Spatial Spillover Effects of “New Farmers” on Diffusion of Sustainable Agricultural Practices: Evidence from China
Abstract
:1. Introduction
2. Imitation across Space: Diffusion of Sustainable Agricultural Practices
3. Empirical Framework
3.1. Methodology
3.1.1. Model Specification
3.1.2. Spatial Weight Matrix Specifications
3.2. Dependent and Independent Variable
3.2.1. Dependent Variables
3.2.2. Main Independent Variables
3.2.3. Covariates
3.3. Data Sources
4. Empirical Results
4.1. Estimated Results of the Spatial Dependence of Sustainable Agricultural Practices
4.2. Results of the Spatial Effects of Sustainable Agricultural Practices
4.2.1. Adoption of Composited Sustainable Agricultural Practices
4.2.2. Adoption of Specific Sustainable Agricultural Practices
5. Discussions
5.1. Spillover Effects of ‘New Farmers’ on Sustainable Agricultural Practices Diffusion
5.2. Heterogeneity in Diffusion of Different Sustainable Agricultural Practices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | Ecological agriculture is one of the primary responsibilities included in Nanjing’s development goal, which dates back to 2006 and calls for the creation of a national eco-city. Nanjing was the first city in China to create an organization for certifying organic foods. |
References
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Huan, M.; Li, Y.; Chi, L.; Zhan, S. The Effects of Agricultural Socialized Services on Sustainable Agricultural Practice Adoption among Smallholder Farmers in China. Agronomy 2022, 12, 2198. [Google Scholar] [CrossRef]
- Yu, J.; Wu, J. The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus. Sustainability 2018, 10, 1776. [Google Scholar] [CrossRef]
- Wollni, M.; Andersson, C. Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecol. Econ. 2014, 97, 120–128. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z.; Olagunju, K.O.; Ogunpaimo, O.R. Determinants of adoption of multiple sustainable agricultural practices among smallholder farmers in Nigeria. Int. Soil Water Conserv. Res. 2021, 9, 241–248. [Google Scholar] [CrossRef]
- Midingoyi, S.-K.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2019, 70, 452–470. [Google Scholar] [CrossRef]
- Ma, W.; Wang, X. Internet Use, Sustainable Agricultural Practices and Rural Incomes: Evidence from China. Aust. J. Agric. Resour. Econ. 2020, 64, 1087–1112. [Google Scholar] [CrossRef]
- Blackman, A.; Naranjo, M.A. Does eco-certification have environmental benefits? Organic coffee in Costa Rica. Ecol. Econ. 2012, 83, 58–66. [Google Scholar] [CrossRef]
- Dubbert, C.; Abdulai, A.; Mohammed, S. Contract farming and the adoption of sustainable farm practices: Empirical evidence from cashew farmers in Ghana. Appl. Econ. Perspect. Policy 2023, 45, 487–509. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, T. Impact of “New Farmers” on the Development of Ecological Agriculture in Suburban of Large Cities: A Case Study of Nanjing City. Mod. Urban Res. 2022, 11, 20–26. [Google Scholar]
- Liu, M.; Zheng, W.; Zhong, T. Impact of migrant and returning farmer professionalization on food production diversity. J. Rural Stud. 2022, 94, 23–36. [Google Scholar] [CrossRef]
- Cakirli Akyüz, N.; Theuvsen, L. The Impact of Behavioral Drivers on Adoption of Sustainable Agricultural Practices: The Case of Organic Farming in Turkey. Sustainability 2020, 12, 6875. Available online: https://www.mdpi.com/2071-1050/12/17/6875 (accessed on 1 November 2023). [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Bernal Hoyo, D.; Giraldo, O.F.; Rosset, P.M.; López Corona, O.; Perez Cassarino, J.; Nautiyal, S. Building an agroecological model to understand the effects of agrochemical subsidies on farmer decisions. Agroecol. Sustain. Food Syst. 2022, 46, 712–735. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Li, G. Learning from neighboring farmers: Does spatial dependence affect adoption of drought-tolerant wheat varieties in China? Can. J. Agric. Econ./Rev. Can. D’agroecon. 2021, 69, 519–537. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L. Impact of farmer group participation on the adoption of sustainable farming practices—Spatial analysis of New Zealand dairy farmers. Ann. Public Coop. Econ. 2023, 94, 701–717. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, T.; Chao, J.; Gao, X. Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau. Agronomy 2021, 11, 2435. [Google Scholar] [CrossRef]
- Hu, H. Zhejiang Province, College Graduates “Urban Residents Become Rural Residents” Policy System Analysis and Improvement Strategies. Master’s Thesis, East China University of Political Science and Law, Shanghai, China, 2011. [Google Scholar]
- Ou, Z.; Le, M. Study on Rural Problems and Countermeasures in the Implementation of “Three Township” Projects in Wuhan. Urban. Archit. 2021, 18, 53–55. [Google Scholar] [CrossRef]
- Xie, S.; Chen, J.; Xu, Z. Rural–urban migration and urban identity differentiation in China. Eurasian Geogr. Econ. 2023, 1–27. [Google Scholar] [CrossRef]
- Huang, L.; Goh, H.C.; Said, R. Understanding the social integration process of rural–urban migrants in urban china: A bibliometrics review. J. Popul. Res. 2023, 40, 19. [Google Scholar] [CrossRef]
- Research Group of Rural Economic System and Management Department Ministry of Agriculture; Zhang, H. Survey on the Development of New Farmers in the Context of Structural Reform on the Supply Side of Agriculture. Chin. Rural Econ. 2016, 4, 2–11. [Google Scholar]
- Wang, J.; Wu, L. Research on new farmers’ driving effects on small household farmers under the background of rural revitalization—Based on the perspective of different benefit linkage modes. J. Fujian Agric. For. Univ. (Philos. Soc. Sci.) 2022, 25, 36–43. [Google Scholar] [CrossRef]
- Mailfert, K. New farmers and networks: How beginning farmers build social connections in France. Tijdschr. Voor Econ. En Soc. Geogr. 2007, 98, 21–31. [Google Scholar] [CrossRef]
- Wilbur, A. Growing a Radical Ruralism: Back-to-the-Land as Practice and Ideal. Geogr. Compass 2013, 7, 149–160. [Google Scholar] [CrossRef]
- Milone, P.; Ventura, F. New generation farmers: Rediscovering the peasantry. J. Rural Stud. 2019, 65, 43–52. [Google Scholar] [CrossRef]
- Rissing, A. Alternative economic strategies and the technology treadmill: Beginning vegetable farmers in Iowa. Econ. Anthropol. 2016, 3, 304–314. [Google Scholar] [CrossRef]
- Minkoff-Zern, L.-A.; Welsh, R.; Ludden, M.T. Immigrant farmers, sustainable practices: Growing ecological and racial diversity in alternative agrifood spaces. Agroecol. Sustain. Food Syst. 2020, 44, 947–972. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, Y. Influencing Factors and Policy Paths for the Growth of New Farmers. Agric. Econ. 2016, 4, 68–69. [Google Scholar]
- Yu, C. In 10 years, 12.2 million people returned to their hometowns as “new farmers”. Poster News. 2023. Available online: https://news.sina.com.cn/zx/gj/2023-12-22/doc-imzywsmz6519971.shtml (accessed on 29 December 2023).
- Carlisle, L.; Montenegro de Wit, M.; DeLonge, M.S.; Iles, A.; Calo, A.; Getz, C.; Ory, J.; Munden-Dixon, K.; Galt, R.; Melone, B.; et al. Transitioning to Sustainable Agriculture Requires Growing and Sustaining an Ecologically Skilled Workforce. Front. Sustain. Food Syst. 2019, 3, 96. [Google Scholar] [CrossRef]
- Läpple, D.; Holloway, G.; Lacombe, D.J.; O’Donoghue, C. Sustainable technology adoption: A spatial analysis of the Irish Dairy Sector. Eur. Rev. Agric. Econ. 2017, 44, 810–835. [Google Scholar] [CrossRef]
- Ambali, O.I.; Begho, T. My neighbour as myself? An experimental investigation of spatial patterns of risk preferences among smallholder farmers. Sci. Afr. 2022, 16, e01261. [Google Scholar] [CrossRef]
- Läpple, D.; Kelley, H. Spatial dependence in the adoption of organic drystock farming in Ireland. Eur. Rev. Agric. Econ. 2015, 42, 315–337. [Google Scholar] [CrossRef]
- Wang, Y.; Möhring, N.; Finger, R. When my neighbors matter: Spillover effects in the adoption of large-scale pesticide-free wheat production. Agric. Econ. 2023, 54, 256–273. [Google Scholar] [CrossRef]
- Holloway, G.; Shankar, B.; Rahman, S. Bayesian spatial probit estimation: A primer and an application to HYV rice adoption. Agric. Econ. 2002, 27, 383–402. [Google Scholar] [CrossRef]
- Maertens, A.; Barrett, C.B. Measuring Social Networks’ Effects on Agricultural Technology Adoption. Am. J. Agric. Econ. 2013, 95, 353–359. [Google Scholar] [CrossRef]
- Illukpitiya, P.; Gopalakrishnan, C. Decision-making in soil conservation: Application of a behavioral model to potato farmers in Sri Lanka. Land Use Policy 2004, 21, 321–331. [Google Scholar] [CrossRef]
- Mazzocchi, C.; Orsi, L.; Ferrazzi, G.; Corsi, S. The Dimensions of Agricultural Diversification: A Spatial Analysis of Italian Municipalities. Rural Sociol. 2020, 85, 316–345. [Google Scholar] [CrossRef]
- Xia, H.; Li, C.; Zhou, D.; Zhang, Y.; Xu, J. Peasant households’ land use decision-making analysis using social network analysis: A case of Tantou Village, China. J. Rural Stud. 2020, 80, 452–468. [Google Scholar] [CrossRef]
- Stewart, J. Tobit or Not Tobit? Institute of Labor Economics (IZA): Bonn, Germany, 2009. [Google Scholar]
- Chen, Q. Advanced Econometrics with Stata Applications, 2nd ed.; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Chatzitheodoridis, F.; Kontogeorgos, A. New entrants policy into agriculture: Researching new farmers’ satisfaction. Rev. Econ. Sociol. Rural 2020, 58, e193664. [Google Scholar] [CrossRef]
- Ding, D.; Liu, P.; Ravenscroft, N. The new urban agricultural geography of Shanghai. Geoforum 2018, 90, 74–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Ma, Z.; Deng, X.; Song, J.; Xu, D. The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China. Int. J. Environ. Res. Public Health 2022, 19, 11651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhou, W.; He, J.; Qing, C.; Xu, D. Effects of Land Transfer on Farmer Households’ Straw Resource Utilization in Rural Western China. Land 2023, 12, 373. [Google Scholar] [CrossRef]
- Chen, M.; Yuan, D.; Kuang, F.; Wu, Q.; Xie, X. Household differentiation, generational difference and ecological farming adoption. China Popul. Resour. Environ. 2019, 29, 79–86. [Google Scholar]
- Jørs, E.; Konradsen, F.; Huici, O.; Morant, R.C.; Volk, J.; Lander, F. Impact of Training Bolivian Farmers on Integrated Pest Management and Diffusion of Knowledge to Neighboring Farmers. J. Agromed. 2016, 21, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Training on Pesticide Use Is Associated with Elevated Safety Behavior. Toxics 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Jørs, E.; Lander, F.; Huici, O.; Morant, R.C.; Gulis, G.; Konradsen, F. Do Bolivian small holder farmers improve and retain knowledge to reduce occupational pesticide poisonings after training on Integrated Pest Management? Environ. Health 2014, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Nastis, S.A.; Mattas, K.; Baourakis, G. Understanding Farmers’ Behavior towards Sustainable Practices and Their Perceptions of Risk. Sustainability 2019, 11, 1303. [Google Scholar] [CrossRef]
- van Eeden, M.; Korsten, L. Factors determining use of biological disease control measures by the avocado industry in South Africa. Crop Prot. 2013, 51, 7–13. [Google Scholar] [CrossRef]
- Maini, E.; De Rosa, M.; Vecchio, Y. The Role of Education in the Transition towards Sustainable Agriculture: A Family Farm Learning Perspective. Sustainability 2021, 13, 8099. [Google Scholar] [CrossRef]
- Zawedde, B.M.; Harris, C.; Alajo, A.; Hancock, J.; Grumet, R. Factors Influencing Diversity of Farmers’ Varieties of Sweet Potato in Uganda: Implications for Conservation. Econ. Bot. 2014, 68, 337–349. [Google Scholar] [CrossRef]
- Karipidis, P.; Karypidou, S. Factors that Impact Farmers’ Organic Conversion Decisions. Sustainability 2021, 13, 4715. [Google Scholar] [CrossRef]
- Guo, Q.; Ola, O.; Benjamin, E.O. Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis. Sustainability 2020, 12, 3276. [Google Scholar] [CrossRef]
- Vik, J.; McElwee, G. Diversification and the Entrepreneurial Motivations of Farmers in Norway. J. Small Bus. Manag. 2011, 49, 390–410. [Google Scholar] [CrossRef]
- Dessie, A.B.; Abate, T.M.; Mekie, T.M.; Liyew, Y.M. Crop diversification analysis on red pepper dominated smallholder farming system: Evidence from northwest Ethiopia. Ecol. Process. 2019, 8, 50. [Google Scholar] [CrossRef]
- Michler, J.D.; Josephson, A.L. To Specialize or Diversify: Agricultural Diversity and Poverty Dynamics in Ethiopia. World Dev. 2017, 89, 214–226. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Huang, C. Too Risky to Focus on Agriculture? An Empirical Study of China’s Agricultural Households’ Off-Farm Employment Decisions. Sustainability 2019, 11, 697. [Google Scholar] [CrossRef]
- Juvančič, L.; Erjavec, E. Intertemporal analysis of employment decisions on agricultural holdings in Slovenia. Agric. Econ. 2005, 33, 153–161. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Huang, B.-W.; Chen, Y.-J. Labor supply, income, and welfare of the farm household. Labour Econ. 2012, 19, 427–437. [Google Scholar] [CrossRef]
- Tesfaye, W.; Tirivayi, N. Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda. World Dev. 2020, 125, 104686. [Google Scholar] [CrossRef]
- Nanjing Daily. Empowered by Technology—New Professional Farmers in Nanjing Reached 136,000. Available online: http://www.zgjssw.gov.cn/shixianchuanzhen/nanjing/202007/t20200715_6728736.shtml (accessed on 1 November 2023).
- Nanjing Municipal People’s Government. Notice of the Municipal Government on the Issuance of the Outline of the Nanjing Ecological City Construction Plan; Nanjing Municipal People’s Government: Nanjing, China, 2006.
- Qi, D.; Si, Z.; Scott, S. Can We Be More Collaborative? Top-Down Policies and Urban–Rural Divides in the Ecological Agriculture Sector in Nanjing, China. Soc. Nat. Resour. 2021, 34, 208–226. [Google Scholar] [CrossRef]
- Nanjing Municipal Bureau Statistics. Nanjing Statistical Yearbook; Wang, G., Zhong, Y., Eds.; Nanjing Municipal Bureau Statistics: Nanjing, China, 2021.
- Jeanty, P.W. ANKETEST: Stata Module to Perform Diagnostic Tests for Spatial Autocorrelation in the Residuals of OLS, SAR, IV, and IV-SAR Models. 2010. Available online: https://EconPapers.repec.org/RePEc:boc:bocode:s457113 (accessed on 1 November 2023).
- LeSage, J.P.; Pace, R.K. The Biggest Myth in Spatial Econometrics. Econometrics 2014, 2, 217–249. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2012, 37, 389–405. [Google Scholar] [CrossRef]
- Zhu, J.; Li, B.; He, B.-J. Is linked migration overlooked in peri-urban Shanghai? Uncovering the domino effect of driving away interregional migrants. Habitat Int. 2019, 94, 102046. [Google Scholar] [CrossRef]
- Xie, X.; Tian, Y.; Chen, M.; Yuan, D.; Liao, X.; Yao, D. The Farmers’ Ecological Farming Behavior and the Influencing Factors—A Case Study in Jiangxi Province. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 38–47. [Google Scholar]
- Pierrette Coulibaly, T.; Du, J.; Diakité, D.; Abban, O.J.; Kouakou, E. A Proposed Conceptual Framework on the Adoption of Sustainable Agricultural Practices: The Role of Network Contact Frequency and Institutional Trust. Sustainability 2021, 13, 2206. [Google Scholar] [CrossRef]
Criterion | Indicators | Scores by Assignment Method | Weights by Assignment Method | Scores by Counting Method | Weights by Counting Method |
---|---|---|---|---|---|
Nutrient Cycling (NC) | Whether the farmer adopts natural farming practices | If Yes, NC = 5; otherwise, NC = 0 | 0.32 | If Yes, NC = 1; otherwise, NC = 0 | 0.36 |
Whether the farmer adopts intercropping, combined farming (e.g., rice-fishery), methane and digestate, straw return, leguminous crops, green manure, or organic fertilizer/animal manure, etc. | If Yes, NC = 3; otherwise, NC = 0 | If Yes, NC = 1; otherwise, NC = 0 | |||
Whether the farmer has only used little chemical fertilizer | If Yes, NC = 1; otherwise, NC = 0 | If Yes, NC = 1; otherwise, NC = 0 | |||
Whether the farmer has not adopted any of the three types of nutrient cycling practices mentioned above | If Yes, NC = 0 | If Yes, NC = 0 | |||
Pest Control (PC) | Whether the farmer adopts natural farming practices | If Yes, PC = 5; otherwise, PC = 0 | 0.07 | If Yes, PC = 1; otherwise, PC = 0 | 0.14 |
Whether the farmer adopts practices that do not kill or clean up pests artificially (e.g., planting pest-resistant varieties, periodically cleaning the plots, planting hedges/flower strips, releasing natural enemies, etc.) | If Yes, PC = 3; otherwise, PC = 0 | If Yes, PC = 1; otherwise, PC = 0 | |||
Whether the farmer uses tools such as yellow/blue boards, pest-proof nets, manual/mechanical traps, insecticidal lamps, etc. | If Yes, PC = 1; otherwise, PC = 0 | If Yes, PC = 1; otherwise, PC = 0 | |||
Whether the farmer has sprayed insecticides | If Yes, PC = 0 | If Yes, PC = 0 | |||
Disease Control (DC) | Whether the farmer adopts natural farming practices | If Yes, DC = 5; otherwise, DC = 0 | 0.04 | If Yes, DC = 1; otherwise, DC = 0 | 0.06 |
Whether the farmer adopts disease-resistant varieties or improved soil | If Yes, DC = 3; otherwise, DC = 0 | If Yes, DC = 1; otherwise, DC = 0 | |||
Whether the farmer adopts physical treatment measures (e.g., spraying vinegar, using grass ashes, etc.) | If Yes, DC = 1; otherwise, DC = 0 | If Yes, DC = 1; otherwise, DC = 0 | |||
Whether the farmer has sprayed pesticides | If Yes, DC = 0 | If Yes, DC = 0 | |||
Weed Treatment (WT) | Whether the farmer breeds poultry to weed or adopts biological weeding measures | If Yes, WT = 5; otherwise, WT = 0 | 0.26 | If Yes, WT = 1; otherwise, WT = 0 | 0.34 |
Whether the farmer pulls weeds by hand | If Yes, WT = 3; otherwise, WT = 0 | If Yes, WT = 1; otherwise, WT = 0 | |||
Whether the farmer uses machines to weed | If Yes, WT = 1; otherwise, WT = 0 | If Yes, WT = 1; otherwise, WT = 0 | |||
Whether the farmer has sprayed herbicides | If Yes, WT = 0 | If Yes, WT = 0 | |||
Diversified Farming (DF) | Whether the farmer raises aquaculture, poultry, and livestock and also grows crops on the farm at the same time | If Yes, DF = 5; otherwise, DF = 0 | 0.28 | If Yes, DF = 1; otherwise, DF = 0 | 0.06 |
Whether the farmer raises any two types of aquaculture, poultry, and livestock at the same time as growing crops on the farm | If Yes, DF = 4; otherwise, DF = 0 | If Yes, DF = 1; otherwise, DF = 0 | |||
Whether the farmer raises any one type of aquaculture, poultry, and livestock at the same time as growing crops on the farm | If Yes, DF = 3; otherwise, DF = 0 | If Yes, DF = 1; otherwise, DF = 0 | |||
Whether the farmer only grows more than ten types of crops on the farm | If Yes, DF = 2; otherwise, DF = 0 | If Yes, DF = 1; otherwise, DF = 0 | |||
Whether the farmer only grows more than one but less than ten types of crops on the farm | If Yes, DF = 1; otherwise, DF = 0 | If Yes, DF = 1; otherwise, DF = 0 | |||
Whether the farmer only grows one type of crop on the farm | If Yes, DF = 0 | If Yes, DF = 0 | |||
Certification of Agricultural Products (CP) | Whether the farm has received organic product certification | If Yes, CP = 5; otherwise, CP = 0 | 0.03 | If Yes, CP = 1; otherwise, CP = 0 | 0.04 |
Whether the farm has received green food certification | If Yes, CP = 4; otherwise, CP = 0 | If Yes, CP = 1; otherwise, CP = 0 | |||
Whether the farm has received certification for pollution-free agricultural products | If Yes, CP = 3; otherwise, CP = 0 | If Yes, CP = 1; otherwise, CP = 0 | |||
Whether the farm has received geographical indication certification | If Yes, CP = 2; otherwise, CP = 0 | If Yes, CP = 1; otherwise, CP = 0 | |||
Whether the farm has received good agricultural practices certification | If Yes, CP = 1; otherwise, CP = 0 | If Yes, CP = 1; otherwise, CP = 0 | |||
Whether the farm has not obtained any certifications | If Yes, CP = 0 | If Yes, CP = 0 |
Set | Variable (Variable Symbol) | Definition (Unit) | Total | New Farmer | Traditional Farmer | Test Statistic a |
---|---|---|---|---|---|---|
Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | Value | |||
Y | Sustainable | Dummy, =1 if the surveyed farmer adopts sustainable agricultural practices. | 0.966 (0.182) | 1.000 (0.000) | 0.962 (0.192) | −0.038 |
Composite sustainability score (CSS) | The composite sustainability score of farmers’ practices: composite sustainability score 1 (CSS1) measured by assignment method, and composite sustainability score 2 (CSS2) measured by counting method. | 2.339 (1.393), 2.535 (1.520) | 4.343 (1.445), 4.540 (1.292) | 2.136 (1.224), 2.332 (1.396) | −2.207 *** −2.209 *** | |
Nutrient cycling score (NCS) | The sustainability score of farmers’ nutrient cycling practices: nutrient cycling score 1 (NCS1) measured by assignment method, and nutrient cycling score 2 (NCS2) measured by counting method. | 0.940 (0.635), 1.373 (0.894) | 1.423 (0.687), 1.921 (0.732) | 0.891 (0.612), 1.317 (0.895) | −0.531 *** −0.604 *** | |
Pest control score (PCS) | The sustainability score of farmers’ pest control practices: pest control score 1 (PCS1) measured by assignment method, and pest control score 2 (PCS2) measured by counting method. | 0.060 (0.128), 0.235 (0.397) | 0.180 (0.200), 0.694 (0.439) | 0.047 (0.113), 0.189 (0.365) | −0.133 *** −0.505 *** | |
Disease control score (DCS) | The sustainability score of farmers’ disease control practices: disease control score 1 (DCS1) measured by assignment method, and disease control score 2 (DCS2) measured by counting method. | 0.032 (0.073), 0.048 (0.108) | 0.104 (0.116), 0.178 (0.180) | 0.024 (0.064), 0.035 (0.089) | −0.080 *** −0.143 *** | |
Weed treatment score (WTS) | The sustainability score of farmers’ weed treatment practices: weed treatment score 1 (WTS1) measured by assignment method, and weed treatment score 2 (WTS2) measured by counting method. | 0.650 (0.561), 0.837 (0.707) | 1.261 (0.611), 1.597 (0.699) | 0.588 (0.521), 0.760 (0.665) | −0.672 *** −0.838 *** | |
Diversified farming score (DFS) | The sustainability score of farmers’ diversified farming practices: diversified farming score 1 (DFS1) measured by assignment method, and diversified farming score 2 (DFS2) measured by counting method. | 0.639 (0.622), 0.024 (0.076) | 1.301 (0.629), 0.087 (0.164) | 0.572 (0.584), 0.018 (0.058) | −0.729 *** −0.069 *** | |
Certification of agricultural products score (CPS) | The sustainability score of agricultural products certification: certification of agricultural products score 1 (CPS1) measured by assignment method, and certification of agricultural products score 2 (CPS2) measured by counting method. | 0.019 (0.048), 0.018 (0.047) | 0.075 (0.059), 0.063 (0.049) | 0.013 (0.044), 0.013 (0.045) | −0.062 *** −0.050 *** | |
X | Farmer type (FType) | Categorical variables: =0, traditional farmer (including local and foreign farmers) (set as the base); =1, new farmer (including returning farmer, returning student, and citizen). | 0.092 (0.289) | - | - | - |
Farmer Characteristics (FC) | Gender | Dummy=1 if the surveyed farmer is male. | 0.736 (0.441) | 0.875 (0.342) | 0.722 (0.450) | −0.153 |
Generation gap (GGap) | Categorical variables: =0, old generation (someone born before 1975, set as the base); =1, new generation (someone born in 1975 and after). | 0.420 (0.493) | 0.438 (0.512) | 0.418 (0.495) | −0.020 | |
Education year (ELevel) | Years of surveyed farmers’ education level (scales), where =0, illiterate (set as the base); =6, primary school level; =9, junior high school level; =12, high school/technical secondary school level; =15, junior college level; =16, undergraduate level; =19, graduate level. | 9.368 (3.964) | 14.688 (1.662) | 8.829 (3.739) | −5.858 *** | |
Agricultural training (NTraining) | The total number of agricultural training sessions attended by the farmer as of the date of the survey (numbers). | 2.011 (0.499) | 3.938 (8.805) | 1.816 (4.039) | −2.121 * | |
Certificate | Dummy=1 if the surveyed farmer has obtained a certificate as a new type of professional farmer. | 0.063 (0.243) | 0.188 (0.403) | 0.051 (0.220) | −0.137 ** | |
Farm Business Characteristic (FBC) | Farm size (lnFSize) | The log value of current farming land (mu b). | 3.637 (1.414) | 4.774 (1.289) | 3.522 (1.383) | −1.252 *** |
Farm plots (FPlot) | The total number of plots on the farm (pieces). | 1.638 (2.234) | 2.000 (2.221) | 1.601 (2.246) | −0.399 | |
Marketing practices (NMarketing) | The number of types of agricultural marketing practices (numbers). | 1.741 (1.294) | 4.000 (2.633) | 1.519 (1.240) | −1.248 | |
Household agricultural laborer (HAgrilabor) | The number of surveyed farmers’ household agricultural laborers (numbers). | 2.103 (0.796) | 1.625 (0.719) | 2.152 (0.791) | 0.527 ** | |
Employment | Dummy=1 if the farm has employed workers. | 0.839 (0.367) | 0.938 (0.250) | 0.829 (0.378) | −0.108 | |
Farmer’s Viewpoint (FV) | Farming reason (FReason) | Dummy=1 if a strong positive outlook for farming in this area is the main reason for farmers to start farming. | 0.425 (0.494) | 0.313 (0.479) | 0.437 (0.498) | 0.124 |
Future challenge (FCha) | Dummy=1 if the farmer considers that the future challenges are mainly in terms of technology. | 0.207 (0.405) | 0.250 (0.447) | 0.203 (0.403) | −0.047 |
Variable (Model) | Sustainable | CSS1 | CSS2 | NCS1 | NCS2 | PCS1 | PCS2 | DCS1 |
Moran’s I (Global) | −0.008 | 0.110 | 0.070 | −0.023 | 0.042 | 0.121 * | 0.151 ** | 0.159 ** |
Geary’s C (Global) | 0.782 | 0.488 *** | 0.622 *** | 0.867 | 0.924 | 0.519 ** | 0.507 *** | 0.583 ** |
LM (Spatial Error) | 0.000 | 1.708 | 1.005 | 0.151 | 1.744 | 0.657 | 0.689 | 3.761 * |
Robust LM (Spatial Error) | 0.193 | 0.019 | 0.075 | 0.367 | 0.000 | 0.058 | 0.822 | 1.349 |
LM (Spatial Lag) | 3.211 * | 3.542 * | 3.745 * | 1.543 | 3.780 | 0.602 | 0.308 | 2.743 * |
Robust LM (Spatial Lag) | 3.404 * | 1.853 | 2.815 * | 1.759 | 3.780 * | 0.003 | 0.441 | 0.332 |
Variable (Model) | DCS2 | WTS1 | WTS2 | DFS1 | DFS2 | CPS1 | CPS2 | |
Moran’s I (Global) | 0.086 | 0.137 * | 0.134 * | 0.164 ** | −0.012 | 0.085 | 0.097 | |
Geary’s C (Global) | 0.568 ** | 0.622 ** | 0.603 *** | 0.514 *** | 0.880 | 0.364 ** | 0.307 ** | |
LM (Spatial Error) | 0.657 | 1.719 | 1.657 | 0.427 | 0.000 | 0.051 | 0.004 | |
Robust LM (Spatial Error) | 0.518 | 0.043 | 0.224 | 0.000 | 0.004 | 0.036 | 0.018 | |
LM (Spatial Lag) | 0.392 | 3.122 * | 3.742 * | 0.519 | 0.000 | 0.090 | 0.011 | |
Robust LM (Spatial Lag) | 0.252 | 1.466 | 2.309 | 0.092 | 0.004 | 0.075 | 0.026 | |
Variable (Model) | Sustainable | CSS1 | CSS2 | NCS1 | NCS2 | PCS1 | PCS2 | DCS1 |
Moran’s I (Global) | −0.018 * | 0.036 *** | 0.011 ** | −0.004 | −0.013 | 0.014 ** | 0.012 ** | 0.013 ** |
Geary’s C (Global) | 0.997 | 0.869 *** | 0.955 | 0.982 | 1.052 ** | 0.897 * | 0.922 ** | 0.928 |
LM (Spatial Error) | 1.455 | 0.954 | 0.155 | 1.481 | 1.029 | 0.526 | 3.381 * | 0.292 |
Robust LM (Spatial Error) | 1.511 | 0.584 | 0.187 | 1.216 | 1.839 | 0.260 | 5.741 ** | 3.217 * |
LM (Spatial Lag) | 0.025 | 0.794 | 0.006 | 0.270 | 0.473 | 0.267 | 0.021 | 3.281 * |
Robust LM (Spatial Lag) | 0.081 | 0.424 | 0.038 | 0.006 | 1.283 | 0.001 | 2.381 | 6.206 ** |
Variable (Model) | DCS2 | WTS1 | WTS2 | DFS1 | DFS2 | CPS1 | CPS2 | |
Moran’s I (Global) | −0.000 | 0.011 ** | 0.011 * | 0.039 *** | 0.005 | 0.000 | 0.004 | |
Geary’s C (Global) | 0.915 * | 0.985 | 0.952 | 0.884 *** | 0.715 ** | 0.912 | 0.843 * | |
LM (Spatial Error) | 0.253 | 1.522 | 1.227 | 0.010 | 0.000 | 0.128 | 0.014 | |
Robust LM (Spatial Error) | 2.365 | 1.507 | 0.388 | 0.601 | 1.151 | 1.598 | 0.922 | |
LM (Spatial Lag) | 0.298 | 0.090 | 1.660 | 1.856 | 0.236 | 2.339 | 1.578 | |
Robust LM (Spatial Lag) | 2.410 | 0.076 | 0.821 | 2.447 | 1.387 | 2.810 | 2.487 | |
Variable (Model) | Sustainable | CSS1 | CSS2 | NCS1 | NCS2 | PCS1 | PCS2 | DCS1 |
Moran’s I (Global) | −0.021 * | 0.042 *** | 0.016 ** | −0.004 | −0.017 | 0.013 ** | 0.016 ** | 0.020 *** |
Geary’s C (Global) | 1.125 | 0.832 *** | 0.931 * | 1.023 | 1.091 *** | 0.909 | 0.902 ** | 0.863 * |
LM (Spatial Error) | 1.876 | 1.057 | 0.074 | 1.698 | 1.299 | 0.129 | 2.393 | 0.685 |
Robust LM (Spatial Error) | 1.705 | 0.382 | 0.004 | 0.960 | 1.052 | 0.198 | 3.587 * | 0.664 |
LM (Spatial Lag) | 0.617 | 2.841 * | 0.606 | 1.318 | 0.273 | 0.610 | 0.072 | 2.180 |
Robust LM (Spatial Lag) | 0.446 | 2.166 | 0.537 | 0.581 | 0.026 | 0.679 | 1.266 | 2.159 |
Variable (Model) | DCS2 | WTS1 | WTS2 | DFS1 | DFS2 | CPS1 | CPS2 | |
Moran’s I (Global) | 0.002 | 0.015 ** | 0.015 ** | 0.038 *** | 0.007 * | 0.004 | 0.007 | |
Geary’s C (Global) | 0.850 ** | 0.989 | 0.951 | 0.774 *** | 0.693 * | 0.784 ** | 0.730 ** | |
LM (Spatial Error) | 0.378 | 1.660 | 1.424 | 0.018 | 0.000 | 0.561 | 0.276 | |
Robust LM (Spatial Error) | 2.427 | 1.123 | 0.435 | 1.210 | 1.472 | 3.776 * | 2.978 * | |
LM (Spatial Lag) | 0.055 | 0.614 | 2.219 | 3.450 * | 0.271 | 0.724 | 1.175 | |
Robust LM (Spatial Lag) | 2.104 | 0.077 | 1.230 | 4.642 ** | 1.742 | 3.939 ** | 3.877 ** |
Variable | Y = CSS1 | ||||
Tobit | |||||
FType | 1.088 *** | 0.692 ** | 0.699 ** | 0.739 ** | 0.701 ** |
Gender | −0.350 * | −0.690 *** | −0.573 *** | −0.662 *** | −0.544 ** |
GGap | −0.521 *** | −0.403 ** | −0.378 ** | −0.410 * | −0.405 ** |
ELevel | 0.087 *** | 0.132 *** | 0.106 *** | 0.138 *** | 0.108 *** |
NTraining | −0.003 | −0.002 | −0.013 | −0.004 | −0.015 |
Certificate | 0.607 * | 0.302 | 0.608 * | 0.429 | 0.634 * |
lnFSize | 0.131 * | −0.084 | −0.031 | −0.082 | −0.034 |
FPlot | −0.045 | −0.042 | −0.038 | −0.033 | −0.038 |
NMarketing | 0.292 *** | 0.293 *** | 0.320 *** | 0.258 *** | 0.301 *** |
HAgrilabor | −0.193 * | −0.137 | −0.160 | −0.115 | −0.150 |
Employment | 0.282 | 0.638 ** | 0.622 ** | 0.601 * | 0.645 ** |
FReason | −0.045 | −0.064 | 0.090 | −0.028 | 0.100 |
FCha | −0.645 *** | −0.793 *** | −0.987 *** | −0.886 *** | −0.965 *** |
wx_FType | −0.373 * | −0.153 ** | −0.334 | −0.166 * | |
wx_Gender | −0.590 *** | −0.207 *** | −0.580 *** | −0.204 *** | |
wx_GGap | −0.084 | −0.052 | −0.063 | −0.057 | |
wx_EYear | 0.068 *** | 0.024 *** | 0.069 ** | 0.023 ** | |
wx_NTraining | 0.011 | 0.006 | 0.009 | 0.005 | |
wx_Certificate | −0.428 * | −0.197 * | −0.354 | −0.167 | |
wx_lnFSize | −0.110 *** | −0.044 *** | −0.137 *** | −0.055 *** | |
wx_FPlot | −0.011 | 0.001 | 0.004 | 0.002 | |
wx_NMarketing | 0.132 *** | 0.074 *** | 0.102 ** | 0.069 *** | |
wx_HAgrilabor | −0.039 | −0.017 | −0.031 | −0.015 | |
wx_Employment | 0.442 ** | 0.138 *** | 0.407 * | 0.141 ** | |
wx_FReason | −0.067 | 0.028 | −0.023 | 0.034 | |
wx_Fcha | −0.360 ** | −0.239 *** | −0.423 ** | −0.233 *** | |
Constant | 1.260 *** | 1.860 *** | 1.538 *** | 1.504 ** | 1.440 *** |
var (e.CSS1) | 1.040 *** | ||||
Rho | −0.056 ** | −0.021 ** | |||
Lambda | −0.062 ** | −0.019 * | |||
Sigma | 0.818 *** | 0.803 *** | 0.811 *** | 0.810 *** | |
LR Test SDM vs. OLS (Rho = 0) | 5.998 ** | 5.339 ** | |||
LR Test (wX’s = 0) | 55.859 *** | 65.009 *** | |||
LR Test SEM vs. OLS (Lambda = 0) | 4.910 ** | 3.318 * | |||
Pseudo R2 | 0.191 *** | ||||
Adjust R2 | 0.435 *** | 0.449 *** | 0.395 *** | 0.387 *** | |
AIC | 526.305 | 1.280 | 1.247 | 3.121 | 2.698 |
BIC | 573.691 | 2.089 | 2.036 | 5.095 | 4.405 |
Log likelihood | −248.152 | −211.576 | −207.398 | −211.317 | −208.180 |
Variable | Y = CSS2 | ||||
Tobit | |||||
FType | 1.079 *** | 0.888 ** | 0.950 *** | 0.956 ** | 0.823 ** |
Gender | −0.237 | −0.371 | −0.34 | −0.379 | −0.426 * |
GGap | −0.21 | −0.196 | −0.05 | −0.213 | −0.089 |
ELevel | 0.067 ** | 0.123 *** | 0.079 * | 0.126 ** | 0.093 ** |
NTraining | −0.006 | −0.015 | −0.027 | −0.007 | −0.022 |
Certificate | 0.542 | −0.172 | 0.252 | −0.104 | 0.334 |
lnFSize | 0.153 * | 0.038 | 0.088 | 0.069 | 0.080 |
FPlot | −0.047 | −0.085 | −0.069 | −0.069 | −0.065 |
NMarketing | 0.347 *** | 0.341 *** | 0.354 *** | 0.282 *** | 0.328 *** |
HAgrilabor | −0.136 | −0.059 | −0.071 | −0.054 | −0.104 |
Employment | 0.426 | 0.292 | 0.491 * | 0.097 | 0.574 * |
FReason | −0.368 * | −0.452 ** | −0.361 * | −0.428 * | −0.353 * |
FCha | −0.623 *** | −0.665 ** | −0.853 *** | −0.689 ** | −0.759 ** |
wx_FType | −0.313 | −0.092 | −0.245 | −0.169 * | |
wx_Gender | −0.295 * | −0.126 * | −0.285 | −0.172 ** | |
wx_GGap | −0.163 | −0.038 | −0.158 | −0.056 | |
wx_EYear | 0.072 ** | 0.016 | 0.072 | 0.022 * | |
wx_NTraining | 0.008 | −0.001 | 0.013 | 0.000 | |
wx_Certificate | −0.636 ** | −0.193 | −0.691 ** | −0.190 | |
wx_lnFSize | −0.085 * | −0.018 | −0.074 | −0.030 | |
wx_FPlot | −0.043 | −0.008 | −0.017 | −0.004 | |
wx_NMarketing | 0.136 ** | 0.065 *** | 0.073 | 0.052 ** | |
wx_HAgrilabor | −0.018 | 0.004 | −0.021 | −0.013 | |
wx_Employment | 0.152 | 0.081 | −0.009 | 0.107 | |
wx_FReason | −0.132 | −0.046 | −0.092 | −0.040 | |
wx_Fcha | −0.315 | −0.218 ** | −0.305 | −0.179 * | |
Constant | 1.156 ** | 0.655 | 1.193 ** | 0.298 | 1.251 ** |
var (e.CSS2) | 1.368 *** | ||||
Rho | −0.056 ** | −0.024 *** | |||
Lambda | −0.073 ** | −0.021 ** | |||
Sigma | 0.982 *** | 0.965 *** | 0.963 *** | 0.975 *** | |
LR Test SDM vs. OLS (Rho = 0) | 5.935 ** | 8.157 *** | |||
LR Test (wX’s = 0) | 33.835 *** | 42.458 *** | |||
LR Test SEM vs. OLS (Lambda = 0) | 5.461 ** | 4.888 ** | |||
Pseudo R2 | 0.156 *** | ||||
Adjust R2 | 0.362 *** | 0.354 *** | 0.3379 *** | 0.326 *** | |
AIC | 572.571 | 1.72 | 1.74 | 1.784 | 2.864 |
BIC | 619.957 | 2.808 | 2.841 | 2.913 | 4.676 |
Log likelihood | −271.285 | −242.304 | −239.336 | −242.116 | −240.326 |
Variable | SDM: Y = CSS1 | SDM: Y = CSS2 | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
FType | 2.258 ** | −1.591 ** | 0.667 ** | 3.273 *** | −2.375 *** | 0.898 *** |
Gender | −1.852 *** | 1.305 *** | −0.547 *** | −1.170 | 0.849 | −0.321 |
GGap | −1.223 ** | 0.862 ** | −0.361 ** | −0.173 | 0.125 | −0.047 |
ELevel | 0.341 *** | −0.240 *** | 0.101 *** | 0.273 * | −0.198 * | 0.075 * |
NTraining | −0.042 | 0.030 | −0.012 | −0.092 | 0.067 | −0.025 |
Certificate | 1.964 * | −1.384 * | 0.580 * | 0.869 | −0.630 | 0.238 |
lnFSize | −0.100 | 0.070 | −0.030 | 0.303 | −0.220 | 0.083 |
FPlot | −0.124 | 0.088 | −0.037 | −0.239 | 0.174 | −0.066 |
NMarketing | 1.033 *** | −0.728 *** | 0.305 *** | 1.221 *** | −0.886 *** | 0.335 *** |
HAgrilabor | −0.518 | 0.365 | −0.153 | −0.246 | 0.179 | −0.068 |
Employment | 2.008 ** | −1.415 ** | 0.593 ** | 1.692 * | −1.228 * | 0.464 * |
FReason | 0.290 | −0.205 | 0.086 | −1.244 * | 0.903 * | −0.341 * |
FCha | −3.189 *** | 2.247 *** | −0.942 *** | −2.938 *** | 2.132 *** | −0.806 *** |
Variable | SLM: Y = WTS1 | SLM: Y = DFS1 | |||||
Direct | InDirect | Total | Direct | InDirect | Total | ||
FType | 0.175 ** | 0.065 ** | 0.239 ** | 0.059 | −0.0158 | 0.043 | |
Gender | −0.070 | −0.026 | −0.096 | −0.207 | 0.055 | −0.151 | |
GGap | −0.030 | −0.011 | −0.041 | −0.229 ** | 0.061 ** | −0.168 ** | |
ELevel | 0.009 | 0.003 | 0.013 | 0.030 | −0.008 | 0.022 | |
NTraining | −0.004 | −0.002 | −0.005 | 0.007 | −0.002 | 0.005 | |
Certificate | 0.051 | 0.019 | 0.070 | 0.055 | −0.015 | 0.040 | |
lnFSize | 0.037 * | 0.014 * | 0.050 * | 0.095 ** | −0.025 ** | 0.069 ** | |
FPlot | −0.015 | −0.006 | −0.020 | −0.021 | 0.006 | −0.016 | |
NMarketing | 0.031 * | 0.012 * | 0.043 * | 0.179 *** | −0.048 *** | 0.131 *** | |
HAgrilabor | −0.0001 | −0.0001 | −0.0002 | 0.004 | −0.001 | 0.003 | |
Employment | −0.147 * | −0.054 * | −0.201 * | 0.103 | −0.028 | 0.076 | |
FReason | 0.033 | 0.012 | 0.045 | 0.173 * | −0.046 * | 0.127 * | |
FCha | −0.086 | −0.032 | −0.118 | 0.006 | −0.002 | 0.005 | |
Constant | 0.721 *** | 0.470 * | |||||
Rho (Sigma) | 0.002 * (0.328 ***) | −0.003 * (0.415 ***) | |||||
LR Test SAR vs. OLS (Rho = 0) | 2.757 * | 3.437 * | |||||
R2 | 0.071 | 0.261 *** | |||||
AIC (BIC) | 0.592 (0.764) | 0.336 (0.433) | |||||
Log likelihood | −35.737 | −73.162 | |||||
Variable | SAR: Y = PCS2 | SDM: Y = NCS1 | |||||
Direct | InDirect | Total | Coef._wx | Direct | InDirect | Total | |
FType | 0.003 | 0.002 | 0.006 | 0.001 | 0.167 | −0.109 | 0.058 |
Gender | −0.052 | −0.039 | −0.091 | 0.005 | 0.169 | −0.110 | 0.059 |
GGap | 0.007 | 0.005 | 0.012 | −0.049 ** | −0.622 ** | 0.405 ** | −0.217 ** |
ELevel | 0.003 | 0.002 | 0.005 | 0.007 * | 0.054 | −0.035 | 0.019 |
NTraining | −0.002 | −0.002 | −0.004 | −0.002 | −0.032 | 0.021 | −0.011 |
Certificate | −0.109 ** | −0.082 ** | −0.191 ** | 0.010 | 0.655 | −0.426 | 0.229 |
lnFSize | 0.007 | 0.005 | 0.012 | −0.022 *** | −0.251 *** | 0.163 *** | −0.088 *** |
FPlot | 0.020 * | 0.015 * | 0.036 * | −0.001 | 0.153 ** | −0.100 ** | 0.054 ** |
NMarketing | 0.036 *** | 0.027 *** | 0.063 *** | 0.017 ** | 0.025 | −0.016 | 0.009 |
HAgrilabor | −0.010 | −0.007 | −0.017 | −0.017 | −0.275 * | 0.179 * | −0.096 * |
Employment | 0.002 | 0.002 | 0.004 | 0.045 * | 0.348 | −0.226 | 0.122 |
FReason | −0.012 | −0.009 | −0.021 | 0.054 ** | 0.182 | −0.118 | 0.064 |
FCha | 0.009 | 0.007 | 0.016 | 0.005 | −0.125 | 0.081 | −0.044 |
Constant | 0.570 * | 1.113 *** | |||||
Rho (Sigma) | 0.003 * (0.199 ***) | −0.016 * (0.361 ***) | |||||
LR Test SAR vs. OLS (Rho = 0) | 2.591 * | ||||||
LR Test SDM vs. OLS (Rho = 0) | 3.012 * | ||||||
R2 | 0.0001 | 0.094 | |||||
AIC (BIC) | 1.431 (1.845) | 0.498 (0.812) | |||||
Log likelihood | 9.141 | −59.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhong, T.; Lyu, X. Spatial Spillover Effects of “New Farmers” on Diffusion of Sustainable Agricultural Practices: Evidence from China. Land 2024, 13, 119. https://doi.org/10.3390/land13010119
Liu M, Zhong T, Lyu X. Spatial Spillover Effects of “New Farmers” on Diffusion of Sustainable Agricultural Practices: Evidence from China. Land. 2024; 13(1):119. https://doi.org/10.3390/land13010119
Chicago/Turabian StyleLiu, Min, Taiyang Zhong, and Xiao Lyu. 2024. "Spatial Spillover Effects of “New Farmers” on Diffusion of Sustainable Agricultural Practices: Evidence from China" Land 13, no. 1: 119. https://doi.org/10.3390/land13010119
APA StyleLiu, M., Zhong, T., & Lyu, X. (2024). Spatial Spillover Effects of “New Farmers” on Diffusion of Sustainable Agricultural Practices: Evidence from China. Land, 13(1), 119. https://doi.org/10.3390/land13010119