Determining Attribute—Response Relationships of Soils under Different Land Uses: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characteristics
2.2. Management Practices
2.3. Soil Sampling and Analysis Methodology
2.4. Statistical Analysis
2.5. Attribute–Response Relationships Assessed Using Entropy and Interquartile Report Index
3. Results
3.1. Statistical Analysis
3.2. Entropy Response
3.3. Interquartile Ratio Index and Resilience
4. Discussion
4.1. Entropy and IRI Response to Land Use
4.2. Relationships between Soil Physical Characteristics Captured by Entropy and the IRI
4.3. Resilience Response to IRI Values
5. Conclusions
- The Tukey–Kramer test applied to the different soils uses did not accurately match the differences for some soil physical properties (e.g., TP). Entropy is associated with disorder in a system, and in this study, it was suggested that the PR was the primary property that indicated disorder in the soil system. Furthermore, the PR was highly influenced by the agrotechnics methods used but also by the soil moisture and density.
- The interquartile ratio index ranks soil characteristics based on land use and, unlike entropy, accurately presents the relationships between soil physical properties. The comparative analysis between the IRI and entropy indices evidenced the higher stability of the former when changing the size of the data string. The natural logarithm allowed us to compare soil properties having different sizes and measurement units, while quartiles mitigated the influence of extreme values on the results. The elimination of extreme values limits the application of the indicator in the case of studies in which these values become important (e.g., geochemical studies).
- The IRI expresses the state of the soil system based on the physical properties of the soil at a given time. The control soil was associated with forest vegetation, and the disturbed soil corresponded to the tilled vineyard. Resilience was calculated only for properties with a higher spatio-temporal stability (TP and BD). The results indicated higher resilience of the soil in the abandoned vineyard compared to the tilled one both along the wheel track and between the wheels for both physical properties. The TP was less resilient in the wheel gap for the ploughed soil–forest pair versus the grass strip–forest pair.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rey, J.-M.; Montero, E.; Martín, M.A. Inter-Scale Behavior of Balanced Entropy for Soil Texture. Geoderma 2006, 134, 415–427. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Pires, L.F.; Cássaro, F.A.M.; Gaspareto, J.V.; Posadas, A.N.D.; Mooney, S.J. Soil Pore System Complexity and Heterogeneity as Affected by Contrasting Management Practices. Soil Tillage Res. 2022, 224, 105497. [Google Scholar] [CrossRef]
- Chun, H.C.; Giménez, D.; Yoon, S.W. Morphology, Lacunarity and Entropy of Intra-Aggregate Pores: Aggregate Size and Soil Management Effects. Geoderma 2008, 146, 83–93. [Google Scholar] [CrossRef]
- Howedi, A.; Lotfi, A.; Pourabdollah, A. An Entropy-Based Approach for Anomaly Detection in Activities of Daily Living in the Presence of a Visitor. Entropy 2020, 22, 845. [Google Scholar] [CrossRef] [PubMed]
- Toomanian, N.; Jalalian, A.; Khademi, H.; Eghbal, M.K.; Papritz, A. Pedodiversity and Pedogenesis in Zayandeh-Rud Valley, Central Iran. Geomorphology 2006, 81, 376–393. [Google Scholar] [CrossRef]
- Addiscott, T.M. Entropy and Sustainability. Eur. J. Soil Sci. 1995, 46, 161–168. [Google Scholar] [CrossRef]
- Martín, M.Á.; Reyes, M.; Taguas, F.J. Estimating Soil Bulk Density with Information Metrics of Soil Texture. Geoderma 2017, 287, 66–70. [Google Scholar] [CrossRef]
- Klöffel, T.; Jarvis, N.; Yoon, S.W.; Barron, J.; Giménez, D. Relative Entropy as an Index of Soil Structure. Eur. J. Soil Sci. 2022, 73, e13254. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil Resilience and Conservation. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2008; pp. 425–447. [Google Scholar]
- Seybold, C.A.; Herrick, J.E.; Brejda, J.J. Soil Resilience: A Fundamental Component of Soil Quality. Soil Sci. 1999, 164, 224–234. [Google Scholar] [CrossRef]
- de Andrade Bonetti, J.; Anghinoni, I.; de Moraes, M.T.; Fink, J.R. Resilience of Soils with Different Texture, Mineralogy and Organic Matter under Long-Term Conservation Systems. Soil Tillage Res. 2017, 174, 104–112. [Google Scholar] [CrossRef]
- Orwin, K.H.; Wardle, D.A. New Indices for Quantifying the Resistance and Resilience of Soil Biota to Exogenous Disturbances. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
- Ginebreda, A.; Sabater-Liesa, L.; Barceló, D. Quantification of Ecological Complexity and Resilience from Multivariate Biological Metrics Datasets Using Singular Value Decomposition Entropy. MethodsX 2019, 6, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Wilmes, P.; Schrader, S. Measuring Soil Sustainability via Soil Resilience. Sci. Total Environ. 2018, 626, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Konopiński, M.K. Shannon Diversity Index: A Call to Replace the Original Shannon’s Formula with Unbiased Estimator in the Population Genetics Studies. PeerJ 2020, 8, e9391. [Google Scholar] [CrossRef] [PubMed]
- Baican, V. Geography of Moldavia Reflected in Cartographic Documentd of 18th Century; Romanian Academy Press: Bucharest, Romania, 1996; p. 167. [Google Scholar]
- Stanga, I.C.; Niacsu, L. Using Old Maps and Soil Properties to Reconstruct the Forest Spatial Pattern in the Late 18th Century. Environ. Eng. Manag. J. 2016, 15, 1369–1378. [Google Scholar]
- Chifu, T.; Sarbu, I.; Stefan, N. Phytocoenoses of the order Quercetalia pubescentis Br-Bl 1931em Soo 1964 on the territory of Moldavia (Romania). Bull. Bot. Gard. Anastasie Fatu Iasi 2004, 12, 17–34. [Google Scholar]
- Lupascu, A.; Onofrei, M. Objects Regarding the Forest Stock in Iasi County with Special Regards towards Silvic Wards in Podu Iloaiei, Harlau and Pascani. Present Environ. Sustain. Dev. UAIC 2010, 4, 189–197. [Google Scholar]
- Ursu, A.; Ungureanu, O.A.; Istrate, V.; Acuculitei, A.; Buciumanu, A. The Forest Area Change in the Prut River Wathershed (Romania). In Cartography and GIS; Surveying Geology & Mining Ecology Management (SGEM): Albena, Bulgaria, 2015; Volume 2, pp. 1131–1138. [Google Scholar]
- WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legend for Soil Map; FAO: Rome, Italy, 2014. [Google Scholar]
- Ditzer, C.; Scheffe, K.; Monger, H.C. Soil Science Division Staff. 2017. Soil Survey Manual; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Jitareanu, G.; Rusu, C.; Moca, V.; Filipov, F.; Vasiliniuc, I. In Proceedings of the 19th National Soil Science Conference, Iasi, Romania, 23–29 August 2009; Ion Ionescu de la Brad University Press: Iasi, Romania, 2009; Volume 2. [Google Scholar]
- Clarke Topp, G.; Ferre, P.A. The Soil Solution Phase. In Methods of Soil Analysis; SSSA: 5; Soil Science Society of America: Madison, WI, USA, 2002; Volume 4—Physical Methods, pp. 417–474. [Google Scholar]
- McKenzie, N.; Coughlan, K.; Cresswell, H. Soil Physical Measurement and Interpretation for Land Evaluation; CSIRO Publishing: Clayton, Australia, 2002; p. 379. [Google Scholar]
- Eijkelkamp Agrisearch Equipment. Air Pycnometer According to Langer. Manual. 2014. Available online: www.eijkelkamp.com (accessed on 29 July 2022).
- Skopp, J.M. Physical Properties of Primary Particles. In Soil Physics Companion; CRC Press: Boca Raton, FL, USA, 2002; pp. 1–15. [Google Scholar]
- Flint, A.L.; Flint, L.E. Particle Density. In Methods of Soil Analysis; SSSA: 5; Soil Science Society of America: Madison, WI, USA, 2002; Volume 4—Physical Methods, pp. 229–240. [Google Scholar]
- Royal Eijkelkamp. Penetrolloger. User Manual. 2022. Available online: https://www.royaleijkelkamp.com/media/nrwjyah3/m-0615sae-penetrologger.pdf (accessed on 29 July 2022).
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil Properties in the Laboratory, in Situ, and on-Line: A Review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2012; Volume 114. [Google Scholar]
- Canarache, A. PENETR—A Generalized Semi-Empirical Model Estimating Soil Resistance to Penetration. Soil Tillage Res. 2012, 16, 51–70. [Google Scholar] [CrossRef]
- Blum, A. What Can Be Learned from a Comaprison of Two Agricultural Knowledge Systems ? The Case of the Neterlands and Istrael. Agric. Ecosyst. Environ. 1991, 33, 325–339. [Google Scholar] [CrossRef]
- Rogerson, P.A. Statistical Methods for Geography; Sage: Newbury Park, CA, USA, 2016. [Google Scholar]
- Kumar, R.; Singh, S.; Bilga, P.S.; Singh, J.J.; Singh, S.; Scurtu, M.L.; Pruncu, C.I. Revealing the Benefits of Entropy Weights Method for Multi-Objective Optimization in Machining Operations: A Critical Review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [Google Scholar] [CrossRef]
- Su, H.; Zhu, C. Application of Entropy Weight Coefficient Method in Evaluation of Soil Fertility. In Recent Advances in Computer Science and Information Engineering; Qian, Z., Cao, L., Su, W., Wang, T., Yang, H., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 126, pp. 697–703. [Google Scholar] [CrossRef]
- Jambu, M. Exploratory and Multivariate Data Analysis, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Cortés-D, D.L.; Camacho-Tamayo, J.H.; Giraldo, R. Spatial Prediction of Soil Penetration Resistance Using Functional Geostatistics. Sci. Agric. 2016, 73, 455–461. [Google Scholar] [CrossRef]
- Midway, S.; Robertson, M.; Flinn, S.; Kaller, M. Comparing Multiple Comparisons: Practical Guidance for Choosing the Best Multiple Comparisons Test. PeerJ 2020, 8, e10387. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, D.K. What Is the Proper Way to Apply the Multiple Comparison Test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed]
- McClean, S.I. Data Mining and Knowledge Discovery. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 229–246. [Google Scholar] [CrossRef]
- Lagacherie, P.; Coulouma, G.; Ariagno, P.; Virat, P.; Boizard, H.; Richard, G. Spatial Variability of Soil Compaction over a Vineyard Region in Relation with Soils and Cultivation Operations. Geoderma 2006, 134, 207–216. [Google Scholar] [CrossRef]
- Melendres, A.I.; Zermeño, A.; Ramírez, H.; Cárdenas, J.O.; Cadena, M. Eficiencia Del Uso Del Agua de Un Viñedo y Su Relación Con Porosidad Del Suelo. Tecnol. Cienc. Agua 2017, 8, 57–69. [Google Scholar] [CrossRef]
- Hrčková, K.; Žák, Š.; Hašana, R.; Švančárková, M. Change of Chosen Soil Physical Properties of Chernozem after Seven Years of No-Till Soil Cultivation. J. Cent. Eur. Agric. 2014, 15, 254–262. [Google Scholar] [CrossRef]
- Robinson, D.A.; Thomas, A.; Reinsch, S.; Lebron, I.; Feeney, C.J.; Maskell, L.C.; Wood, C.M.; Seaton, F.M.; Emmett, B.A.; Cosby, B.J. Analytical Modelling of Soil Porosity and Bulk Density across the Soil Organic Matter and Land-Use Continuum. Sci. Rep. 2022, 12, 7085. [Google Scholar] [CrossRef] [PubMed]
- Hakansson, I.; Lipiec, J. A Review of the Usefulness of Relative Bulk Density Values in Studies of Soil Structure and Compaction. Soil Tillage Res. 2000, 53, 71–85. [Google Scholar] [CrossRef]
- Landsberg, P.T. Can Entropy and Order Increase Together? Phys. Lett. 1984, 102A, 171–173. [Google Scholar] [CrossRef]
- Lin, H. Three Principles of Soil Change and Pedogenesis in Time and Space. Soil Sci. Soc. Am. J. 2011, 75, 2049–2070. [Google Scholar] [CrossRef]
- Hendgen, M.; Döring, J.; Stöhrer, V.; Schulze, F.; Lehnart, R.; Kauer, R. Spatial Differentiation of Physical and Chemical Soil Parameters under Integrated, Organic, and Biodynamic Viticulture. Plants 2020, 9, 1361. [Google Scholar] [CrossRef] [PubMed]
- James, S.E.; Pärtel, M.; Wilson, S.D.; Peltzer, D.A. Temporal Heterogeneity of Soil Moisture in Grassland and Forest. J. Ecol. 2003, 91, 234–239. [Google Scholar] [CrossRef]
- Bogunovic, I.; Viduka, A.; Magdic, I.; Telak, L.J.; Francos, M.; Pereira, P. Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy 2020, 10, 1331. [Google Scholar] [CrossRef]
- Burg, P.; Zemanek, P.; Turan, J.; Findura, P. The Penetration Resistance as a Soil Degradation Indicator in the Viticulture. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 40, 29–36. [Google Scholar]
- Pagliai, M.; Vignozzi, N. The Soil Pore System as an Indicator of Soil Quality. Adv. GeoEcology 2002, 35, 69–80. [Google Scholar]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of Tractor Traffic on Spatial Variability of Soil Strength and Water Content in Grass Covered and Cultivated Sloping Vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Darvas, G. Symmetry, Order, Entropy and Information. 2005. Available online: http://www.mdpi.org/fis2005/F.15.paper.pdf (accessed on 3 May 2023).
- Reichert, J.M.; da Rosa, V.T.; Vogelmann, E.S.; da Rosa, D.P.; Horn, R.; Reinert, D.J.; Sattler, A.; Denardin, J.E. Conceptual Framework for Capacity and Intensity Physical Soil Properties Affected by Short and Long-Term (14 Years) Continuous No-Tillage and Controlled Traffic. Soil Tillage Res. 2016, 158, 123–136. [Google Scholar] [CrossRef]
- Yi, C.; Jackson, N. A Review of Measuring Ecosystem Resilience to Disturbance. Environ. Res. Lett. 2021, 16, 053008. [Google Scholar] [CrossRef]
- Li, B.-L. Why Is the Holistic Approach Becoming so Important in Landscape Ecology? Landsc. Urban Plan. 2000, 50, 27–41. [Google Scholar] [CrossRef]
- Capó-Bauçà, S.; Marqués, A.; Llopis-Vidal, N.; Bota, J.; Baraza, E. Long-Term Establishment of Natural Green Cover Provides Agroecosystem Services by Improving Soil Quality in a Mediterranean Vineyard. Ecol. Eng. 2019, 127, 285–291. [Google Scholar] [CrossRef]
S * | Ss ** 1 | Ss ** 2 | Indicator | No. of Samples | Min | Max | Average | StDEV | Skew | Shapiro–Wilk |
---|---|---|---|---|---|---|---|---|---|---|
Worked vineyard | Plow row | Wheel mark | BD | 40 | 1.23 | 1.77 | 1.51 | 0.1 | −0.45 | 0.12 |
TP | 40 | 31 | 54 | 44.2 | 4.75 | −0.05 | 0.32 | |||
θv | 40 | 21.27 | 36.8 | 29.98 | 3.5 | −0.07 | 0.96 | |||
PR | 40 | 1.1 | 3.8 | 2.1 | 0.58 | 0.58 | 0.58 | |||
Between the wheels (0–6 cm) | BD | 27 | 0.95 | 1.52 | 1.22 | 0.13 | 0.33 | 0.72 | ||
TP | 27 | 42 | 70 | 54.8 | 7.14 | −0.13 | 0.4 | |||
θv | 27 | 19.78 | 37.13 | 27.24 | 4.8 | 0.41 | 0.32 | |||
PR | 27 | 0.3 | 2.2 | 0.9 | 0.44 | 0.88 | 0.09 | |||
Between the wheels (14–20 cm) | BD | 13 | 1.1 | 1.49 | 1.29 | 0.08 | 0.01 | 0.35 | ||
TP | 13 | 42 | 60 | 52.69 | 4.67 | −0.9 | 0.39 | |||
θv | 13 | 24.1 | 41.9 | 34.18 | 5.1 | −0.12 | 0.73 | |||
Grassed row | Wheel mark | BD | 18 | 1.25 | 1.66 | 1.47 | 0.09 | −0.15 | 0.78 | |
TP | 18 | 38 | 54 | 45.5 | 4.31 | 0.31 | 0.28 | |||
θv | 18 | 22.39 | 38.66 | 30.79 | 4.39 | 0.25 | 0.39 | |||
PR | 18 | 2 | 3.8 | 2.4 | 0.54 | 1.74 | * | |||
Grass strip | BD | 18 | 1.09 | 1.54 | 1.29 | 0.14 | 0.21 | 0.24 | ||
TP | 18 | 42 | 63 | 52.83 | 6.93 | −0.41 | 0.08 | |||
θv | 18 | 22.98 | 37.13 | 30.61 | 4.52 | −0.29 | 0.32 | |||
PR | 18 | 0.9 | 2.2 | 1.3 | 0.36 | 0.59 | 0.31 | |||
Abandoned vineyard | vine and spontaneous vegetation | Wheel mark | BD | 30 | 1.04 | 1.38 | 1.21 | 0.09 | 0.21 | 0.1 |
TP | 30 | 40 | 58 | 48.23 | 3.93 | −0.1 | 0.28 | |||
θv | 30 | 20 | 35.15 | 27.79 | 4.05 | −0.28 | 0.55 | |||
PR | 30 | 1.1 | 3.4 | 1.9 | 0.58 | 0.76 | 0.37 | |||
Between the wheels | BD | 30 | 1.01 | 1.4 | 1.26 | 0.1 | −0.91 | 0.09 | ||
TP | 30 | 46 | 61 | 52.4 | 4.02 | 0.63 | 0.14 | |||
θv | 30 | 21.63 | 41.48 | 32.4 | 4.78 | −0.59 | 0.15 | |||
PR | 30 | 0.9 | 4.6 | 1.9 | 0.94 | 1.59 | * | |||
Forest | BD | 38 | 0.78 | 1.98 | 0.94 | 0.11 | 0.67 | 0.04 | ||
TP | 38 | 54 | 68 | 62.44 | 3.57 | −0.7 | 0.02 | |||
θv | 38 | 15.99 | 31.68 | 24.35 | 4.68 | −0.16 | 0.04 | |||
PR | 38 | 1.2 | 4.1 | 2.5 | 0.7 | 0.03 | 0.49 |
Indices | BD-TP | TP-θv | PR-θv |
---|---|---|---|
IRIweight for tractor track | 0.99 | 0.11 | 0.9 |
Enweight for tractor track | 0.39 | 0.9 | 0.9 |
IRIweight between the wheels | 0.98 | 0.77 | 0.89 |
Enweight between the wheels | 0.95 | 0.09 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secu, C.V.; Lesenciuc, D.C.; Vasiliniuc, I.; Zaldea, G.; Nechita, A.; Alexandru, L.C. Determining Attribute—Response Relationships of Soils under Different Land Uses: A Case Study. Land 2023, 12, 1750. https://doi.org/10.3390/land12091750
Secu CV, Lesenciuc DC, Vasiliniuc I, Zaldea G, Nechita A, Alexandru LC. Determining Attribute—Response Relationships of Soils under Different Land Uses: A Case Study. Land. 2023; 12(9):1750. https://doi.org/10.3390/land12091750
Chicago/Turabian StyleSecu, Cristian Vasilică, Dan Cristian Lesenciuc, Ionuț Vasiliniuc, Gabi Zaldea, Ancuța Nechita, and Lulu Cătălin Alexandru. 2023. "Determining Attribute—Response Relationships of Soils under Different Land Uses: A Case Study" Land 12, no. 9: 1750. https://doi.org/10.3390/land12091750
APA StyleSecu, C. V., Lesenciuc, D. C., Vasiliniuc, I., Zaldea, G., Nechita, A., & Alexandru, L. C. (2023). Determining Attribute—Response Relationships of Soils under Different Land Uses: A Case Study. Land, 12(9), 1750. https://doi.org/10.3390/land12091750