Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Remote Sensing Data
2.2.2. Auxiliary Data
2.3. Evaluation of Changes in Cropland Quantity
2.3.1. Statistics on Cropland Area and Land Cover Conversion
2.3.2. Analysis of Spatiotemporal Patterns of Cropland
2.4. Evaluation of Changes in Cropland Quality
2.4.1. Indicator System for Cropland Quality Evaluation
2.4.2. Calculation of Cropland Quality Index and Analysis of Obstacle Factors
2.5. Accuracy Assessment
3. Results
3.1. Validation of Cropland Quantity and Quality
3.2. Spatiotemporal Changes in Cropland Quantity
3.3. Spatiotemporal Changes in Cropland Quality
4. Discussion
4.1. Effectiveness of Cropland Evaluation with Multi-Source Remote Sensing
4.2. Driving Factors of Spatiotemporal Changes in Cropland
4.3. Measures and Suggestions for Cropland Protection
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, A.; Yue, W.; Yang, J.; Xue, B.; Xiao, W.; Li, M.; He, T.; Zhang, M.; Jin, X.; Zhou, Q. Cropland Abandonment in China: Patterns, Drivers, and Implications for Food Security. J. Clean. Prod. 2023, 418, 138154. [Google Scholar] [CrossRef]
- Vijay, V.; Armsworth, P.R. Pervasive Cropland in Protected Areas Highlight Trade-Offs Between Conservation and Food Security. Proc. Natl. Acad. Sci. USA 2021, 118, e2010121118. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland Cropland Expansion and Forest Loss in Southeast Asia in the Twenty-First Century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which Practices Co-Deliver Food Security, Climate Change Mitigation and Adaptation, and Combat Land Degradation and Desertification? Glob. Chang. Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef]
- Wang, S.; Bai, X.; Zhang, X.; Reis, S.; Chen, D.; Xu, J.; Gu, B. Urbanization can Benefit Agricultural Production with Large-Scale Farming in China. Nat. Food 2021, 2, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kandel, M.; Anghileri, D.; Oloo, F.; Kambombe, O.; Chibarabada, T.P.; Ngongondo, C.; Sheffield, J.; Dash, J. Recent Changes in Cropland Area and Productivity Indicate Unsustainable Cropland Expansion in Malawi. Environ. Res. Lett. 2021, 16, 084052. [Google Scholar] [CrossRef]
- Zuo, C.; Wen, C.; Clarke, G.; Turner, A.; Ke, X.; You, L.; Tang, L. Cropland Displacement Contributed 60% of the Increase in Carbon Emissions of Grain Transport in China over 1990–2015. Nat. Food 2023, 4, 223–235. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping Global Cropland and Field Size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring Cropland Abandonment with Landsat Time Series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 Green LAI and Brown LAI Products for Cropland Monitoring. Remote Sens. Environ. 2021, 255, 112168. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, S.; Huang, X.; Kong, L.; Yan, Y.; Xiao, H.; Li, Y.; Cai, P. Monitoring the Impacts of Cultivated Land Quality on Crop Production Capacity in Arid Regions. CATENA 2022, 214, 106263. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, M.; Chen, D.; Zhou, J.; Wu, W.; Song, Q. Global Cropland Intensification Surpassed Expansion Between 2000 and 2010: A Spatio-Temporal Analysis Based on GlobeLand30. Sci. Total Environ. 2020, 746, 141035. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Hu, Q.; van Vliet, J.; Verburg, P.H.; Wu, W. GlobeLand30 Shows Little Cropland Area Loss but Greater Fragmentation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 37–45. [Google Scholar] [CrossRef]
- Raab, C.; Spies, M. Characterising Cropland Fragmentation in Post-Soviet Central Asia, Using Landsat Remote-Sensing Time Series Data. Appl. Geogr. 2023, 156, 102968. [Google Scholar] [CrossRef]
- Zaveri, E.; Russ, J.; Damania, R. Rainfall Anomalies are a Significant Driver of Cropland Expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 10225–10233. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.B.; Atreya, K.; Kristiansen, P.; Devkota, D.; Wilson, B. A Systematic Review and Gap Analysis of Drivers, Impacts, and Restoration Options for Abandoned Croplands in Nepal. Land Use Policy 2022, 120, 106237. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on Cultivated Land Quality Evaluation from the Perspective of Farmland Ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Gao, P.; Liu, C.; Cheng, C. Visualizing Clustering Characteristics of Multidimensional Arable Land Quality Indexes at the County Level in Mainland China. Environ. Plan. A Econ. Space 2022, 54, 222–225. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Li, T.; Li, J.; Zhao, G. Identification of Cultivated Land Quality Grade Using Fused Multi-Source Data and Multi-Temporal Crop Remote Sensing Information. Remote Sens. 2022, 14, 2109. [Google Scholar] [CrossRef]
- Dong, J.; Yun, W.; Wu, K.; Li, S.; Liu, B.; Lu, Q. Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China. Land 2023, 12, 515. [Google Scholar] [CrossRef]
- Yan, R.; Li, L.; Gao, J.; Huang, J. Exploring the Influence of Seasonal Cropland Abandonment on Evapotranspiration and Water Resources in the Humid Lowland Region, Southern China. Water Resour. Res. 2022, 58, e2021WR031888. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Panjala, P.; Teluguntla, P.; Yamano, T.; Mohammed, I. Multiple Agricultural Cropland Products of South Asia Developed Using Landsat-8 30 m and MODIS 250 m Data Using Machine Learning on the Google Earth Engine (GEE) Cloud and Spectral Matching Techniques (SMTs) in Support of Food and Water Security. GIScience Remote Sens. 2022, 59, 1048–1077. [Google Scholar] [CrossRef]
- Qiu, B.; Lin, D.; Chen, C.; Yang, P.; Tang, Z.; Jin, Z.; Ye, Z.; Zhu, X.; Duan, M.; Huang, H.; et al. From Cropland to Cropped Field: A Robust Algorithm for National-Scale Mapping by Fusing Time Series of Sentinel-1 and Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103006. [Google Scholar] [CrossRef]
- Hong, C.; Prishchepov, A.V.; Jin, X.; Han, B.; Lin, J.; Liu, J.; Ren, J.; Zhou, Y. The Role of Harmonized Landsat Sentinel-2 (HLS) Products to Reveal Multiple Trajectories and Determinants of Cropland Abandonment in Subtropical Mountainous Areas. J. Environ. Manag. 2023, 336, 117621. [Google Scholar] [CrossRef] [PubMed]
- Pancorbo, J.L.; Quemada, M.; Roberts, D.A. Drought Impact on Cropland Use Monitored with AVIRIS Imagery in Central Valley, California. Sci. Total Environ. 2023, 859, 160198. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Wang, L.; Zheng, M.; Wang, Z.; Song, K. Effects of Cropland Reclamation on Soil Organic Carbon in China’s Black Soil Region over the Past 35 Years. Glob. Chang. Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef]
- Duan, D.; Sun, X.; Liang, S.; Sun, J.; Fan, L.; Chen, H.; Xia, L.; Zhao, F.; Yang, W.; Yang, P. Spatiotemporal Patterns of Cultivated Land Quality Integrated with Multi-Source Remote Sensing: A Case Study of Guangzhou, China. Remote Sens. 2022, 14, 1250. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Zhang, X.; Zhu, H.; Wei, X. Changes in Soil Physical and Hydraulic Properties Following the Conversion of Forest to Cropland in the Black Soil Region of Northeast China. CATENA 2021, 198, 104986. [Google Scholar] [CrossRef]
- Ha, T.T.V.; Fan, H.; Shuang, L. Climate Change Impact Assessment on Northeast China’s Grain Production. Environ. Sci. Pollut. Res. 2021, 28, 14508–14520. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, Z.; Xing, Z.; Wang, M.; Wang, M. Dynamic Evaluation of Cropland Degradation Risk by Combining Multi-Temporal Remote Sensing and Geographical Data in the Black Soil Region of Jilin Province, China. Appl. Geogr. 2023, 154, 102920. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and Temporal Patterns of China’s Cropland During 1990–2000: An Analysis Based on Landsat TM Data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Normalized Difference Vegetation Index Continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban Expansion Brought Stress to Food Security in China: Evidence from Decreased Cropland Net Primary Productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Fischer, G.; Velthuizen, H.; Shah, M.; Nachtergaele, F. Global Agro-Ecological Assessment for Agriculture in the 21st Century: Methodology and Results; IIASA: Laxenburg, Austria; FAO: Laxenburg, Austria, 2002; pp. 1–119. [Google Scholar]
- Vargas-Munoz, J.E.; Srivastava, S.; Tuia, D.; Falcão, A.X. OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 184–199. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Washington, DC, USA, 1995; Volume 351. [Google Scholar]
- Tang, H.; Niu, J.; Niu, Z.; Liu, Q.; Huang, Y.; Yun, W.; Shen, C.; Huo, Z. System Cognition and Analytic Technology of Cultivated Land Quality from a Data Perspective. Land 2023, 12, 237. [Google Scholar] [CrossRef]
- Yao, M.; Shao, D.; Lv, C.; An, R.; Gu, W.; Zhou, C. Evaluation of Arable Land Suitability Based on the Suitability Function—A Case Study of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 787, 147414. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Liu, T.; Yu, E.; Bu, K.; Jia, Q.; Shen, L.; Zheng, X.; Zhang, S. Coupling Localized Noah-MP-Crop Model with the WRF Model Improved Dynamic Crop Growth Simulation across Northeast China. Comput. Electron. Agric. 2022, 201, 107323. [Google Scholar] [CrossRef]
- Lai, Z.; Di, C.; Li, S.; Dan, L. Optimizing Land Use Systems of an Agricultural Watershed in China to Meet Ecological and Economic Requirements for Future Sustainability. Glob. Ecol. Conserv. 2022, 33, e01975. [Google Scholar] [CrossRef]
- Yang, S.; Bai, Y.; Alatalo, J.M.; Wang, H.; Tong, J.; Liu, G.; Zhang, F.; Chen, J. Spatial–Temporal Pattern of Cultivated Land Productivity Based on Net Primary Productivity and Analysis of Influencing Factors in the Songhua River basin. Land Degrad. Dev. 2022, 33, 1917–1932. [Google Scholar] [CrossRef]
- Talukdar, S.; Naikoo, M.W.; Mallick, J.; Praveen, B.; Shahfahad; Sharma, P.; Islam, A.R.M.T.; Pal, S.; Rahman, A. Coupling Geographic Information System Integrated Fuzzy Logic-Analytical Hierarchy Process with Global and Machine Learning based Sensitivity Analysis for Agricultural Suitability Mapping. Agric. Syst. 2022, 196, 103343. [Google Scholar] [CrossRef]
- Crocker, E.; Gurung, K.; Calvert, J.; Nelson, C.D.; Yang, J. Integrating GIS, Remote Sensing, and Citizen Science to Map Oak Decline Risk across the Daniel Boone National Forest. Remote Sens. 2023, 15, 2250. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of Ecological City and Analysis of Obstacle Factors under the Background of High-Quality Development: Taking Cities in the Yellow River Basin as Examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Wang, X.; Ning, G.; Xu, B. Production of Global Daily Seamless Data Cubes and Quantification of Global Land Cover Change from 1985 to 2020—iMap World 1.0. Remote Sens. Environ. 2021, 258, 112364. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Sang, L.; Wang, J. Characterizing Forest Cover and Landscape Pattern Using Multi-Source Remote Sensing Data with Ensemble Learning. Remote Sens. 2022, 14, 5470. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Wang, L.; Rao, X.; Ran, W.; Xu, C. Monitoring and Analysis of Abandoned Cropland in the Karst Plateau of Eastern Yunnan, China Based on Landsat Time Series Images. Ecol. Indic. 2023, 146, 109828. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual Dynamics of Global Land Cover and its Long-Term Changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J. GCI30: A Global Dataset of 30 m Cropping Intensity Using Multisource Remote Sensing Imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
- Löw, F.; Biradar, C.; Dubovyk, O.; Fliemann, E.; Akramkhanov, A.; Narvaez Vallejo, A.; Waldner, F. Regional-Scale Monitoring of Cropland Intensity and Productivity with Multi-Source Satellite Image Time Series. GISci. Remote Sens. 2018, 55, 539–567. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Xiong, Q.; Liu, Y.; Liu, Y.; Liu, Y. Spatiotemporal Dynamics of Cropland Expansion and Its Driving Factors in the Yangtze River Economic Belt: A Nuanced Analysis at the County Scale. Land Use Policy 2022, 119, 106168. [Google Scholar] [CrossRef]
- Zhang, X.; Brandt, M.; Tong, X.; Ciais, P.; Yue, Y.; Xiao, X.; Zhang, W.; Wang, K.; Fensholt, R. A Large but Transient Carbon Sink from Urbanization and Rural Depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Yao, X.; Yun, W.; Ma, J.; Gao, L.; Li, P. Scenario Simulation of the Tradeoff between Ecological Land and Farmland in Black Soil Region of Northeast China. Land Use Policy 2022, 114, 105991. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Huang, L. Spatial and Temporal Variability of Soil Erosion in Northeast China from 2000 to 2020. Remote Sens. 2023, 15, 225. [Google Scholar] [CrossRef]
- Liu, C.; Song, C.; Ye, S.; Cheng, F.; Zhang, L.; Li, C. Estimate Provincial-Level Effectiveness of the Arable Land Requisition-Compensation Balance Policy in Mainland China in the Last 20 Years. Land Use Policy 2023, 131, 106733. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Dekamin, M. Sustainability Assessment of Corn Production in Conventional and Conservation Tillage Systems. J. Clean. Prod. 2022, 351, 131508. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ding, X.; Su, J.; Mu, X.; Zhang, Y.; Gao, P.; Zhao, G. Land Use and Cover Changes on the Loess Plateau: A Comparison of Six Global or National Land Use and Cover Datasets. Land Use Policy 2022, 119, 106165. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Sinclair, S.J.; Griffioen, P.; Duncan, D.H.; Millett-Riley, J.E.; White, M.D. Quantifying Ecosystem Quality by Modeling Multi-attribute Expert Opinion. Ecol. Appl. 2015, 25, 1463–1477. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. Are Expert-based Ecosystem Services Scores Related to Biophysical Quantitative Estimates? Ecol. Indic. 2019, 106, 105421. [Google Scholar] [CrossRef]
- Schillerberg, T.; Tian, D. Changes in Crop Failures and Their Predictions with Agroclimatic Conditions: Analysis Based on Earth Observations and Machine Learning over Global Croplands. Agric. For. Meteorol. 2023, 340, 109620. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of Cropland, Cropping Patterns and Crop Types by Combining Optical Remote Sensing Images with Decision Tree Classifier and Random Forest. Geo-Spat. Inf. Sci. 2022, 1–19. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling Soil Organic Carbon Stock Distribution across Different Land-Uses in South Africa: A Remote Sensing and Deep Learning Aspproach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, S.; Sun, L.; Yan, B.; Yang, T.; Yan, W.; Meadows, M.E.; Wang, C.; Qi, J. Characterizing the Changing Environment of Cropland in the Songnen Plain, Northeast China, from 1990 to 2015. J. Geogr. Sci. 2019, 29, 658–674. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
Category | Data Source | Spatial Resolution | Time |
---|---|---|---|
Land cover | CNLUCC dataset | 30 m | 2010, 2015, 2018 |
NDVI | Landsat Level-2 surface reflectance data | 30 m | 2009–2011, 2014–2016, 2017–2019 |
NPP | MODIS MOD17A3 product | 500 m | 2009–2011, 2014–2016, 2017–2019 |
Topography | SRTM DEM data | 30 m | 2000 |
Soil | HWSD | ~1 km | 2009 |
Road | OSM data | - | 2010, 2015, 2018 |
Climate | WorldClim data | ~1 km | 1970–2000 |
Land Cover Class | Descriptions |
---|---|
Cropland | Cultivated lands for crops, including paddy cropland and dry cropland. Paddy cropland refers to cropland that has enough water supply and irrigation facilities for planting paddy rice, lotus, etc. Dry cropland refers to cropland for cultivation without water supply and irrigating facilities. |
Forest | Lands growing trees including arbor, shrub, bamboo, and forestry use. |
Grassland | Lands covered by herbaceous plants with coverage greater than 5%. |
Water body | Lands covered by natural water bodies or lands with facilities for irrigation and water reservation. |
Built-up land | Lands used for urban and rural settlements, factories, and transportation facilities. |
Unused land | Lands that are not put into practical use or are difficult to use. |
Target | Category | Indicator | Data Source | Impact | Range | Score | Weight |
---|---|---|---|---|---|---|---|
Cropland quality | Natural conditions | Terrain slope | SRTM DEM data | − | >6° | 1 | 0.1179 |
2–6° | 2 | ||||||
≤2° | 3 | ||||||
Surface soil texture | HWSD | + | Coarse | 1 | 0.0778 | ||
Medium | 2 | ||||||
Fine | 3 | ||||||
Soil fertility | Soil fertility | Landsat NDVI data | + | <0.4 | 1 | 0.1523 | |
0.4–0.7 | 2 | ||||||
≥0.7 | 3 | ||||||
Variation in soil fertility | − | >10% | 1 | 0.0815 | |||
5–10% | 2 | ||||||
≤5% | 3 | ||||||
Construction level | Distance to roads | OSM road data | − | >2 km | 1 | 0.1201 | |
1–2 km | 2 | ||||||
≤1 km | 3 | ||||||
Patch contiguity | CNLUCC dataset | + | <0.8 | 1 | 0.1102 | ||
0.8–0.9 | 2 | ||||||
≥0.9 | 3 | ||||||
Cropland productivity | Production capacity | MODIS NPP product | + | <0.2 kgC/m2 | 1 | 0.1966 | |
0.2–0.4 kgC/m2 | 2 | ||||||
≥0.45 kgC/m2 | 3 | ||||||
Variation in production capacity | − | >10% | 1 | 0.1436 | |||
5–10% | 2 | ||||||
≤5% | 3 |
Class | Cropland | Forest | Grassland | Water Body | Built-Up Land | Unused Land | Producer’s Accuracy | User’s Accuracy | F1 |
---|---|---|---|---|---|---|---|---|---|
Cropland | 315 | 7 | 9 | 6 | 4 | 3 | 91.57% | 92.92% | 92.24% |
Forest | 10 | 307 | 12 | 0 | 0 | 1 | 93.03% | 91.64% | 92.33% |
Grassland | 5 | 13 | 157 | 5 | 1 | 3 | 85.33% | 82.63% | 83.96% |
Water Body | 4 | 7 | 8 | 152 | 2 | 3 | 86.36% | 92.68% | 89.41% |
Built-up Land | 3 | 1 | 2 | 0 | 128 | 2 | 94.12% | 93.43% | 93.77% |
Unused Land | 2 | 0 | 2 | 1 | 2 | 35 | 83.33% | 74.47% | 78.65% |
Overall accuracy = 90.26% | Kappa = 87.64% | Weighted F1 = 90.30% |
Zone | Paddy Cropland (2010) | Dry Cropland (2010) | Cropland (2010) | Paddy Cropland Change (2010–2018) | Dry Cropland Change (2010–2018) | Cropland Loss (2010–2018) | Cropland Gain (2010–2018) | Cropland Change (2010–2018) | Cropland Change (2015–2018) |
---|---|---|---|---|---|---|---|---|---|
I | 326,217.69 | 2,759,792.94 | 3,086,010.63 | 118,756.44 | 305,368.11 | 606,181.23 | 1,030,305.78 | 424,124.55 | 391,598.19 |
II | 604,632.51 | 3,385,603.53 | 3,990,236.04 | −77,050.17 | −201,181.68 | 810,652.95 | 532,421.10 | −278,231.85 | −264,509.55 |
III | 2,676,925.35 | 3,123,137.70 | 5,800,063.05 | 1,253,796.66 | −627,835.59 | 413,493.75 | 1,039,454.82 | 625,961.07 | 484,150.23 |
IV | 1,287,505.44 | 10,762,635.42 | 12,050,140.86 | 419,429.79 | 72,537.03 | 944,268.75 | 1,436,235.57 | 491,966.82 | 438,488.64 |
V | 306,008.73 | 6,292,526.13 | 6,598,534.86 | 98,507.34 | 137,526.03 | 1,465,326.09 | 1,701,359.46 | 236,033.37 | 182,932.92 |
VI | 1,287,066.78 | 5,842,090.26 | 7,129,157.04 | −126,159.66 | 79,571.52 | 1,439,163.09 | 1,392,574.95 | −46,588.14 | −16,621.83 |
Total | 6,488,356.50 | 32,165,785.98 | 38,654,142.48 | 1,687,280.40 | −234,014.58 | 5,679,085.86 | 7,132,351.68 | 1,453,265.82 | 1,216,038.60 |
Year | AREA (ha) | SHAPE | CONTIG | MAP (mm) | MAT (°C) | Elevation (m) |
---|---|---|---|---|---|---|
2010 | 602.41 | 1.82 | 0.50 | 544.77 | 4.14 | 239.56 |
2015 | 590.25 | 1.80 | 0.50 | 544.51 | 4.13 | 239.06 |
2018 | 649.64 | 1.92 | 0.54 | 542.32 | 3.98 | 241.16 |
Year | Low | Medium | High | |||
---|---|---|---|---|---|---|
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | |
2010 | 18,254,947.05 | 49.07 | 15,666,770.88 | 41.85 | 3,279,648.24 | 8.48 |
2015 | 13,490,353.89 | 36.26 | 18,053,694.63 | 48.22 | 5,894,544.87 | 15.25 |
2018 | 15,587,355.51 | 41.90 | 17,603,990.10 | 47.02 | 5,462,981.01 | 14.13 |
Period | −2 Grades | −1 Grade | Unchanged | +1 Grade | +2 Grades | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | |
2010–2015 | 198,122.94 | 0.53 | 4,576,222.17 | 12.34 | 20,902,960.44 | 56.36 | 10,467,263.97 | 28.22 | 942,131.70 | 2.54 |
2015–2018 | 554,137.47 | 1.74 | 7,056,694.89 | 22.15 | 18,281,586.69 | 57.38 | 5,653,715.58 | 17.75 | 312,842.16 | 0.98 |
2010–2018 | 309,822.93 | 0.98 | 4,983,025.23 | 15.81 | 16,930,763.83 | 53.71 | 8,484,503.67 | 26.92 | 812,599.02 | 2.58 |
Period | Cropland Loss | Cropland Gain | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |||||||
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | |
2010–2015 | 68,915.88 | 14.77 | 39,575.43 | 8.48 | 6173.64 | 1.32 | 131,440.41 | 28.17 | 151,323.12 | 32.43 | 69,128.64 | 14.82 |
2015–2018 | 2,585,881.35 | 20.90 | 2,155,361.13 | 17.42 | 838,374.12 | 6.77 | 3,325,720.59 | 26.87 | 2,534,411.43 | 20.48 | 935,217.81 | 7.56 |
2010–2018 | 3,310,584.93 | 25.84 | 1,880,110.26 | 14.67 | 489,957.30 | 3.82 | 3,462,615.09 | 27.02 | 2,685,116.70 | 20.95 | 985,881.15 | 7.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, Y.; Sang, L.; Zhao, C.; Hu, T.; Liu, H.; Zhang, Z.; Wang, S.; Miao, S.; Ju, Z. Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing. Land 2023, 12, 1764. https://doi.org/10.3390/land12091764
Liu H, Wang Y, Sang L, Zhao C, Hu T, Liu H, Zhang Z, Wang S, Miao S, Ju Z. Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing. Land. 2023; 12(9):1764. https://doi.org/10.3390/land12091764
Chicago/Turabian StyleLiu, Han, Yu Wang, Lingling Sang, Caisheng Zhao, Tengyun Hu, Hongtao Liu, Zheng Zhang, Shuyu Wang, Shuangxi Miao, and Zhengshan Ju. 2023. "Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing" Land 12, no. 9: 1764. https://doi.org/10.3390/land12091764
APA StyleLiu, H., Wang, Y., Sang, L., Zhao, C., Hu, T., Liu, H., Zhang, Z., Wang, S., Miao, S., & Ju, Z. (2023). Evaluation of Spatiotemporal Changes in Cropland Quantity and Quality with Multi-Source Remote Sensing. Land, 12(9), 1764. https://doi.org/10.3390/land12091764