Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Laboratory Work
2.4. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.2. Soil Chemical Properties
3.3. Hydrological Response
3.4. Element Losses
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef]
- Pugliese, P. Organic farming and sustainable rural development: A multifaceted and promising convergence. Sociol. Rural. 2001, 41, 112–130. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential role of technology innovation in transformation of sustainable food systems: A review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Cheema, S.A.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil Till. Res. 2020, 196, 104464. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Y.; Dong, Y.; Lapen, D.R.; Liu, J.; Chen, W. Subsoiling and conversion to conservation tillage enriched nitrogen cycling bacterial communities in sandy soils under long-term maize monoculture. Soil Till. Res. 2022, 215, 105197. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil and Water Conservation. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 1–19. [Google Scholar]
- Van Geel, M.; Verbruggen, E.; De Beenhouwer, M.; Van Rennes, G.; Lievens, B.; Honnay, O. High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. Agric. Ecosyst. Environ. 2017, 248, 144–152. [Google Scholar] [CrossRef]
- Daelemans, R.; Hulsmans, E.; Honnay, O. Both organic and integrated pest management of apple orchards maintain soil health as compared to a semi-natural reference system. J. Environ. Manag. 2022, 303, 114191. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Rodrigo Comino, J.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Turhun, M.; Eziz, M. Identification of the distribution, contamination levels, sources, and ecological risks of heavy metals in vineyard soils in the main grape production area of China. Environ. Earth Sci. 2022, 81, 40. [Google Scholar] [CrossRef]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Till. Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Coulouma, G.; Boizard, H.; Trotoux, G.; Lagacherie, P.; Richard, G. Effect of deep tillage for vineyard establishment on soil structure: A case study in Southern France. Soil Till. Res. 2006, 88, 132–143. [Google Scholar] [CrossRef]
- Ferrero, A.L.D.O.; Lipiec, J.E.R.Z.Y.; Turski, M.A.R.C.I.N.; Nosalewicz, A.R.T.U.R. Stability and sorptivity of soil aggregates in grassed and cultivated sloping vineyards. Polish J. Soil Sci. 2007, 40, 1–8. [Google Scholar]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of tractor passes on hydrological and soil erosion processes in tilled and grassed vineyards. Water 2019, 11, 2118. [Google Scholar] [CrossRef]
- Marques, M.J.; García-Muñoz, S.; Muñoz-Organero, G.; Bienes, R. Soil conservation beneath grass cover in hillside vineyards under Mediterranean climatic conditions (Madrid, Spain). Land Degrad. Dev. 2010, 21, 122–131. [Google Scholar] [CrossRef]
- Ramos, M.C.; Benito, C.; Martínez-Casasnovas, J.A. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agric. Ecosyt. Environ. 2015, 213, 194–208. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef]
- Usón, A.; Poch, R.M. Effects of tillage and management practices on soil crust morphology under a Mediterranean environment. Soil Till. Res. 2000, 54, 191–196. [Google Scholar] [CrossRef]
- Poulenard, J.; Podwojewski, P.; Janeau, J.L.; Collinet, J. Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian Páramo: Effect of tillage and burning. Catena 2001, 45, 185–207. [Google Scholar] [CrossRef]
- Dam, R.F.; Mehdi, B.B.; Burgess, M.S.E.; Madramootoo, C.A.; Mehuys, G.R.; Callum, I.R. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Till. Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Kainiemi, V.; Arvidsson, J.; Kätterer, T. Short-term organic matter mineralisation following different types of tillage on a Swedish clay soil. Biol. Fertil. 2013, 49, 495–504. [Google Scholar] [CrossRef]
- Erenstein, O. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Till. Res. 2002, 67, 115–133. [Google Scholar] [CrossRef]
- Gholami, L.; Sadeghi, S.H.; Homaee, M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Sci. Soc. Am. J. 2013, 77, 268–278. [Google Scholar] [CrossRef]
- Hellin, J.; Erenstein, O.; Beuchelt, T.; Camacho, C.; Flores, D. Maize stover use and sustainable crop production in mixed crop–livestock systems in Mexico. Field Crops Res. 2013, 153, 12–21. [Google Scholar] [CrossRef]
- Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M. Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions. Soil Till. Res. 2015, 153, 175–184. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Till. Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Sinkevičienė, A.; Jodaugienė, D.; Pupalienė, R.; Urbonienė, M. The influence of organic mulches on soil properties and crop yield. Agron. Res. 2009, 7, 485–491. [Google Scholar]
- Patil Shirish, S.; Kelkar Tushar, S.; Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric. For. Sci. 2013, 2320, 6063. [Google Scholar]
- Gholami, L.; Khaledi Darvishan, A.; Kavian, A. Wood chips as soil conservation in field conditions. Arab. J. Geosci. 2016, 9, 729. [Google Scholar] [CrossRef]
- Jourgholami, M.; Abari, M.E. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 15–24. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A. Short-term effects of de-oiled olive pomace mulching application on a young super high-density olive orchard. Sci. Hortic. 2011, 129, 613–621. [Google Scholar] [CrossRef]
- Ferjani, A.I.; Jeguirim, M.; Jellali, S.; Limousy, L.; Courson, C.; Akrout, H.; Thevenin, N.; Ruidavets, L.; Muller, A.; Bennici, S. The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renew. Sustain. Energ. Rev. 2019, 107, 425–433. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Till. Res. 2015, 148, 40–45. [Google Scholar] [CrossRef]
- Den Boer, J.; Dyjakon, A.; Den Boer, E.; García-Galindo, D.; Bosona, T.; Gebresenbet, G. Life-cycle assessment of the use of peach pruning residues for electricity generation. Energies 2010, 13, 2734. [Google Scholar] [CrossRef]
- Belel, M.D. Effects of grassed and synthetic mulching materials on growth and yield of sweet pepper (Capsicum annuum) in Mubi, Nigeria. J. Agric. Soc. Sci. 2012, 8, 97–99. [Google Scholar]
- Ferrara, G.; Fracchiolla, M.; Al Chami, Z.; Camposeo, S.; Lasorella, C.; Pacifico, A.; Aly, A.; Montemurro, P. Effects of mulching materials on soil and performance of cv. Nero di Troia grapevines in the Puglia region, southeastern Italy. Am. J. Enol. Vitic. 2012, 63, 269–276. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.; Shalaby, T.A.; Ramadan, K.M.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; Van Der Heijden, M.; Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Till. Res. 2018, 180, 1–9. [Google Scholar] [CrossRef]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Till. Res. 2020, 201, 104639. [Google Scholar] [CrossRef]
- Sidhu, D.; Duiker, S.W. Soil compaction in conservation tillage: Crop impacts. Agron. J. 2006, 98, 1257–1264. [Google Scholar] [CrossRef]
- Afzalinia, S.; Zabihi, J. Soil compaction variation during corn growing season under conservation tillage. Soil Till. Res. 2014, 137, 1–6. [Google Scholar] [CrossRef]
- Głąb, T.; Kulig, B. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res. 2008, 99, 169–178. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Hati, K.M.; Singh, R. Management options for improving soil physical environment for sustainable agricultural production: A brief review. J. Agric. Phys. 2009, 9, 1–8. [Google Scholar]
- Gómez-Rey, M.X.; Couto-Vázquez, A.; González-Prieto, S.J. Nitrogen transformation rates and nutrient availability under conventional plough and conservation tillage. Soil Till. Res. 2012, 124, 144–152. [Google Scholar] [CrossRef]
- García-Marco, S.; Gómez-Rey, M.X.; González-Prieto, S.J. Availability and uptake of trace elements in a forage rotation under conservation and plough tillage. Soil Till. Res. 2014, 137, 33–42. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P.; Filipovic, V.; Filipovic, L.; Percin, A.; Durdevic, B.; Birkás, M.; Dekemati, I.; Comino, J.R. Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. J. Hydrol. Hydromech. 2020, 68, 328–337. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of soil loss by water erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Till. Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics. Available online: https://dzs.gov.hr/en (accessed on 13 December 2022).
- Milićević, T.; Aničić Urošević, M.; Relić, D.; Jovanović, G.; Nikolić, D.; Vergel, K.; Popović, A. Environmental pollution influence to soil–plant–air system in organic vineyard: Bioavailability, environmental, and health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 3361–3374. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Sánchez, E.; Gil, E.; Matamoros, V. Use of cover crops in vineyards to prevent groundwater pollution by copper and organic fungicides. Soil column studies. Chemosphere 2022, 303, 134975. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2016, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- IUSS—WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil Till. Res. 2017, 165, 46–58. [Google Scholar] [CrossRef]
- Dıaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil Till. Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Digestion method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kikić, D.; Kisić, I.; Zgorelec, Ž.; Perčin, A. Portable X-ray fluorescence as a tool for characterization of nutrient status in soil. In Proceedings of the 55th Croatian & 15th International Symposium on Agriculture, Vodice, Croatia, 16–21 February 2020; pp. 91–95. [Google Scholar]
- Dugan, I.; Pereira, P.; Barcelo, D.; Telak, L.J.; Filipovic, V.; Filipovic, L.; Kisic, I.; Bogunovic, I. Agriculture management and seasonal impact on soil properties, water, sediment and chemicals transport in hazelnut orchard (Croatia). Sci. Total Environ. 2022, 839, 156346. [Google Scholar] [CrossRef]
- Statsoft. Statistica 12.0 Software; StatSoft Inc.: Hamburg, Germany, 2015. [Google Scholar]
- Plotly Chart Studio. Available online: https://chart-studio.plotly.com/ (accessed on 21 March 2023).
- Jabro, J.D.; Iversen, W.M.; Evans, R.G.; Allen, B.L.; Stevens, W.B. Repeated freeze-thaw cycle effects on soil compaction in a clay loam in Northeastern Montana. Soil Sci. Soc. Am. J. 2014, 78, 737–744. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Gyssels, G.; Knapen, A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 2006, 76, 54–67. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Till. Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Energy crops and their implications on soil and environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Silva, S.G.C.; Silva, Á.P.D.; Giarola, N.F.B.; Tormena, C.A.; Sá, J.C.D.M. Temporary effect of chiseling on the compaction of a Rhodic Hapludox under no-tillage. Rev. Bras. Cienc. Solo 2012, 36, 547–555. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Paustian, K.; Collins, H.P.; Paul, E.A. Management controls on soil carbon. In Soil Organic Matter in Temperate Agroecosystems; CRC Press: Boca Raton, FL, USA, 2019; pp. 15–49. [Google Scholar]
- Madejón, E.; Moreno, F.; Murillo, J.M.; Pelegrín, F. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Till. Res. 2007, 94, 346–352. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil Till. Res. 2016, 154, 114–125. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, Y.; Liu, Y.; Zhang, S.; Yue, X.; Yao, B.; Xue, J.; Lv, W.; Zhang, L.; Xu, X.; et al. Factors shaping soil organic carbon stocks in grass covered orchards across China: A meta-analysis. Sci. Total Environ. 2022, 807, 150632. [Google Scholar] [CrossRef]
- Pikul, J.L.; Osborne, S.; Ellsbury, M.; Riedell, W. Particulate organic matter and water-stable aggregation of soil under contrasting management. Soil Sci. Soc. Am. J. 2007, 71, 766–776. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Siczek, A.; Frac, M. Soil microbial activity as influenced by compaction and straw mulching. Int. Agrophys. 2012, 26, 65. [Google Scholar] [CrossRef]
- Dick, W.A. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci. Soc. Am. J. 1983, 47, 102–107. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Collins, H.P. Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv. Agron. 1991, 45, 93–134. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Golubiewski, N.E. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst. 2009, 12, 45–62. [Google Scholar] [CrossRef]
- Tagliavini, M.; Tonon, G.; Scandellari, F.; Quinones, A.; Palmieri, S.; Menarbin, G.; Gioacchini, P.; Masia, A. Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 2007, 118, 191–200. [Google Scholar] [CrossRef]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef]
- Singh, S.N.; Kulshreshtha, K.; Agnihotri, S. Seasonal dynamics of methane emission from wetlands. Chemosphere-Glob. Chang. Sci. 2000, 2, 39–46. [Google Scholar] [CrossRef]
- Szalai, Z. Spatial and temporal pattern of soil pH and Eh and their impact on solute iron content in a wetland (Transdanubia, Hungary). Acta Geogr. Debr. Landsc. Environ. Ser. 2021, 2, 34–45. [Google Scholar]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Sharpley, A.N. Soil mixing to decrease surface stratification of phosphorus in manured soils. J. Environ. Qual. 2003, 32, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trevisan, D. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Hart, M.R.; Quin, B.F.; Nguyen, M.L. Phosphorus runoff from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 2004, 33, 1954–1972. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Shi, X.; Liu, J.; Wei, Y.; Xiong, F. Effects of ridge tillage and straw mulching on cultivation the fresh faba beans. Agronomy 2021, 11, 1054. [Google Scholar] [CrossRef]
- Stevens, C.J.; Quinton, J.N.; Bailey, A.P.; Deasy, C.; Silgram, M.; Jackson, D.R. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Till. Res. 2009, 106, 145–151. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Meena, V.S.; Bahadur, I.; Maurya, B.R.; Kumar, A.; Meena, R.K.; Meena, S.K.; Verma, J.P. Potassium-solubilizing microorganism in evergreen agriculture: An overview. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Hooda, P.S. (Ed.) Trace Elements in Soils; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Mirás-Avalos, J.M.; Bertol, I.; de Abreu, C.A.; Vidal Vazquez, E.; Paz Gonzalez, A. Crop residue effects on total and dissolved losses of Fe, Mn, Cu, and Zn by runoff. Commun. Soil Science Plant Anal. 2015, 46, 272–282. [Google Scholar] [CrossRef]
- Jiao, W.; Ouyang, W.; Hao, F.; Huang, H.; Shan, Y.; Geng, X. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale. J. Hazard. Mater. 2014, 280, 252–259. [Google Scholar] [CrossRef]
- Materechera, S.A. Tillage and tractor traffic effects on soil compaction in horticultural fields used for peri-urban agriculture in a semi-arid environment of the North West Province, South Africa. Soil Till. Res. 2009, 103, 11–15. [Google Scholar] [CrossRef]
- Cheraghi, M.; Lorestani, B.; Merrikhpour, H.; Rouniasi, N. Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environ. Monit. Assess. 2013, 185, 1825–1831. [Google Scholar] [CrossRef]
- Shi, Z.H.; Yue, B.J.; Wang, L.; Fang, N.F.; Wang, D.; Wu, F.Z. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes. Soil Sci. Soc. Am. J. 2013, 77, 257–267. [Google Scholar] [CrossRef]
- da Rocha Junior, P.R.; Bhattarai, R.; Alves Fernandes, R.B.; Kalita, P.K.; Vaz Andrade, F. Soil surface roughness under tillage practices and its consequences for water and sediment losses. J. Soil Sci. Plant Nutr. 2016, 16, 1065–1074. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Ran, Q.; Su, D.; Li, P.; He, Z. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. J. Hydrol. 2012, 424, 99–111. [Google Scholar] [CrossRef]
- Belnap, J.; Welter, J.R.; Grimm, N.B.; Barger, N.; Ludwig, J.A. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 2005, 86, 298–307. [Google Scholar] [CrossRef]
- Rhoton, F.E.; Shipitalo, M.J.; Lindbo, D.L. Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content. Soil Till. Res. 2002, 66, 1–11. [Google Scholar] [CrossRef]
- Roose, E.; Barthes, B. Organic matter management for soil conservation and productivity restoration in Africa: A contribution from Francophone research. In Managing Organic Matter in Tropical Soils: Scope and Limitations; Springer: Dordrecht, The Netherlands, 2021; pp. 159–170. [Google Scholar] [CrossRef]
- Zhang, G.S.; Chan, K.Y.; Oates, A.; Heenan, D.P.; Huang, G.B. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till. Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551, 357–366. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Keesstra, S.; Cerdà, A.; Brevik, E.C. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ibrahim, M.; Robin, P.; Akkal-Corfini, N.; El-Saka, M. Rice straw composting and its effect on soil properties. Compost Sci. Util. 2009, 17, 146–150. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Feng, F.; Wu, Z.; Yan, H. Effect of straw application time on soil properties and microbial community in the Northeast China Plain. J. Soils Sediments 2021, 21, 3137–3149. [Google Scholar] [CrossRef]
- Cui, H.; Luo, Y.; Chen, J.; Jin, M.; Li, Y.; Wang, Z. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 2022, 133, 126436. [Google Scholar] [CrossRef]
- Shi, P.; Schulin, R. Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management. Sci. Total Environ. 2018, 618, 210–218. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Till. Res. 1993, 27, 298–307. [Google Scholar] [CrossRef]
- Ishaq, M.; Ibrahim, M.; Lal, R. Tillage effects on soil properties at different levels of fertilizer application in Punjab, Pakistan. Soil Till. Res. 2002, 68, 93–99. [Google Scholar] [CrossRef]
- Mhazo, N.; Chivenge, P.; Chaplot, V. Tillage impact on soil erosion by water: Discrepancies due to climate and soil characteristics. Agric. Ecosyst. Environ. 2016, 230, 231–241. [Google Scholar] [CrossRef]
- Nearing, M.A.; Pruski, F.F.; O’neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Cerdà, A.; Daliakopoulos, I.N.; Terol, E.; Novara, A.; Fatahi, Y.; Moradi, E.; Salvati, L.; Pulido, M. Long-term monitoring of soil bulk density and erosion rates in two Prunus persica (L.) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. J. Environ. Manag. 2021, 282, 111965. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 785–811. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Laflen, J.M.; Colvin, T.S. Effect of crop residue on soil loss from continuous row cropping. Trans. ASAE 1981, 24, 605–0609. [Google Scholar] [CrossRef]
- Hass, A.; Fine, P. Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—A critical review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 365–399. [Google Scholar] [CrossRef]
- Ikenaka, Y.; Nakayama, S.M.; Muzandu, K.; Choongo, K.; Teraoka, H.; Mizuno, N.; Ishizuka, M. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. technol. 2010, 4, 729–739. [Google Scholar]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219, 162–167. [Google Scholar] [CrossRef]
- Boyle, M.; Frankenberger, W.T., Jr.; Stolzy, L.H. The influence of organic matter on soil aggregation and water infiltration. J. Prod. Agric. 1989, 2, 290–299. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Till. Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Management and seasonal impacts on vineyard soil properties and the hydrological response in continental Croatia. Catena 2021, 202, 105267. [Google Scholar] [CrossRef]
- Mangalassery, S.; Kalaivanan, D.; Philip, P.S. Effect of inorganic fertilisers and organic amendments on soil aggregation and biochemical characteristics in a weathered tropical soil. Soil Till. Res. 2019, 187, 144–151. [Google Scholar] [CrossRef]
- Dalal, R.C.; Bridge, B.J. Aggregation and organic matter storage in sub-humid and semi-arid soils. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 263–307. [Google Scholar]
- Le Bissonnais, Y.L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil. Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.C.; Soriano-Soto, M.D. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 2001, 44, 47–67. [Google Scholar] [CrossRef]
- Bravo, S.; Amorós, J.A.; Pérez-De-Los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Harter, R.D. Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Boguta, P.; Sokolowska, Z. Influence of phosphate ions on buffer capacity of soil humic acids. Int. Agrophys. 2012, 26, 7–14. [Google Scholar] [CrossRef]
- Kashem, M.A.; Singh, B.R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosystems 2001, 61, 247–255. [Google Scholar] [CrossRef]
- Lampurlanés, J.; Cantero-Martínez, C. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 2003, 95, 526–536. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
Season | Treatment | BD (g cm−3) | SWC (%) | WSA (%) |
---|---|---|---|---|
Spring | Tilled | 1.34 Ca | 40.86 Aa | 75.12 Ab |
Low Straw | 1.31 Ba | 32.69 Aa | 73.80 Ab | |
High Straw | 1.31 Ba | 29.71 Aa | 70.73 Bb | |
Grass | 1.38 Aa | 37.47 Aa | 82.33 Aa | |
Summer | Tilled | 1.47 Ba | 25.07 Ba | 64.18 Bd |
Low Straw | 1.47 Ba | 32.05 Aa | 73. 26 Ac | |
High Straw | 1.27 Bb | 28.66 Aa | 81.11 Ab | |
Grass | 1.38 Aab | 20.21 Ba | 85.86 Aa | |
Autumn | Tilled | 1.59 Aa | 30.93 ABa | 62.05 Bc |
Low Straw | 1.52 Aab | 26.21 Aa | 74.08 Ab | |
High Straw | 1.48 Aab | 32.36 Aa | 80.77 Aab | |
Grass | 1.45 Ab | 38.38 Aa | 84.04 Aa |
Season | Treatment | SOM (%) | pH | Soil P | Soil K | Soil Ni | Soil Zn | Soil Pb |
---|---|---|---|---|---|---|---|---|
Spring | Tilled | 1.38 Ab | 7.54 Ab | 425.29 Aab | 27,297.09 Ba | 210.78 Ba | 184.80 Ba | 43.68 Aa |
Low Straw | 1.40 Ab | 7.93 Aab | 380.58 Bb | 26,282.59 Ba | 206.08 ABa | 180.54 ABa | 34.72 Aa | |
High Straw | 1.37 Bb | 8.04 Aa | 418.21 Aab | 26,460.90 Ba | 200.48 Ba | 184.58 Aa | 40.32 Aa | |
Grass | 2.11 Aa | 7.99 Aab | 561.57 Aa | 27,149.47 Aa | 209.22 Aa | 183.90 Aa | 42.34 Aa | |
Summer | Tilled | 1.52 Ab | 7.52 Ac | 390.66 Ab | 31,471.10 Aa | 249.76 Aa | 219.97 Aa | 41.44 Aa |
Low Straw | 1.58 Aab | 7.97 Ab | 545.89 Aa | 25,781.50 Bc | 192.42 Bb | 169.12 Bb | 40.77 Aab | |
High Straw | 1.56 Ab | 8.09 Aab | 500.64 Aab | 28,148.51 ABb | 201.82 ABb | 175.17 Ab | 37.18 Ab | |
Grass | 2.29 Aa | 8.16 Aa | 377.22 Bb | 27,588.51 Ab | 211.23 Ab | 174.72 Ab | 32.26 Bb | |
Autumn | Tilled | 1.59 Ab | 7.50 Ac | 515.45 Aab | 28,293.22 Ba | 218.40 Ba | 193.06 Ba | 44.38 Aa |
Low Straw | 1.64 Aab | 7.87 Ab | 533.79 Aa | 27,647.20 Aa | 224.90 Aa | 183.90 Aa | 40.32 Aab | |
High Straw | 1.73 Aab | 8.00 Aab | 392.22 Ab | 28,429.18 Aa | 224.67 Aa | 183.90 Aa | 33.82 Ab | |
Grass | 2.51 Aa | 8.13 Aa | 376.54 Bb | 27,327.78 Aa | 219.30 Aa | 180.32 Aa | 34.50 Bb |
Season | Treatment | TP (s) | TR (s) | Runoff (m3 ha−1) | SC (g kg−1) | SL (kg ha−1) |
---|---|---|---|---|---|---|
Spring | Tilled | 1326 Aa | 1800 Aa | 0.00 Bb | 0.00 Ba | 0.00 Ba |
Low Straw | 1800 Aa | 1800 Aa | 0.00 Bb | 0.00 Ba | 0.00 Ba | |
High Straw | 1800 Aa | 1800 Aa | 0.00 Ab | 0.00 Aa | 0.00 Aa | |
Grass | 49.5 Ab | 460 Ab | 4.48 ABa | 1.31 Aa | 6.15 Aa | |
Summer | Tilled | 444 ABa | 1164 ABa | 7.11 Aa | 18.19 Aa | 138.34 Aa |
Low Straw | 1326 ABa | 1800 Aa | 0.00 Bb | 0.00 Bb | 0.00 Bb | |
High Straw | 1800 Aa | 1800 Aa | 0.00 Ab | 0.00 Ab | 0.00 Ab | |
Grass | 372 Aa | 1416 Aa | 1.20 Bab | 3.85 Aab | 14.05 Ab | |
Autumn | Tilled | 75.5 Ba | 294 Bb | 3.40 ABab | 15.03 Aa | 50.99 Aa |
Low Straw | 96.5 Ba | 444 Bb | 6.17 Aab | 6.59 Aa | 41.49 Aab | |
High Straw | 149 Ba | 1800 Aa | 0.00 Ab | 0.00 Ab | 0.00 Ac | |
Grass | 108.5 Aa | 453 Ab | 6.53 Aa | 3.94 Aa | 25.91 Ab |
Season | Treatment | P Loss | K Loss | Ni Loss | Zn Loss | Pb Loss |
---|---|---|---|---|---|---|
Spring | Tilled | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb |
Low Straw | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb | |
High Straw | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | |
Grass | 397.27 Aa | 19,999.94 Aa | 150.64 Aa | 234.37 Aa | 23.47 Aa | |
Summer | Tilled | 1127.66 ABa | 55,044.90 ABa | 394.76 ABa | 452.67 ABa | 64.00 ABa |
Low Straw | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb | 0.00 Bb | |
High Straw | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | |
Grass | 180.89 Aab | 9106.56 Aab | 68.59 Aab | 106.72 Aab | 10.69 Aab | |
Autumn | Tilled | 2353.07 Aa | 115,627.66 Aa | 888.93 Aa | 1010.08 Aa | 131.63 Aa |
Low Straw | 1041.62 Aab | 45,436.13 Aab | 0.00 Ab | 488.99 Aab | 37.37 Aab | |
High Straw | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | 0.00 Ab | |
Grass | 465.50 Aab | 22,227.22 Aab | 170.33 Aab | 264.71 Aab | 25.59 Aab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugan, I.; Pereira, P.; Defterdarovic, J.; Filipovic, L.; Filipovic, V.; Bogunovic, I. Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia). Land 2023, 12, 1691. https://doi.org/10.3390/land12091691
Dugan I, Pereira P, Defterdarovic J, Filipovic L, Filipovic V, Bogunovic I. Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia). Land. 2023; 12(9):1691. https://doi.org/10.3390/land12091691
Chicago/Turabian StyleDugan, Ivan, Paulo Pereira, Jasmina Defterdarovic, Lana Filipovic, Vilim Filipovic, and Igor Bogunovic. 2023. "Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia)" Land 12, no. 9: 1691. https://doi.org/10.3390/land12091691
APA StyleDugan, I., Pereira, P., Defterdarovic, J., Filipovic, L., Filipovic, V., & Bogunovic, I. (2023). Straw Mulch Application Enhanced Soil Properties and Reduced Diffuse Pollution at a Steep Vineyard in Istria (Croatia). Land, 12(9), 1691. https://doi.org/10.3390/land12091691