Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China
Abstract
:1. Introduction
2. Literature Review
2.1. Housing Price and Green Spaces
2.2. Green Spaces in Various Countries
2.3. Hedonic Pricing Approach
3. Theoretical Hypotheses
3.1. Spatial Dependence in Residential Property Values
3.2. Property Value and Public Green Spaces
3.3. Property Value and Community-Owned Green Spaces
4. Data and Methodology
4.1. Data
4.1.1. Geographical Information in Shanghai
4.1.2. Public Urban Green Spaces (PUGS)
4.1.3. Community-Level Housing Data
4.1.4. Subdistrict-Level Attributes
4.2. Data Matching and Summary Statistics
4.3. Methodology
4.3.1. Baseline Model
4.3.2. Spatial Hedonic Pricing Model
4.3.3. Instrumental-Variable Approach
5. Empirical Results
5.1. Main Results of Non-Spatial Models
5.1.1. Standard Hedonic Pricing Model
5.1.2. Results with Instrumental Variables
5.2. Main Results of Spatial Hedonic Models
5.2.1. Analysis of Spatial Dependence
5.2.2. Spatial Hedonic Model with Instrumental Variables
6. Further Analyses
6.1. Analysis of Individual Indicators
6.2. Heterogeneity Analysis
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Data Construction of the Green Space Accessibility Index
Appendix A.1. Total Demand for Green Spaces
Appendix A.2. Relative Attraction Coefficient of Green Spaces
Appendix A.3. Green-to-Population Ratio
Appendix A.4. Accessibility Index of Urban Green Spaces
Appendix B. Additional Tables
Dependent Variable: Home Price per Square Meter (CNY/m) | |||
---|---|---|---|
Variables | (1) | (2) | (3) |
Non-Spatial IV | SAR-OLS | SAR-IV | |
ln(Green) (>1 hm) | 0.125 *** | 0.221 *** | 0.145 *** |
(0.011) | (0.010) | (0.013) | |
0.412 *** | 0.474 *** | ||
(0.102) | (0.131) | ||
−0.223 | −0.224 | ||
(0.156) | (0.217) | ||
Observations | 3388 | 3388 | 3388 |
Communities-level attributes | Y | Y | Y |
Subdistrict FE | Y | Y | Y |
Pseudo | 00.557 | 00.122 | 00.041 |
Marginal effects of SAR-IV | direct | indirect | total |
0.135 *** | 0.061 *** | 0.196 *** | |
(0.022) | (0.024) | (0.067) |
Appendix C. Additional Graphs
1 | https://mzj.sh.gov.cn/ (accessed on 1 April 2023). |
2 | https://zenodo.org/record/5210928 (accessed on 3 May 2023). |
3 | According to standard Essential Urban Land Use Categories (EULUC), public green spaces (code 0505) include lands used for entertainments and environmental conservations, such as parks, trees planted in rows parks, special parks, scenic areas, urban wetlands, forest parks, nature reserves, and residential parks [60]. |
4 | As a robustness check, we perform a stepwise increase of 100 m to the range limit of 1000 m and find no significant variations on the impact of green spaces. |
5 | The first advantage of CFCA is that catchments of varying sizes are adopted to reflect service ability because larger parks can serve more distant residents. Second, different modes of transportation, such as driving, biking, and walking, can be estimated in our proposed model. |
6 | This paper utilizes the ArcGIS 10.8, a powerful geographic information system software suite designed to analyze, visualize, and manage spatial data for various applications in fields such as geography, environmental science, urban planning, and more [8,34]. Given its comprehensive and integrated capabilities, we calculate all spatial statistics in this platform. |
7 | Soufang holding (NYSE: SFUN) is a publicly traded company listed in New York Stock Exchange. Fang.com is the website launched by the listed company that provides the real estate data in the housing market of Shanghai. |
8 | Based on the data provided by Soufang and the common standard, the green coverage rate is referred to as the ratio of the sum of the vertically projected area of greenery to the total land area of a residential area. |
9 | The locations of water areas are closely related to the spatial distribution of urban green spaces, which is used as an instrumental variable (IV) for endogenously determined green spaces. We specify the IV-approach in later section. |
10 | We estimate the SAR model using the ordinary least squares (OLS) because the estimator for spatial autoregressions remain consistent as pointed out by Lee (2002), as long as spatially lagged regressors are non-stochastic. In this case, the model can be simply estimated using the OLS procedure [64]. |
References
- Anselin, L.; Lozano-Gracia, N. Errors in Variables and Spatial Effects in Hedonic House Price Models of Ambient Air Quality. Empir. Econ. 2008, 34, 5–34. [Google Scholar] [CrossRef]
- Xiao, Y.; Hui, E.C.M.; Wen, H. The Housing Market Impacts of Human Activities in Public Spaces: The Case of the Square Dancing. Urban For. Urban Green. 2020, 54, 126769. [Google Scholar] [CrossRef]
- Chen, Y.; Jones, C.A.; Dunse, N.A.; Li, E.; Liu, Y. Housing Prices and the Characteristics of Nearby Green Space: Does Landscape Pattern Index Matter? Evidence from Metropolitan Area. Land 2023, 12, 496. [Google Scholar] [CrossRef]
- leBrasseur, R. Citizen Sensing within Urban Greenspaces: Exploring Human Wellbeing Interactions in Deprived Communities of Glasgow. Land 2023, 12, 1391. [Google Scholar] [CrossRef]
- Lu, J.; Luo, X.; Yang, N.; Shen, Y. Multiple Pathways: The Influence Mechanism of Greenspace Exposure on Mental Health—A Case Study of Hangzhou, China. Land 2021, 10, 339. [Google Scholar] [CrossRef]
- Yoo, H.; Yoon, H. The Effect of Green Characteristics in Reducing the Inventory of Unsold Housing in New Residential Developments—A Case of Gyeonggi Province, in South Korea. Land 2021, 10, 377. [Google Scholar] [CrossRef]
- Lake, I.R.; Lovett, A.A.; Bateman, I.J.; Day, B. Using GIS and Large-Scale Digital Data to Implement Hedonic Pricing Studies. Int. J. Geogr. Inf. Sci. 2000, 14, 521–541. [Google Scholar] [CrossRef]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green Space Availability in European Cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Du, Q.; Luo, P. Spatial Effects of Accessibility to Parks on Housing Prices in Shenzhen, China. Habitat Int. 2017, 63, 45–54. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Z.; Webster, C. Estimating the Mediating Effect of Privately-Supplied Green Space on the Relationship between Urban Public Green Space and Property Value: Evidence from Shanghai, China. Land Use Policy 2016, 54, 439–447. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the Willingness to Pay for Green Space Services in Shanghai: Implications for Social Equity in Urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y.; Tian, G. Analyzing Housing Prices in Shanghai with Open Data: Amenity, Accessibility and Urban Structure. Cities 2019, 91, 165–179. [Google Scholar] [CrossRef]
- Panduro, T.E.; Veie, K.L. Classification and Valuation of Urban Green Spaces—A Hedonic House Price Valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, G.E.; Lee, J.S.; Choi, Y. Understanding the Local Impact of Urban Park Plans and Park Typology on Housing Price: A Case Study of the Busan Metropolitan Region, Korea. Landsc. Urban Plan. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Liu, F.; Chen, K.; Zhang, T.; Zhang, Y.; Song, Y. Will Good Service Quality Promote Real Estate Value? Evidence from Beijing, China. Land 2022, 11, 166. [Google Scholar] [CrossRef]
- Luo, J.; Zhai, S.; Song, G.; He, X.; Song, H.; Chen, J.; Liu, H.; Feng, Y. Assessing Inequity in Green Space Exposure toward a “15-Minute City” in Zhengzhou, China: Using Deep Learning and Urban Big Data. Int. J. Environ. Res. Public Health 2022, 19, 5798. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.Y.; Chen, W.Y. External Effects of Neighbourhood Parks and Landscape Elements on High-Rise Residential Value. Land Use Policy 2010, 27, 662–670. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The Carbon Footprint of Urban Green Space—A Life Cycle Approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Czembrowski, P.; Kronenberg, J. Hedonic Pricing and Different Urban Green Space Types and Sizes: Insights into the Discussion on Valuing Ecosystem Services. Landsc. Urban Plan. 2016, 146, 11–19. [Google Scholar] [CrossRef]
- Picard, P.; Tran, T. Small Urban Green Areas. J. Environ. Econ. Manag. 2021, 106, 102418. [Google Scholar] [CrossRef]
- Jones, M.; Reed, R.G. Open Space Amenities and Residential Land Use: An Australian Perspective. Land Use Policy 2018, 75, 1–10. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Impacts of Urban Environmental Elements on Residential Housing Prices in Guangzhou (China). Landsc. Urban Plan. 2006, 78, 422–434. [Google Scholar] [CrossRef]
- Lutzenhiser, M.; Netusil, N. The Effect of Open Spaces on a Home’s Sale Price. Contemp. Econ. Policy 2001, 19, 291–298. [Google Scholar] [CrossRef]
- Do, A.Q.; Grudnitski, G. Golf Courses and Residential House Prices: An Empirical Examination. J. Real Estate Financ. Econ. 1995, 10, 261–270. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Chau, C.K.; Pun, L.; Law, M.Y. Measuring the Neighboring and Environmental Effects on Residential Property Value: Using Spatial Weighting Matrix. Build. Environ. 2007, 42, 2333–2343. [Google Scholar] [CrossRef]
- Gibbons, S.; Mourato, S.; Resende, G.M. The Amenity Value of English Nature: A Hedonic Price Approach. Environ. Resour. Econ. 2014, 57, 175–196. [Google Scholar] [CrossRef]
- Mahan, B.L.; Polasky, S.; Adams, R.M. Valuing Urban Wetlands: A Property Price Approach. Land Econ. 2000, 76, 100–113. [Google Scholar] [CrossRef]
- Tse, R.Y.; Love, P.E. Measuring Residential Property Values in Hong Kong. Prop. Manag. 2000, 18, 366–374. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Y. Geographic Field Model Based Hedonic Valuation of Urban Open Spaces in Wuhan, China. Landsc. Urban Plan. 2010, 98, 47–55. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Hodges, D.G.; Merrett, C.D. A Hedonic Analysis of the Demand for and Benefits of Urban Recreation Parks. Land Use Policy 2009, 26, 975–983. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Qiu, T.; Jing, Y.; Fang, F. The Effects of Locational Factors on the Housing Prices of Residential Communities: The Case of Ningbo, China. Habitat Int. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Ysseldyk, R.L.; Root, A.; Ambrose, S.; DiMuzio, J.; Kumar, N.; Shehata, M.; Xi, M.; Seed, E.; Li, X.; et al. Comparing the Normalized Difference Vegetation Index with the Google Street View Measure of Vegetation to Assess Associations between Greenness, Walkability, Recreational Physical Activity, and Health in Ottawa, Canada. Int. J. Environ. Res. Public Health 2018, 15, 1719. [Google Scholar] [CrossRef]
- Chen, W.; Jim, C. Amenities and Disamenities: A Hedonic Analysis of the Heterogeneous Urban Landscape in Shenzhen (China). Geogr. J. 2010, 176, 227–240. [Google Scholar] [CrossRef]
- Wu, C.; Du, Y.; Li, S.; Liu, P.; Ye, X. Does visual contact with green space impact housing prices? An integrated approach of machine learning and hedonic modeling based on the perception of green space. Land Use Policy 2022, 115, 106048. [Google Scholar] [CrossRef]
- Tiebout, C.M. A Pure Theory of Local Expenditures. J. Political Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- LeSage, J.P. An Introduction to Spatial Econometrics. Rev. Econ. Ind. 2008, 1, 19–44. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Harrison, D.; Rubinfeld, D.L. Hedonic Housing Prices and the Demand for Clean Air. J. Environ. Econ. Manag. 1978, 5, 81–102. [Google Scholar] [CrossRef]
- Robst, J. Estimation of a Hedonic Pricing Model for Medigap Insurance. Health Serv. Res. 2006, 41, 2097–2113. [Google Scholar] [CrossRef]
- Prieto, M.; Caemmerer, B.; Baltas, G. Using a Hedonic Price Model to Test Prospect Theory Assertions: The Asymmetrical and Nonlinear Effect of Reliability on Used Car Prices. J. Retail. Consum. Serv. 2015, 22, 206–212. [Google Scholar] [CrossRef]
- Ponsignon, F.; Lunardo, R.; Michrafy, M. Why Are International Visitors More Satisfied with the Tourism Experience? The Role of Hedonic Value, Escapism, and Psychic Distance. J. Travel Res. 2021, 60, 1771–1786. [Google Scholar] [CrossRef]
- Tyrväinen, L. The Amenity Value of the Urban Forest: An Application of the Hedonic Pricing Method. Landsc. Urban Plan. 1997, 37, 211–222. [Google Scholar] [CrossRef]
- Figlio, D.N.; Lucas, M.E. What’s in a Grade? School Report Cards and the Housing Market. Am. Econ. Rev. 2004, 94, 591–604. [Google Scholar] [CrossRef]
- Morancho, A.B. A Hedonic Valuation of Urban Green Areas. Landsc. Urban Plan. 2003, 66, 35–41. [Google Scholar] [CrossRef]
- Lu, J. The Value of a South-Facing Orientation: A Hedonic Pricing Analysis of the Shanghai Housing Market. Habitat Int. 2018, 81, 24–32. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, R.; Xu, D.; Zhou, W. Spatial and Hedonic Analysis of Housing Prices in Shanghai. Habitat Int. 2017, 67, 69–78. [Google Scholar] [CrossRef]
- Duan, J.; Tian, G.; Yang, L.; Zhou, T. Addressing the Macroeconomic and Hedonic Determinants of Housing Prices in Beijing Metropolitan Area, China. Habitat Int. 2021, 113, 102374. [Google Scholar] [CrossRef]
- Daams, M.N.; Sijtsma, F.J.; Veneri, P. Mixed Monetary and Non-Monetary Valuation of Attractive Urban Green Space: A Case Study Using Amsterdam House Prices. Ecol. Econ. 2019, 166, 106430. [Google Scholar] [CrossRef]
- Lee, J.K. New Rail Transit Projects and Land Values: The Difference in the Impact of Rail Transit Investment on Different Land Types, Values and Locations. Land Use Policy 2022, 112, 105807. [Google Scholar] [CrossRef]
- Wen, H.; Xiao, Y.; Zhang, L. School District, Education Quality, and Housing Price: Evidence from a Natural Experiment in Hangzhou, China. Cities 2017, 66, 72–80. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, J.; Wei, Y.D.; Wang, L. Policy Change, Amenity, and Spatiotemporal Dynamics of Housing Prices in Nanjing, China. Land Use Policy 2018, 75, 225–236. [Google Scholar] [CrossRef]
- Agnew, K.; Lyons, R.C. The Impact of Employment on Housing Prices: Detailed Evidence from FDI in Ireland. Reg. Sci. Urban Econ. 2018, 70, 174–189. [Google Scholar] [CrossRef]
- Wang, J.; Wu, K.; Du, Y. Does Air Pollution Affect Urban Housing Prices? Evidence from 285 Chinese Prefecture-Level Cities. J. Clean. Prod. 2022, 370, 133480. [Google Scholar] [CrossRef]
- Can, A. Specification and Estimation of Hedonic Housing Price Models. Reg. Sci. Urban Econ. 1992, 22, 453–474. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, Accessibility and Housing Values in Metropolitan USA: A Study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Wen, H.; Tao, Y. Polycentric Urban Structure and Housing Price in the Transitional China: Evidence from Hangzhou. Habitat Int. 2015, 46, 138–146. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Wu, F. Rediscovering the ‘Gate’ Under Market Transition: From Work-unit Compounds to Commodity Housing Enclaves. Hous. Stud. 2005, 20, 235–254. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wu, J.; Peng, Y.; Liu, P.; Weng, Y.; Lin, J. Is the Green Inequality Overestimated? Quality Reevaluation of Green Space Accessibility. Cities 2022, 130, 103871. [Google Scholar] [CrossRef]
- Brasington, D.M.; Hite, D.; Jauregui, A. House price impacts of racial, income, education, and age neighborhood segregation. J. Reg. Sci. 2015, 55, 442–467. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. In Handbook of Spatial Analysis in the Social Sciences; Rey, S.J., Franklin, R.S., Eds.; Edward Elgar Publishing: New York, NY, USA, 2022; Chapter 6; pp. 101–122. [Google Scholar] [CrossRef]
- Lee, L.F. Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econom. Theory 2002, 18, 252–277. [Google Scholar] [CrossRef]
- łaszkiewicz, E.; Heyman, A.; Chen, X.; Cimburova, Z.; Nowell, M.; Barton, D.N. Valuing Access to Urban Greenspace Using Non-Linear Distance Decay in Hedonic Property Pricing. Ecosyst. Serv. 2022, 53, 101394. [Google Scholar] [CrossRef]
- Mears, M.; Brindley, P.; Jorgensen, A.; Maheswaran, R. Population-Level Linkages between Urban Greenspace and Health Inequality: The Case for Using Multiple Indicators of Neighbourhood Greenspace. Health Place 2020, 62, 102284. [Google Scholar] [CrossRef]
Variables | Description | N | Mean | Std. | Min | Max | Source |
---|---|---|---|---|---|---|---|
Panel A: Accessibility to public green spaces | |||||||
count | Number of green spaces (unit) | 3388 | 3.470 | 3.323 | 1 | 6 | CLCD |
area | Area of accessible green spaces (1000 m) | 3388 | 121.98 | 222.11 | 0.1079 | 2016.07 | CLCD |
distance | Distance to the nearest green spaces (meter) | 3388 | 229.7 | 131.0 | 0 | 498.3 | CLCD |
access | Accessibility index of green spaces (/) | 3388 | 3.590 | 0.799 | 0.695 | 5.698 | CLCD |
access_1hm | Accessibility index of green spaces ≥ 10,000 m (/) | 3388 | 3.350 | 0.694 | 0.612 | 5.314 | CLCD |
Panel B: Community-level attributes | |||||||
unitprice | Sales price per unit area (1000 CNY/m) | 3388 | 52.244 | 18.140 | 7.965 | 190.00 | Soufang |
greenratio | Area of greenery/total residential area (/) | 3388 | 0.342 | 0.089 | 0.0255 | 0.800 | Soufang |
FAR | Gross floor area/total land area (/) | 3388 | 2.202 | 1.087 | 0.100 | 9.200 | Soufang |
yearbuilt | Year when the community was built (year) | 3388 | 1998 | 19.55 | 1085 | 2018 | Soufang |
# of unit | Number of housing units (unit) | 3388 | 764.1 | 2939 | 10 | 163,201 | Soufang |
heating | Access to a heating system (/) | 3388 | 0.930 | 0.256 | 0 | 1 | Soufang |
dist_sub | Distance to subway station (meters) | 3388 | 580.1 | 676.4 | 0.333 | 6370 | Soufang |
property | Term of leasehold property: 40/70 (/) | 3388 | 0.870 | 0.337 | 0 | 1 | Soufang |
lon | longitude (degree) | 3388 | 121.5 | 0.069 | 121.2 | 121.7 | GIS |
lat | latitude (degree) | 3388 | 31.23 | 0.065 | 31.00 | 31.45 | GIS |
Locations based on ring roads (/) | GIS | ||||||
Within inner-ring highways (/) | 3388 | 0.429 | 0.495 | 0 | 1 | GIS | |
ring | Between inner- and middle-ring highways (/) | 3388 | 0.240 | 0.427 | 0 | 1 | GIS |
Between middle- and outer-ring highways (/) | 3388 | 0.181 | 0.385 | 0 | 1 | GIS | |
Outside the outer-ring highways (/) | 3388 | 0.149 | 0.356 | 0 | 1 | GIS | |
Panel C: Subdistrict-level attributes | |||||||
area_subdis | Area of subdistrict (km) | 225 | 34.87 | 43.15 | 1.070 | 272.3 | CLCD |
waterarea | Area of surface water (km) | 225 | 2.580 | 6.884 | 0.0003 | 64.00 | CLCD |
waterratio | Ratio of surface water area to total area (/) | 225 | 0.055 | 0.053 | 0 | 0.393 | CLCD |
Dependent Variable: Home Price per Square Meter (CNY/m) | ||||
---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) |
ln(Green) | 0.259 *** | 0.135 *** | 0.119 *** | 0.050 *** |
(0.031) | (0.024) | (0.021) | (0.014) | |
greenratio | 0.408 *** | 0.483 *** | 0.460** | |
(0.078) | (0.067) | (0.056) | ||
yearbuilt | 90.614 × 10 | 0.000074 | 0.00026 | |
(0.0003) | (0.0004) | (0.0004) | ||
num_unit | 20.973 × 10 | 30.653 × 10 | 20.811 × 10 | |
(10.742 × 10) | (20.123 × 10) | (10.961 × 10) | ||
FAR | −0.001 | −0.005 | −0.003 | |
(0.006) | (0.005) | (0.006) | ||
heating | 0.060 *** | 0.052 ** | 0.043 *** | |
(0.018) | (0.017) | (0.014) | ||
property_type | 0.067 ** | 0.073 *** | 0.068 *** | |
(0.025) | (0.016) | (0.016) | ||
dist_subway | −0.00003 * | −0.00003 ** | −0.00003 *** | |
(0.00001) | (0.00001) | (90.732 × 10) | ||
Outer-middle ring | 0.163 *** | 0.122 *** | 0.153 *** | |
(0.048) | (0.039) | (0.008) | ||
Middle-inner ring | 0.231 *** | 0.161 *** | 0.299 *** | |
(0.030) | (0.036) | (0.006) | ||
Within inner ring | 0.396 *** | 0.309 *** | 0.705 *** | |
(0.030) | (0.044) | (0.016) | ||
Constant | 9.937 *** | 9.845 *** | 9.651 *** | 9.587 *** |
(0.100) | (0.759) | (0.813) | (0.901) | |
Observations | 3388 | 3388 | 3388 | 3388 |
R-squared | 0.276 | 0.410 | 0.454 | 0.563 |
District FE | N | N | Y | N |
Subdistrict FE | N | N | N | Y |
Dependent Variable: Home Price per Square Meter (CNY/m) | ||||
---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) |
(OLS) | (IV) | (IV) | (IV) | |
ln(Green) | 0.050 *** | 0.135 *** | 0.220 *** | 0.165 *** |
(0.014) | (0.023) | (0.022) | (0.038) | |
Observations | 3388 | 3388 | 3388 | 3388 |
Communities-level attributes | Y | Y | Y | Y |
Subdistrict FE | Y | Y | Y | Y |
R-squared | 00.563 | 00.539 | 00.543 | 00.554 |
Chosen IVs | dist_water | waterratio ∗ dist _ water | waterratio ∗ dis_water + lon +lat | |
Kleibergen-Paap rk LM statistic | 20.981 | 30.228 | 40.584 | |
(p-value) | (0.041) | (0.035) | (0.022) | |
Kleibergen-Paap rk Wald F statistic | 250.204 | 280.324 | 230.921 | |
Stock-Yogo critical values: | ||||
10% maximal IV size | 160.38 | 160.38 | 220.30 | |
15% maximal IV size | 80.96 | 80.96 | 120.83 | |
Sargan-Hansen J statistic | 0.841 | |||
(p-value) | (0.655) | |||
Durbin-Wu-Hausman test | 23.274 | 26.859 | 15.689 | |
(p-value) | (0.004) | (0.002) | (0.006) |
Home Value | Green Spaces | OLS | IV | |
---|---|---|---|---|
Moran I test statistic | 25,783.28 *** | 60,170.15 *** | 14.471 *** | 12.165 *** |
(p-value) | (0.000) | (0.000) | (0.000) | (0.000) |
Observations | 3388 | 3388 | 3388 | 3388 |
Dependent Variable: Home Price per Square Meter (CNY/m) | |||
---|---|---|---|
Variables | (1) | (2) | (3) |
Non-Spatial IV | SAR-OLS | SAR-IV | |
ln (Green) | 0.165 *** | 0.246 *** | 0.207 *** |
(0.013) | (0.014) | (0.019) | |
0.570 *** | 0.567 *** | ||
(0.119) | (0.123) | ||
−0.287 | −0.287 | ||
(0.256) | (0.257) | ||
Observations | 3388 | 3388 | 3388 |
Communities-level attributes | Y | Y | Y |
Subdistrict FE | Y | Y | Y |
/Pseudo | 0.554 | 0.113 | 0.033 |
Marginal effects of SAR-IV | direct | indirect | total |
0.131 *** | 0.082 *** | 0.213 *** | |
(0.024) | (0.038) | (0.070) |
Dependent Variable: Home Price per Square Meter (CNY/m) | ||||
---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) |
SAR-IV | SAR-IV | SAR-IV | SAR-IV | |
area_2020 | 6.943 × 10 ** | 5.813 × 10 *** | ||
(3.099 × 10) | (1.142 × 10) | |||
count_2020 | 0.004 ** | 0.004 ** | ||
(0.002) | (0.002) | |||
dist_2020 | −0.0002 *** | −0.0001 ** | ||
(0.000) | (0.000) | |||
0.495 *** | 0.554 *** | 0.574 *** | 0.503 *** | |
(0.117) | (0.113) | (0.114) | (0.118) | |
−0.257 | −0.293 | −0.254 | −0.239 | |
(0.258) | (0.258) | (0.254) | (0.257) | |
Observations | 3388 | 3388 | 3388 | 3388 |
Communities-level attributes | Y | Y | Y | Y |
Subdistrict FE | Y | Y | Y | Y |
Pseudo | 0.045 | 0.033 | 0.035 | 0.087 |
Dependent Variable: Home Price per Square Meter (CNY/m) | ||||
---|---|---|---|---|
Heterogeneity by Ring Roads | ||||
Variables | (1) | (2) | (3) | (4) |
Outside the Outer Ring | Bet Middle & Outer Ring | Bet Middle & Inner Ring | Within Inner Ring | |
ln(Green) | 0.172 *** | 0.206 *** | 0.231 *** | 0.277 *** |
(0.015) | (0.014) | (0.019) | (0.023) | |
0.395 *** | 0.534 *** | 0.674 *** | 0.703 *** | |
(0.127) | (0.113) | (0.121) | (0.108) | |
−0.197 | −0.293 | −0.251 | −0.212 | |
(0.318) | (0.258) | (0.254) | (0.197) | |
Observations | 506 | 614 | 814 | 1454 |
Communities-level attributes | Y | Y | Y | Y |
Subdistrict FE | Y | Y | Y | Y |
Pseudo | 00.025 | 00.023 | 00.025 | 00.027 |
Heterogeneity by property value | Heterogeneity by housing type | |||
Variables | (5) | (6) | (7) | (8) |
VALUE > 50% | Value ≦ 50% | 70-year leasehold | 40-year leasehold | |
ln(Green) | 0.312 *** | 0.206 *** | 0.331 *** | 0.212 *** |
(0.011) | (0.014) | (0.021) | (0.021) | |
0.512 *** | 0.334 *** | 0.674 *** | 0.433 *** | |
(0.097) | (0.113) | (0.121) | (0.118) | |
−0.231 | −0.233 | −0.278 | −0.223 | |
(0.281) | (0.218) | (0.241) | (0.192) | |
Observations | 1694 | 1694 | 2946 | 442 |
Communities-level attributes | Y | Y | Y | Y |
Subdistrict FE | Y | Y | Y | Y |
Pseudo | 0.031 | 0.031 | 0.035 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben, S.; Zhu, H.; Lu, J.; Wang, R. Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China. Land 2023, 12, 1660. https://doi.org/10.3390/land12091660
Ben S, Zhu H, Lu J, Wang R. Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China. Land. 2023; 12(9):1660. https://doi.org/10.3390/land12091660
Chicago/Turabian StyleBen, Shenglin, He Zhu, Jiajun Lu, and Renfeng Wang. 2023. "Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China" Land 12, no. 9: 1660. https://doi.org/10.3390/land12091660
APA StyleBen, S., Zhu, H., Lu, J., & Wang, R. (2023). Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China. Land, 12(9), 1660. https://doi.org/10.3390/land12091660