Evaluation of Urban Green Space Supply and Demand Based on Mobile Signal Data: Taking the Central Area of Shenyang City as an Example
Abstract
:1. Introduction
1.1. Research Background
1.2. Evaluation Content on the Supply and Demand of Urban Green Space
Object | Content | Evaluation Methodology | |
---|---|---|---|
Supply side | Green space Road network | Spatial Distribution | Green space accessibility: geometric network method; Topological network method |
Supply volume | Number and area of green spaces, Green Vision [24] | ||
Supply quality | Ecological service benefits: landscape pattern index | ||
Demand side | City residents | Spatiotemporal distribution Demand preference | 1. Quantification of spatiotemporal differences: location-based service data; travel log survey 2. Description of population differences: age differences [25]; socioeconomic status differences [26]; gender differences [27]; occupational differences [28]; cultural background differences [29] 3. Public willingness to pay [30] |
Supply and demand | Mesoscopic level | Regional match | Accessibility analysis considering supply and demand: Ga2SFCA [31] |
Social equity performance: Gini coefficient and Lorenz curve; zone entropy | |||
Greenfield service efficiency: service area ratio [32]; service population ratio [32]; effective service ratio (ESR) [33] | |||
Microscopic level | Park monolith | Park environmental carrying capacity [34] | |
Local service efficiency: evaluation of landscape vitality; walkability; convenience perception, and safety perception |
1.3. Demand Differences in the Supply and Demand of Urban Green Space
1.4. Article Innovations
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Population Data
2.2.2. Urban Green Space Data
2.3. Supply and Demand Evaluation Indicators and Calculation Methods
2.3.1. Selection of Green Space Supply and Demand Indicators
2.3.2. Calculation of the Quantity of Green Space Supply
2.3.3. Calculation of Green Space Supply Quality
2.3.4. Calculation of Green Space Supply and Demand
2.4. Supply Priority Establishment Method
3. Results
3.1. Comprehensive Supply Analysis of Green Space
3.1.1. Analysis of the Quantity of Green Space Supply
3.1.2. Green Space Supply Quality Analysis
3.2. Green Space Supply and Demand Analysis
3.3. Community Supply Priority Analysis
4. Discussion
4.1. Presentation of Findings
4.2. Comparative Analysis of Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omer, I. Evaluating accessibility using house-level data: A spatial equity perspective. Comput. Environ. Urban Syst. 2006, 30, 254–274. [Google Scholar] [CrossRef]
- Ekkel, E.D.; de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Wang, Q.S.; Chen, X.; Liang, Z.P.; Dong, Y.K. Study on the difffference of green exposure in urban communities in cold regions based on multivariate big data. In Proceedings of the 58th ISOCARP World Planning Congress, Brussels, Belgium, 3–6 October 2022. [Google Scholar]
- Li, F.; Wang, R.; Hu, D.; Ye, Y.; Yang, W.; Liu, H. Measurement methods and applications for benefificial and detrimental effects of ecological services. Ecol. Indic. 2014, 47, 102–111. [Google Scholar] [CrossRef]
- van Zoest, J.; Hopman, M. Taking the economic benefits of green space into account: The story of the Dutch TEEB for Cities project. Urban Clim. 2014, 7, 107–114. [Google Scholar] [CrossRef]
- Wood, E.; Harsant, A.; Dallimer, M.; Cronin de Chavez, A.; McEachan, R.R.; Hassall, C. Not All Green Space Is Created Equal: Biodiversity Predicts Psychological Restorative Benefifits from Urban Green Space. Orig. Res. 2018, 27, 02320. [Google Scholar] [CrossRef] [PubMed]
- Dony, C.C.; Delmelle, E.M.; Delmelle, E.C. Reconceptualizing accessibility to parks in multimodal cities: A variablewidth floating catchment area (VFCA) method. Landsc. Urban Plan. 2015, 143, 90–99. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, Y.; Zhang, M. Research on the Equity of Urban Green Park Space Layout Based on Ga2SFCA Optimization Method—Taking the Core Area of Beijing as an Example. Land 2022, 11, 1323. [Google Scholar] [CrossRef]
- De Ridder, K.; Adamec, V.; Bañuelos, A.; Bruse, M.; Bürger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Pérez-Lacorzana, J.; et al. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334–335, 489–497. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, X.; Yang, L.; Zhang, Y.; He, J. How does future climatic uncertainty affect multi-objective building energy retrofit decisions? Evidence from residential buildings in subtropical Hong Kong. Sustain. Cities Soc. 2023, 92, 104482. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y. A Planning Support Tool for Layout Integral Optimization of Urban Blue-Green Infrastructure. Sustainability 2020, 12, 1613. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Baxter, R.; Lenzi, G. The measurement of relative accessibility. Reg. Stud. 1975, 9, 15–26. [Google Scholar] [CrossRef]
- Kirby, H.R. Accessibility indices for abstract road networks. Reg. Stud. 1976, 10, 479–482. [Google Scholar] [CrossRef]
- Wachs, M.; Kumagai, T. Physical accessibility as a social indicator. Socio-Econ. Plan. Sci. 1973, 7, 437–456. [Google Scholar] [CrossRef]
- Breheny, M.J. The measurement of spatial opportunity in strategic planning. Reg. Stud. 1978, 12, 463–479. [Google Scholar] [CrossRef]
- Sakkas, N.; Pérez, J. Elaborating metrics for the accessibility of buildings. Comput. Environ. Urban Syst. 2006, 30, 661–685. [Google Scholar] [CrossRef]
- Wilson, A.G. A statistical theory of spatial distribution models. Transp. Res. 1967, 1, 253–269. [Google Scholar] [CrossRef]
- Recker, W.W.; Chen, C.; McNally, M.G. Measuring the impact of efficient household travel decisions on potential travel tim savings and accessibility gains. Transp. Res. A 2001, 35, 339–369. [Google Scholar]
- Miller, H. Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 2006, 5, 157–179. [Google Scholar] [CrossRef]
- Wang, Q.; Lan, Z. Park green spaces, public health and social inequalities: Understanding the interrelationships for policy implications. Land Use Policy 2019, 83, 66–74. [Google Scholar] [CrossRef]
- Wang, F. From 2SFCA to i2SFCA: Integration, derivation and validation. Int. J. Geogr. Inf. Sci. 2020, 35, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, S. Spatial Equity Analysis of Green Park Spaces in The Central City of Wuhan Based on G2SFCA. Resour. Sci. 2017, 39, 430–440. [Google Scholar]
- Ye, C.; Hu, L.; Li, M. Urban green space accessibility changes in a high-density city: A case study of Macau from 2010 to 2015. J. Transp. Geogr. 2018, 66, 106–115. [Google Scholar] [CrossRef]
- Sang, Å.O.; Knez, I.; Gunnarsson, B.; Hedblom, M. The effects of naturalness, gender, and age on how urban green space is perceived and used. Urban For. Urban Green. 2016, 18, 268–276. [Google Scholar] [CrossRef]
- Rind, E.; Shortt, N.; Mitchell, R.; A Richardson, E.; Pearce, J. Are income-related differences in active travel associated with physical environmental characteristics? A multi-level ecological approach. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Tejera, F.; Valera, S.; Anguera, M.T. Using Systematic Observation and Polar Coordinates Analysis to Assess Gender-Based Differences in Park Use in Barcelona. Front. Psychol. 2018, 9, 2299. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Özgüner, H. Cultural Differences in Attitudes towards Urban Parks and Green Spaces. Landsc. Res. 2011, 36, 599–620. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Xiong, K.; Liu, S.; He, B.J. Identification of factors affecting public willingness to pay for heatmitigation and adaptation: Evidence from Guangzhou, China. Urban Clim. 2023, 48, 101405. [Google Scholar] [CrossRef]
- Wei, Y.; Xiu, C.L.; Gao, R. Evaluation of Green Space Accessibility of Shenyang Using Gaussian Based 2-step Floating Catchment Area Method, Evaluation of Green Space Accessibility of Shenyang Using Gaussian Based 2-step Floating Catchment Area Method. Prog. Phys. Geogr. 2014, 33, 479–487. [Google Scholar]
- Talen, E. The social equity of urban service distribution: An exploration of park access in pueblo, colorado, and macon, georgia. Urban Geogr. 1997, 18, 521–541. [Google Scholar] [CrossRef]
- Niu, Q.; Wang, Y.; Xia, Y.; Wu, H.; Tang, X. Detailed Assessment of the Spatial Distribution of Urban Parks According to Day and Travel Mode Based on Web Mapping API: A Case Study of Main Parks in Wuhan. Int. J. Environ. Res. Public Health 2018, 15, 1725. [Google Scholar] [CrossRef]
- Pageorgiou, K.; Brotherton, I. A Management Planning Framework Based on Ecological, Perce- ptual and Economic Carrying Capacity:The Case Study of Vikos-Aoos Natural Park, Greece. J. Environ. Manag. 1999, 56, 271–284. [Google Scholar] [CrossRef]
- Mitchell, D. The Right to the City: Social Justice and the Fight for Public Space; Guilford Press: New York, NY, USA, 2003. [Google Scholar]
- Mikula, G.; Scherer, K.R.; Athenstaedt, U. The role of injustice in the elicitation of differential emotional reactions. Pers. Soc. Psychol. Bull. 1998, 24, 769–783. [Google Scholar] [CrossRef]
- Talen, E. Visualizing fairness: Equity maps for planners. J. Am. Plan. Assoc. 1998, 64, 22–38. [Google Scholar] [CrossRef]
- David, H.; Land, S.M. Theoretical Foundations of Learning Environments; Lawrence Erlbaum: Mahwah, NJ, USA, 2000. [Google Scholar]
- Strife, S.; Downey, L. Childhood development and access to nature: A new direction for environmental inequality research. Organ. Environ. 2009, 22, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y. Neighborhood socioeconomic disadvantage and urban public green spaces availability: A localized modeling approach to inform land use policy. Land Use Policy 2016, 57, 470–478. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, D.; Fang, J. Exploring the disparities in park access through mobile phone data: Evidence from Shanghai, China. Landsc. Urban Plan. 2018, 181, 80–91. [Google Scholar] [CrossRef]
- Rao, Z.H.; Zhang, P.; Guan, J.P. Urban Traffic Corridors Determination Based on Characteristics of OD Data: Nanning City as an Example. Adv. Mater. Res. 2012, 403–408, 2445–2448. [Google Scholar] [CrossRef]
- Sai, Z.; Weiqi, Z. Recreational visits to urban parks and factorsaffecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar]
- Wu, W.; Zheng, T. Establishing a “dynamic two-step floating catchment area method” to assess the accessibility of urban green space in Shenyang based on dynamic population data and multiple modes of transportation. Urban For. Urban Green. 2023, 82, 127893. [Google Scholar] [CrossRef]
- Xing, L.; Liu, Y.; Liu, X. Measuring spatial disparity in accessibility with a multi-mode method based on park green spaces classification in Wuhan, China. Appl. Geogr. 2018, 94, 251–261. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, X.; Harris, C.D.; Holt, J.B.; Croft, J.B. Spatial Disparities in the Distribution of Parks and Green Spaces in the USA. Ann. Med. 2013, 45, S18–S27. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.B.; Seyfried, A.P.; Pender, S.E.; Heard, K.; Meindl, G.A. Racial Disparities in Access to Public Green Spaces: Using Geographic Information Systems to Identify Underserved Populations in a Small American City. Environ. Justice 2021, 15, 246–256. [Google Scholar] [CrossRef]
Street Name | H1 | H2 | H3 | H4 | W1 | W2 | W3 | W4 | Index |
---|---|---|---|---|---|---|---|---|---|
Lingxi | 0.0267 | 0.0561 | 0.0385 | 0.0515 | 1.0273 | 1.0591 | 1.0396 | 1.0540 | 2.7640 |
Zaohua | 0.0119 | 0.0520 | 0.0777 | 0.0385 | 1.0119 | 1.0545 | 1.0837 | 1.0399 | 2.5981 |
Nanyanghu | 0.0161 | 0.0193 | 0.0214 | 0.0080 | 1.0163 | 1.0194 | 1.0214 | 1.0078 | 0.6970 |
Changbai | 0.0069 | 0.0183 | 0.0198 | 0.0161 | 1.0068 | 1.0183 | 1.0197 | 1.0161 | 0.5215 |
Yuhong | 0.0069 | 0.0018 | 0.0020 | 0.0007 | 1.0068 | 1.0015 | 1.0015 | 1.0005 | 0.1430 |
Street Name | Standardization_Positive Indicators | Standardization_Negative Indicators | |||||
---|---|---|---|---|---|---|---|
LPI | MESH | AI | PD | LSI | DIVISION | SPLIT | |
Lingxi | 0.9009 | 0.3889 | 0.0187 | 0.0072 | 0.4608 | 0.8671 | 0.9317 |
Zaohua | 0.2557 | 0.3584 | 0.0167 | 0.0009 | 0.4284 | 0.2503 | 0.4113 |
Nanyanghu | 0.7971 | 0.9781 | 0.0106 | 0.0009 | 0.6309 | 0.7363 | 0.8539 |
Changbai | 0.7872 | 0.3633 | 0.0160 | 0.0024 | 0.6355 | 0.7296 | 0.8495 |
Yuhong | 0.9836 | 1.0000 | 0.0028 | 0.0007 | 0.8656 | 0.9776 | 0.9892 |
Standardization | Component 1 | Component 2 |
---|---|---|
PD | 0.058 | 0.975 |
LPI | 0.987 | 0.097 |
LSI | 0.631 | −0.558 |
DIVISION | 0.987 | 0.103 |
MESH | 0.019 | −0.353 |
SPLIT | 0.977 | 0.086 |
AI | 0.021 | 0.981 |
Standardization | Component 1 | Component 2 |
---|---|---|
PD | 0.018 | 0.41 |
LPI | 0.299 | 0.041 |
LSI | 0.191 | −0.235 |
DIVISION | 0.299 | 0.043 |
MESH | 0.006 | −0.149 |
SPLIT | 0.296 | 0.036 |
AI | 0.006 | 0.413 |
Component | Initial Eigenvalue | Extraction of the Sum of Squares of Loads | ||||
---|---|---|---|---|---|---|
Total | Variance % | Accumulation % | Total | Variance % | Accumulation % | |
1 | 3.304 | 47.197 | 47.197 | 3.304 | 47.197 | 47.197 |
2 | 2.376 | 33.941 | 81.138 | 2.376 | 33.941 | 81.138 |
3 | 0.935 | 13.357 | 94.495 | |||
4 | 0.359 | 5.123 | 99.618 | |||
5 | 0.025 | 0.353 | 99.97 | |||
6 | 0.002 | 0.023 | 99.993 | |||
7 | 0 | 0.007 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Chen, X.; Lv, D.; Wang, Q. Evaluation of Urban Green Space Supply and Demand Based on Mobile Signal Data: Taking the Central Area of Shenyang City as an Example. Land 2023, 12, 1742. https://doi.org/10.3390/land12091742
Dong Y, Chen X, Lv D, Wang Q. Evaluation of Urban Green Space Supply and Demand Based on Mobile Signal Data: Taking the Central Area of Shenyang City as an Example. Land. 2023; 12(9):1742. https://doi.org/10.3390/land12091742
Chicago/Turabian StyleDong, Yukuan, Xi Chen, Dongyang Lv, and Qiushi Wang. 2023. "Evaluation of Urban Green Space Supply and Demand Based on Mobile Signal Data: Taking the Central Area of Shenyang City as an Example" Land 12, no. 9: 1742. https://doi.org/10.3390/land12091742
APA StyleDong, Y., Chen, X., Lv, D., & Wang, Q. (2023). Evaluation of Urban Green Space Supply and Demand Based on Mobile Signal Data: Taking the Central Area of Shenyang City as an Example. Land, 12(9), 1742. https://doi.org/10.3390/land12091742