.07 | 0.00 | 0.05 | 0.00 | 0.62 | 0.01 |
Region | Land Use Types | 1985 | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | Area/km² | Ratio/% | ||
Upstream | cropland | 340.58 | 24.26% | 319.56 | 22.76% | 135.27 | 9.63% | 89.44 | 6.37% | 87.09 | 6.20% |
forest | 1.01 | 0.07% | 1.01 | 0.07% | 1.46 | 0.10% | 19.16 | 1.36% | 88.15 | 6.28% | |
grassland | 1060.16 | 75.51% | 1081.22 | 77.01% | 1264.69 | 90.07% | 1291.04 | 91.95% | 1223.36 | 87.13% | |
impervious | 2.04 | 0.15% | 2.04 | 0.15% | 2.63 | 0.19% | 4.25 | 0.30% | 4.52 | 0.32% | |
Midstream | cropland | 1393.03 | 30.08% | 1371.04 | 29.60% | 699.51 | 15.10% | 477.67 | 10.31% | 486.41 | 10.50% |
forest | 372.19 | 8.04% | 371.66 | 8.02% | 381.28 | 8.23% | 504.12 | 10.88% | 916.01 | 19.78% | |
grassland | 2849.89 | 61.53% | 2872.35 | 62.02% | 3519.49 | 75.99% | 3611.99 | 77.99% | 3174.7 | 68.54% | |
impervious | 8.48 | 0.18% | 8.8 | 0.19% | 16.95 | 0.37% | 30.67 | 0.66% | 45.05 | 0.97% | |
Downstream | cropland | 472.22 | 28.61% | 453.85 | 27.50% | 276.65 | 16.76% | 210.02 | 12.72% | 209.79 | 12.71% |
forest | 133.08 | 8.06% | 133.13 | 8.07% | 134.59 | 8.15% | 173.01 | 10.48% | 284.68 | 17.25% | |
grassland | 1037.73 | 62.87% | 1056.39 | 64.00% | 1232.8 | 74.69% | 1258.5 | 76.25% | 1145.74 | 69.42% | |
impervious | 4.4 | 0.27% | 4.53 | 0.27% | 5.92 | 0.36% | 7.63 | 0.46% | 9.8 | 0.59% |
Period | Types | Area Proportion/% | |||||
---|---|---|---|---|---|---|---|
Cropland | Forest | Shrub | Grassland | Water | Impervious | ||
1985–1990 | cropland | 27.27 | 0.00 | 0.00 | 1.39 | 0.00 | 0.01 |
forest | 0.00 | 6.57 | 0.01 | 0.00 | 0.00 | 0.00 | |
shrub | 0.00 | 0.00 | 0.10 | 0.02 | 0.00 | 0.00 | |
grassland | 0.60 | 0.00 | 0.00 | 63.80 | 0.00 | 0.00 | |
water | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | |
barren | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
impervious | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | |
1990–2000 | cropland | 11.12 | 0.01 | 0.00 | 15.61 | 0.01 | 0.08 |
forest | 0.03 | 6.17 | 0.09 | 0.04 | 0.00 | 0.00 | |
shrub | 0.00 | 0.01 | 0.04 | 0.06 | 0.00 | 0.00 | |
grassland | 2.83 | 0.29 | 0.02 | 62.00 | 0.03 | 0.04 | |
water | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
barren | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
impervious | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | |
2000–2010 | cropland | 7.90 | 0.13 | 0.00 | 6.25 | 0.00 | 0.15 |
forest | 0.01 | 6.67 | 0.01 | 0.03 | 0.00 | 0.00 | |
shrub | 0.00 | 0.04 | 0.04 | 0.07 | 0.00 | 0.00 | |
grassland | 2.16 | 2.19 | 0.04 | 73.85 | 0.00 | 0.07 | |
water | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | |
barren | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
impervious | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | |
2010–2020 | cropland | 7.07 | 0.11 | 0.00 | 2.75 | 0.02 | 0.14 |
forest | 0.04 | 8.99 | 0.00 | 0.01 | 0.00 | 0.00 | |
shrub | 0.00 | 0.04 | 0.02 | 0.03 | 0.00 | 0.00 | |
grassland | 3.05 | 7.57 | 0.06 | 69.43 | 0.02 | 0.08 | |
water | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | |
barren | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
impervious | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.55 |
Land Use Types | Average/km² | CV | Z Value |
---|---|---|---|
cropland | 1072.371 | 0.378 | −6.935 |
forest | 728.395 | 0.382 | 6.957 |
grassland | 5837.841 | 0.056 | 1.087 |
impervious | 34.731 | 0.414 | 8.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Gao, P.; Wu, C.; Mu, X. Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin. Land 2023, 12, 1653. https://doi.org/10.3390/land12091653
Zhou J, Gao P, Wu C, Mu X. Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin. Land. 2023; 12(9):1653. https://doi.org/10.3390/land12091653
Chicago/Turabian StyleZhou, Jiahui, Peng Gao, Changxue Wu, and Xingmin Mu. 2023. "Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin" Land 12, no. 9: 1653. https://doi.org/10.3390/land12091653
APA StyleZhou, J., Gao, P., Wu, C., & Mu, X. (2023). Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin. Land, 12(9), 1653. https://doi.org/10.3390/land12091653