Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Site Characterization
2.3. Erosion Monitoring
2.4. Laboratory Procedures and Data Treatment
3. Results
3.1. Distribution of Precipitation
3.2. Soil Management Effects on Global Erosion
3.3. Soil Management Effects on Erosion at Event Level
4. Discussion
4.1. Soil Management Effects on Global Erosion
4.2. Soil Management Effects on Erosion at Event Level
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reis, P. O Olival em Portugal—Dinâmicas, Tecnologias e Relação com o Desenvolvimento Rural; Animar—Associação Portuguesa para o Desenvolvimento Local: Lisbon, Portugal, 2014. [Google Scholar]
- Killgrove, K.; Tykot, R.H. Food for Rome: A Stable Isotope Investigation of Diet in the Imperial Period (1st–3rd Centuries AD). J. Anthropol. Archaeol. 2013, 32, 28–38. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and Spatial Variations of Soil Erosion in Europe: A Study Based on Erosion Plot Data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Gómez, J.; Infante-Amate, J.; De Molina, M.; Vanwalleghem, T.; Taguas, E.; Lorite, I. Olive Cultivation, Its Impact on Soil Erosion and Its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty. Agriculture 2014, 4, 170–198. [Google Scholar] [CrossRef]
- Figueiredo, T.; Fonseca, F. Soil Conservation Measures: Exercises. In Soil Protection in Sloping Mediterranean Agri-Environments: Lectures and Exercises; Instituto Politécnico de Bragança: Bragança, Portugal, 2009; pp. 77–85. [Google Scholar]
- Martínez-Murillo, J.F.; Remond, R.; Ruiz-Sinoga, J.D. Validation of RUSLE K Factor Using Aggregate Stability in Contrasted Mediterranean Eco-Geomorphological Landscapes (Southern Spain). Environ. Res. 2020, 183, 109160. [Google Scholar] [CrossRef]
- Kavvadias, V.; Koubouris, G. Sustainable Soil Management Practices in Olive Groves. In Soil Fertility Management for Sustainable Development; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2019; pp. 167–188. [Google Scholar] [CrossRef]
- Novara, A.; Stallone, G.; Cerdà, A.; Gristina, L. The Effect of Shallow Tillage on Soil Erosion in a Semi-Arid Vineyard. Agronomy 2019, 9, 257. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Castro-Rodríguez, J.; Suárez-Rey, E.M. Optimization of Olive Growing Practices in Spain from a Life Cycle Assessment Perspective. J. Clean. Prod. 2017, 149, 25–37. [Google Scholar] [CrossRef]
- De Figueiredo, T. Uma Panorâmica Sobre os Recursos Pedológicos do Nordeste Transmontano; Estudos Escola Superior Agrária; Instituto Politécnico de Bragança, Escola Superior Agrária: Bragança, Portugal, 2013. [Google Scholar]
- Merino, A. Runoff Erosion and Human Societies. In Runoff Erosion; University of Athens: Athens, Greece, 2013; pp. 172–229. [Google Scholar]
- Boardman, J.; Poesen, J. (Eds.) Soil Erosion in Europe; John Wiley & Sons Ltd: Chichester, UK, 2006. [Google Scholar]
- Ganasri, B.P.; Ramesh, H. Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Gilani, H.; Ahmad, A.; Younes, I.; Abbas, S. Impact Assessment of Land Cover and Land Use Changes on Soil Erosion Changes (2005–2015) in Pakistan. Land Degrad. Dev. 2022, 33, 204–217. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Lana-Renault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and Emerging Questions in Water Erosion Studies. Land Degrad. Dev. 2017, 28, 5–21. [Google Scholar] [CrossRef]
- Posthumus, H.; Deeks, L.K.; Rickson, R.J.; Quinton, J.N. Costs and Benefits of Erosion Control Measures in the UK. Soil Use Manag. 2015, 31, 16–33. [Google Scholar] [CrossRef]
- Nkonya, E.; von Braun, J.; Mirzabaev, A.; Bao Le, Q.; Kwon, H.-Y.; Kirui, O. Concepts and Methods of Global Assessment of the Economics of Land Degradation and Improvement. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Open: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Telles, T.S.; Dechen, S.C.F.; Souza, L.G.A.D.; Guimarães, M.D.F. Valuation and Assessment of Soil Erosion Costs. Sci. Agric. 2013, 70, 209–216. [Google Scholar] [CrossRef]
- Buckley, C.; Hynes, S.; Mechan, S. Supply of an Ecosystem Service—Farmers’ Willingness to Adopt Riparian Buffer Zones in Agricultural Catchments. Environ. Sci. Policy 2012, 24, 101–109. [Google Scholar] [CrossRef]
- Gumiere, S.J.; Le Bissonnais, Y.; Raclot, D.; Cheviron, B. Vegetated Filter Effects on Sedimentological Connectivity of Agricultural Catchments in Erosion Modelling: A Review. Earth Surf. Process. Landf. 2011, 36, 3–19. [Google Scholar] [CrossRef]
- Blanco, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R. Soil-Erosion and Runoff Prevention by Plant Covers. A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Pub: Malden, MA, USA, 2005. [Google Scholar]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and Erosional Impact and Farmer’s Perception on Catch Crops and Weeds in Citrus Organic Farming in Canyoles River Watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Gomez, J.; Sobrinho, T.; Giraldez, J.; Fereres, E. Soil Management Effects on Runoff, Erosion and Soil Properties in an Olive Grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Martínez, J.R.F.; Durán Zuazo, V.H.; Martínez Raya, A. Environmental Impact from Mountainous Olive Orchards under Different Soil-Management Systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover Crop Management and Water Conservation in Vineyard and Olive Orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Gómez, J.A.; Montero, A.S.; Guzmán, G.; Soriano, M.-A. In-Depth Analysis of Soil Management and Farmers’ Perceptions of Related Risks in Two Olive Grove Areas in Southern Spain. Int. Soil Water Conserv. Res. 2021, 9, 461–473. [Google Scholar] [CrossRef]
- Santos, R.V.; Fonseca, F.; Royer, A.C.; Hernandez, Z.; Baptista, P.; De Figueiredo, T. Características Edáficas das Áreas de Olival do Nordeste de Portugal: Abordagem baseada em cartografia de solos e ocupação do solo. Rev. Ciênc. Agrár. 2023, 45, 193–197. [Google Scholar] [CrossRef]
- Figueiredo, T.; Almeida, A.; Araújo, J. Edaphic Characteristics of Olive-Tree Areas in the Trá-os-Montes Region (Portugal): A Map-Based Approach. Acta Hortic. 2002, 586, 151–154. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Das Geographische System der Klimate; Handbuch der Klimatologie; Gebrüder Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- IPMA, I.P. Ficha Climatológica—Mirandela; Ficha Climatológica (1971–2000); Instituto Português do Mar e da Atmosfera: Portugal; p 2. Available online: https://www.ipma.pt/bin/file.data/climate-normal/cn_71-00_MIRANDELA.pdf (accessed on 12 May 2023).
- FAO/UNESCO. Soil Map of the World; Revised Legend; FAO: Rome, Italy, 1988. [Google Scholar]
- Agroconsultores, C. Carta dos Solos, Carta do Uso Actual da Terra e Carta da Aptidão da Terra do Nordeste de Portugal; Univeridade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 1991. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Chemische Extraktionsmethoden zur Phosphor und Kaliumbes-timmung, und Untersuchungen über die Chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Böden. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Dissmeyer, G.E.; Foster, G.R. A Guide for Predicting Sheet and Rill Erosion on Forest Land; United States Department of Agriculture: Washington, DC, USA, 1984.
- IPMA, I.P. Resumo Diário—Rede de Estações Meteorológicas. Instituto Português do Mar e da Atmosfera. Available online: https://www.ipma.pt/pt/otempo/obs.superficie/index-map-dia-chart.jsp# (accessed on 1 July 2023).
- VassarStats. Two-Way Analysis of Variance for Independent Samples. Available online: http://vassarstats.net/anova2u.html (accessed on 16 June 2023).
- Arnoldus, H.M.J. Predicting Soil Losses due to Sheet and Rill Erosion. In Guidelines for Watershed Management; Conservation Guide; FAO: Rome, Italy, 1977; pp. 99–124. [Google Scholar]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus Actual Soil Erosion Rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- De Figueiredo, T.; Poesen, J.; Fonseca, F.; Hernández, Z. Long Term Erosion Rates in Douro Vineyards, Portugal: Effects of Rainfall Characteristics and Plant Density. In Soil Conservation: Strategies, Management and Challenges; Nova Science Publishers: Hauppauge, NY, USA, 2021; pp. 67–105. [Google Scholar]
- Poesen, J.W.; Torri, D.; Bunte, K. Effects of Rock Fragments on Soil Erosion by Water at Different Spatial Scales: A Review. CATENA 1994, 23, 141–166. [Google Scholar] [CrossRef]
- De Figueiredo, T.; Ferreira, A.G.; Gonçalves, D.; Poesen, J. Temporal Changes on the Effect of Rock Fragments in Interrill Soil Loss: A Simulation Experiment and a Simple Descriptive Model; Sociedade de Ciências Agrárias de Portugal: Lisbon, Portugal, 2009; pp. 397–406. [Google Scholar]
- De Figueiredo, T. Pedregosidade dos Solos em Trás-os-Montes: Importância Relativa e Distribuição Espacial; Instituto Politécnico de Bragança, Escola Superior Agrária: Bragança, Portugal, 2012. [Google Scholar]
- Beniaich, A.; Silva, M.L.N.; Guimarães, D.V.; Bispo, D.F.A.; Avanzi, J.C.; Curi, N.; Pio, R.; Dondeyne, S. Assessment of Soil Erosion in Olive Orchards (Olea europaea L.) under Cover Crops Management Systems in the Tropical Region of Brazil. Rev. Bras. Ciênc. Solo 2020, 44, e0190088. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Martinez Raya, A.; Kosmas, C.; Favia, M. Semi-Intensive Olive Orchards on Sloping Land: Requiring Good Land Husbandry for Future Development. J. Environ. Manag. 2008, 89, 110–119. [Google Scholar] [CrossRef]
- Fernández-Romero, M.L.; Parras-Alcántara, L.; Lozano-García, B.; Clark, J.M.; Collins, C.D. Soil Quality Assessment Based on Carbon Stratification Index in Different Olive Grove Management Practices in Mediterranean Areas. CATENA 2016, 137, 449–458. [Google Scholar] [CrossRef]
- Fleskens, L.; Stroosnijder, L. Is Soil Erosion in Olive Groves as Bad as Often Claimed? Geoderma 2007, 141, 260–271. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Oostwoud-Wijdenes, D.; de Figueiredo, T. Topographical Thresholds for Ephemeral Gully Initiation in Intensively Cultivated Areas of the Mediterranean. CATENA 1998, 33, 271–292. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud-Wijdenes, D.; Nachtergaele, J.; Kosmas, D.; Roxo, M.J.; de Figueiredo, T. Thresholds for Gully Initiation and Sedimentation in Mediterranean Europe. Earth Surf. Process. Landf. 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- De Figueiredo, T.; Poesen, J.; Ferreira, A.G.; Gonçalves, D. Runoff and Soil Loss from Steep Sloping Vineyards in the Douro Valley, Portugal: Rates and Factors. In Runoff Erosion; University of Athens: Athens, Greece, 2013; pp. 323–344. [Google Scholar]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover Crops and Their Erosion-Reducing Effects during Concentrated Flow Erosion. CATENA 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Alexandre, C. Funções, usos e degradação do solo. In Proteção do Solo e Combate à Desertificação: Oportunidade Para as Regiões Transfronteiriças; Instituto Politécnico de Bragança: Bragança, Portugal, 2015; pp. 1–14. [Google Scholar]
- Bucella, P. Uso sustentável da terra na União Europeia. In CULTIVAR—Cadernos de Análise e Prospetiva; SOLO; Princípia Editora, Lda.: Lisbon, Portugal, 2015; pp. 13–20. [Google Scholar]
- Mulas, R.; Lafuente, F.; Turrión, M.B.; López, O.; Ruipérez, C. Efectos de los cambios de uso y manejo del suelo sobre la calidad y cantidad de la materia orgánica edáfica. In Proteção do solo e Combate à Desertificação: Oportunidade Para as Regiões Transfronteiriças; Instituto Politécnico de Bragança: Bragança, Portugal, 2015; pp. 15–25. [Google Scholar]
- Martins, A.; Raimundo, F.; Borges, O.; Linhares, I.; Sousa, V.; Coutinho, J.P.; Gomes-Laranjo, J.; Madeira, M. Effects of Soil Management Practices and Irrigation on Plant Water Relations and Productivity of Chestnut Stands under Mediterranean Conditions. Plant Soil 2010, 327, 57–70. [Google Scholar] [CrossRef]
- Gómez, J.A. Sustainability Using Cover Crops in Mediterranean Tree Crops, Olives and Vines—Challenges and Current Knowledge. Hung. Geogr. Bull. 2017, 66, 13–28. [Google Scholar] [CrossRef]
- De Graaff, J.; Duarte, F.; Fleskens, L.; De Figueiredo, T. The Future of Olive Groves on Sloping Land and Ex-Ante Assessment of Cross Compliance for Erosion Control. Land Use Policy 2010, 27, 33–41. [Google Scholar] [CrossRef]
- Merchán, D.; Luquin, E.; Hernández-García, I.; Campo-Bescós, M.A.; Giménez, R.; Casalí, J.; Del Valle De Lersundi, J. Dissolved Solids and Suspended Sediment Dynamics from Five Small Agricultural Watersheds in Navarre, Spain: A 10-Year Study. CATENA 2019, 173, 114–130. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Van Der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the Effect of Support Practices (P-Factor) on the Reduction of Soil Erosion by Water at European Scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Tian, P.; Feng, J.; Zhao, G.; Gao, P.; Sun, W.; Hörmann, G.; Mu, X. Rainfall, Runoff, and Suspended Sediment Dynamics at the Flood Event Scale in a Loess Plateau Watershed, China. Hydrol. Process. 2022, 36, e14486. [Google Scholar] [CrossRef]
- COM. Comunicação da Comissão ao Conselho, ao Parlamento Europeu, ao Comité Económico e Social e ao Comité das Regiões; 179; Comissão das Comunidades Europeias: Brussels, Belgium, 2002; p. 38. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2002:0179:FIN:PT:PDF (accessed on 10 April 2023).
- Sun, L.; Yan, M.; Cai, Q.; Fang, H. Suspended Sediment Dynamics at Different Time Scales in the Loushui River, South-Central China. CATENA 2016, 136, 152–161. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A Review of the Mechanical Effects of Plant Roots on Concentrated Flow Erosion Rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef]
- Vannoppen, W.; Poesen, J.; Peeters, P.; De Baets, S.; Vandevoorde, B. Root Properties of Vegetation Communities and Their Impact on the Erosion Resistance of River Dikes: Root Properties of Dike Vegetation and Erosion Resistance. Earth Surf. Process. Landf. 2016, 41, 2038–2046. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Gómez-Muñoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; Garcia-Ruiz, R. Carbon Saturation and Assessment of Soil Organic Carbon Fractions in Mediterranean Rainfed Olive Orchards under Plant Cover Management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses:A Guide to Conservation Planning; Agriculture handbook (United States. Dept. of Agriculture); Science and Education Administration, U.S. Department of Agriculture: Washington, DC, USA, 1978.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. (Eds.) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). In U.S. Department of Agriculture Handbook; U.S. Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Cerdà, A.; Terol, E.; Daliakopoulos, I.N. Weed Cover Controls Soil and Water Losses in Rainfed Olive Groves in Sierra de Enguera, Eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.-H.; Shi, Y.-Y.; Li, Z.-W.; Shan, Z.-J. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration. Soil Sci. Soc. Am. J. 2015, 79, 1213–1222. [Google Scholar] [CrossRef]
- Hao, H.; Qin, J.; Sun, Z.; Guo, Z.; Wang, J. Erosion-Reducing Effects of Plant Roots during Concentrated Flow under Contrasting Textured Soils. CATENA 2021, 203, 105378. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Z.; Wang, W.; Wang, T.; Wang, W.; Cui, Z. Revegetation Induced Change in Soil Erodibility as Influenced by Slope Situation on the Loess Plateau. Sci. Total Environ. 2021, 772, 145540. [Google Scholar] [CrossRef]
- Guo, M.; Wang, W.; Shi, Q.; Chen, T.; Kang, H.; Li, J. An Experimental Study on the Effects of Grass Root Density on Gully Headcut Erosion in the Gully Region of China’s Loess Plateau. Land Degrad. Dev. 2019, 30, 2107–2125. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhou, Z. Quantifying Effects of Root Systems of Planted and Natural Vegetation on Rill Detachment and Erodibility of a Loessial Soil. Soil Tillage Res. 2019, 195, 104420. [Google Scholar] [CrossRef]
- Carvalho, M. The Role of No-till and Crop Residues on Sustainable Arable Crops Production in Southern Portugal. In Runoff Erosion; University of Athens: Athens, Greece, 2013; pp. 308–321. [Google Scholar]
- Arias-Giraldo, L.F.; Guzmán, G.; Montes-Borrego, M.; Gramaje, D.; Gómez, J.A.; Landa, B.B. Going Beyond Soil Conservation with the Use of Cover Crops in Mediterranean Sloping Olive Orchards. Agronomy 2021, 11, 1387. [Google Scholar] [CrossRef]
Parameters | Tilled Block | No-Till Block | ||
---|---|---|---|---|
Mean | STDEV 1 | Mean | STDEV 1 | |
pH H2O | 5.3 | 0.2 | 5.2 | 0.1 |
pH KCl | 4.0 | 0.2 | 4.0 | 0.1 |
Soil Organic Matter (%) | 2.4 | 0.7 | 2.8 | 0.4 |
N total (g kg−1) | 1.4 | 0.3 | 1.5 | 0.2 |
Extractable P2O5 (mg kg−1) | 31.0 | 21.5 | 32.4 | 13.5 |
Extractable K2O (mg kg−1) | 193.7 | 78.8 | 139.3 | 32.1 |
Base saturation (cmolc kg−1) | 3.4 | 0.8 | 3.2 | 0.9 |
Exchangeable Al3+ (cmolc kg−1) | 0.3 | 0.1 | 0.3 | 0.1 |
Cation Exchange Capacity pH 7.0 (cmolc kg−1) | 7.1 | 0.9 | 8.7 | 2.2 |
Coarse sand (g kg−1) | 367.5 | 23.7 | 439.9 | 80.5 |
Fine sand (g kg−1) | 297.5 | 10.2 | 271.6 | 40.6 |
Silt (g kg−1) | 214.5 | 21.3 | 173.3 | 36.3 |
Clay (g kg−1) | 120.5 | 14.4 | 115.2 | 7.9 |
Texture class | Sandy loam | |||
Coarse fragments (%) | 41.2 | 2.2 | 41.6 | 4.5 |
Bulk density | 1.07 | 0.13 | 1.11 | 0.11 |
Total Porosity (%) | 51.1 | 0.1 | 51.3 | 0.0 |
Field capacity (%) | 39.8 | 0.1 | 40.9 | 0.1 |
Permeability class | Very rapid |
Erosion Event Date | Soil Loss (kg ha−1) | Soil Cover (%) | Precipitation Characteristics | ||
---|---|---|---|---|---|
Global, All Plots, Averages | P 1 (mm) | Ppeak 2 (mm) | NDP 3 ≥ 9 mm | ||
4 April 2022 | 41 | 38 | 43 | 9 | 1 |
25 May 2022 | 25 | 49 | 53 | 15 | 1 |
30 September 2022 | 228 | 17 | 74 | 15 | 2 |
2 November 2022 | 56 | 81 | 95 | 27 | 4 |
12 December 2022 | 22 | 45 | 111 | 19 | 5 |
6 January 2023 | 46 | 64 | 138 | 29 | 7 |
21 March 2023 | 10 | 80 | 71 | 21 | 1 |
ANOVA: Two-Factor with Replicates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Erosion Events | Parameters | |||||||||
Soil Loss | %SCo | Total SC | ||||||||
P (mm) | Date | T | S | I | T | S | I | T | S | I |
p-Values | ||||||||||
111 | 12 December 2022 | 0.009 | 0.025 | 0.347 | 0.0005 | 0.002 | 0.026 | 0.005 | 0.010 | 0.016 |
138 | 6 January 2023 | 0.018 | 0.045 | 0.778 | 0.005 | 0.020 | 0.230 | 0.026 | 0.064 | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, R.; Fonseca, F.; Baptista, P.; Paz-González, A.; de Figueiredo, T. Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal. Land 2023, 12, 1700. https://doi.org/10.3390/land12091700
Santos R, Fonseca F, Baptista P, Paz-González A, de Figueiredo T. Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal. Land. 2023; 12(9):1700. https://doi.org/10.3390/land12091700
Chicago/Turabian StyleSantos, Renecleide, Felícia Fonseca, Paula Baptista, Antonio Paz-González, and Tomás de Figueiredo. 2023. "Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal" Land 12, no. 9: 1700. https://doi.org/10.3390/land12091700
APA StyleSantos, R., Fonseca, F., Baptista, P., Paz-González, A., & de Figueiredo, T. (2023). Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal. Land, 12(9), 1700. https://doi.org/10.3390/land12091700