Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Data and Processing
2.1. MODIS Data
2.2. GLDAS Data
2.3. GPM Data
2.4. Other Data
3. Method
3.1. Drought Indices Calculation
3.2. Analytical Method
3.2.1. Consistency Test of SDDI
3.2.2. Identification of Abnormal Drought-Wetness Areas and Sensitive Areas
3.2.3. Trends Analysis of Drought-Wetness Conditions
3.2.4. Response Analysis of Crop Yields to Drought-Wetness Conditions Change
4. Results
4.1. The Consistency Verification of the SDDI
4.2. Global Drought-Wetness Conditions Monitoring
4.2.1. Global Drought-Wetness Conditions on the Annual Scale
4.2.2. Global Drought-Wetness Conditions on the Seasonal and Monthly Scales
4.3. Temporal and Spatial Variation Regularity of Global Drought-Wetness Conditions
4.4. Identifying Globally Abnormal Drought-Wetness Areas and Sensitive Areas
5. Discussion
5.1. Relationship between Drought-Wetness Conditions and Land Cover Types
5.2. Response of Different Crop Yields to Global Drought-Wetness Change
5.3. Application of the Assessment Framework
6. Conclusions
- (1)
- The consistency areas of the SDDI with the SPEI1, SPEI3 and scPDSI as a percentage of the study area were 85.5%, 87.3%, and 85.1%, respectively, indicating that the SDDI can be used to monitor global drought-wetness conditions on a global scale;
- (2)
- A discernible spatial distribution pattern has emerged in global drought-wetness conditions in the past two decades. This pattern was characterized by the extreme drought mainly distributed deep within the continent, surrounded by expanding moderate drought, mild drought, and no drought areas;
- (3)
- On the annual scale, the SDDI was on an upward trend, while on the seasonal and monthly scale, it fluctuated steadily with a certain cycle, and the trend analysis revealed there was an overall trend of wetness worldwide;
- (4)
- The sensitive areas of drought-wetness were mainly found on the east coast of Australia, the Indus Basin of the Indian Peninsula, the Victoria and Katanga Plateau areas of Africa, the Mississippi River Basin of North America, the eastern part of the Brazilian Plateau and the Pampas Plateau of South America.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, D.S.; Dobrowski, S.Z.; Holden, Z.A.; Maneta, M.P.; Sala, A. Soil Moisture Variation Drives Canopy Water Content Dynamics across the Western U.S. Remote Sens. Environ. 2021, 253, 112233. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil Moisture Dominates Dryness Stress on Ecosystem Production Globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices. Remote Sens Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, S.; Wang, N.; Huang, C.; Wang, X. Prolonged Duration and Increased Severity of Agricultural Droughts during 1978 to 2016 Detected by ESA CCI SM in the Humid Yunnan Province, Southwest China. Catena 2021, 198, 105036. [Google Scholar] [CrossRef]
- Wu, D.; Li, Z.; Zhu, Y.; Li, X.; Wu, Y.; Fang, S. A New Agricultural Drought Index for Monitoring the Water Stress of Winter Wheat. Agric. Water Manag. 2021, 244, 106599. [Google Scholar] [CrossRef]
- Henchiri, M.; Liu, Q.; Essifi, B.; Javed, T.; Zhang, S.; Bai, Y.; Zhang, J. Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Data. Remote Sens. 2020, 12, 3869. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-Soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Powers, J.; Cochard, H.; Choat, B. Hanging by a Thread? Forests and Drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, Z.; Pan, M.; Shi, C. Microwave Remote Sensing of Short-Term Droughts during Crop Growing Seasons. Geophys. Res. Lett. 2015, 42, 4394–4401. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Reviews of Geophysics Remote Sensing of Drought: Progress, Challenges. Rev. Geophys. 2015, 53, 1–29. [Google Scholar] [CrossRef]
- Sun, F.; Mejia, A.; Zeng, P.; Che, Y. Projecting Meteorological, Hydrological and Agricultural Droughts for the Yangtze River Basin. Sci. Total Environ. 2019, 696, 134076. [Google Scholar] [CrossRef]
- Dutra, E.; Wetterhall, F.; Di Giuseppe, F.; Naumann, G.; Barbosa, P.; Vogt, J.; Pozzi, W.; Pappenberger, F. Global Meteorological Drought-Part 1: Probabilistic Monitoring. Hydrol. Earth Syst. Sci. 2014, 18, 2657–2667. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Yang, M.; Yang, R.; Gao, R.; Wang, Y. A Drought Index: The Standardized Precipitation Evapotranspiration Runo Ff Index. J. Hydrol. 2019, 571, 651–668. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Nikoo, M.R. A Fusion-Based Methodology for Meteorological Drought Estimation Using Remote Sensing Data. Remote Sens. Environ. 2018, 211, 229–247. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought Monitoring Using High Resolution Soil Moisture through Multi-Sensor Satellite Data Fusion over the Korean Peninsula. Agric. Meteorol. 2017, 237–238, 257–269. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; Jiang, L.; Zheng, G.; Chen, T.; De Maeyer, P. Determining Variable Weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sens. Environ. 2019, 231, 111220. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Hu, S.; Liu, S.; Liu, Z. Assessment of Droughts and Wheat Yield Loss on the North China Plain with an Aggregate Drought Index (ADI) Approach. Ecol. Indic. 2018, 87, 107–116. [Google Scholar] [CrossRef]
- Wei, J.; Ma, Z. Comparison of Palmer Drought Severity Index, Percentage of Precipitation Anomaly and Surface Humid Index. Acta Geogr. 2003, 58, 117–124. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wang, P.-X.; Li, X.W.; Gong, J.Y.; Song, C. Vegetation Temperature Condition Index and Its Application for Drought Monitoring. Int. Geosci. Remote Sens. Symp. (IGARSS) 2001, 1, 141–143. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A Comprehensive Drought Monitoring Method Integrating MODIS and TRMM Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-Sensor Remote Sensing for Drought Characterization: Current Status, Opportunities and a Roadmap for the Future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Tian, L.; Yuan, S.; Quiring, S.M. Evaluation of Six Indices for Monitoring Agricultural Drought in the South-Central United States. Agric. Meteorol. 2018, 249, 107–119. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Zhang, Q.; Yang, T.; Pan, Y.; Sun, P. A Remote Sensing and Artificial Neural Network-Based Integrated Agricultural Drought Index: Index Development and Applications. Catena 2020, 186, 104394. [Google Scholar] [CrossRef]
- Wei, W.; Pang, S.; Wang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Temperature Vegetation Precipitation Dryness Index (TVPDI)-Based Dryness-Wetness Monitoring in China. Remote Sens. Environ. 2020, 248, 111957. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, J.; Zhou, J.; Zhou, L.; Xie, B.; Li, C. Monitoring Drought Dynamics in China Using Optimized Meteorological Drought Index (OMDI) Based on Remote Sensing Data Sets. J. Environ. Manag. 2021, 292, 112733. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought Characterization from a Multivariate Perspective: A Review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring Drought Using Composite Drought Indices Based on Remote Sensing. Sci. Total Environ. 2020, 711, 134585. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual Dynamics of Global Land Cover and Its Long-Term Changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Iizumi, T.; Sakai, T. The Global Dataset of Historical Yields for Major Crops 1981–2016. Sci. Data 2020, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.W.; Remmel, T.K.; Csillag, F.; Wulder, M.A. Distance to Second Cluster as a Measure of Classification Confidence. Remote Sens. Environ. 2008, 112, 2615–2626. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.C.; Diffenbaugh, N.S. A Multi-Model and Multi-Index Evaluation of Drought Characteristics in the 21st Century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.; Yu, H. Agricultural Drought Monitoring across Inner Mongolia, China: Model Development, Spatiotemporal Patterns and Impacts. J. Hydrol. 2019, 571, 793–804. [Google Scholar] [CrossRef]
- Yang, S.E.; Wu, B.F. Calculation of Monthly Precipitation Anomaly Percentage Using Web-Serviced Remote Sensing Data. In Proceedings of the 2nd IEEE International Conference on Advanced Computer Control, ICACC 2010, Shenyang, China, 29–31 January 2010; Volume 5, pp. 621–625. [Google Scholar] [CrossRef]
- Milich, L.; Weiss, E. GAC NDVI Interannual Coefficient of Variation (CoV) Images: Ground Truth Sampling of the Sahel along North-South Transects. Int. J. Remote Sens. 2000, 21, 235–260. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and Innovative Trend Method for Water Quality Parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Smadi, M.M.; Zghoul, A. A Sudden Change in Rainfall Characteristics in Amman, Jordan During the Mid 1950s. Am. J. Environ. Sci. 2006, 2, 84–91. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Chang. Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Zhang, Q.; Li, Y.; Zhao, J. On the Potential Application of Land Surface Models for Drought Monitoring in China. Theor. Appl. Clim. 2017, 128, 649–665. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing Vegetation Response to Drought in the Northern Great Plains Using Vegetation and Drought Indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- dos Santos Silva, F.D.; da Costa, C.P.W.; dos Santos Franco, V.; Gomes, H.B.; da Silva, M.C.L.; dos Santos Vanderlei, M.H.G.; Costa, R.L.; da Rocha Júnior, R.L.; Cabral Júnior, J.B.; dos Reis, J.S.; et al. Intercomparison of Different Sources of Precipitation Data in the Brazilian Legal Amazon. Climate 2023, 11, 241. [Google Scholar] [CrossRef]
- Han, Z.; Huang, Q.; Huang, S.; Leng, G.; Bai, Q.; Liang, H.; Wang, L.; Zhao, J.; Fang, W. Spatial-Temporal Dynamics of Agricultural Drought in the Loess Plateau under a Changing Environment: Characteristics and Potential Influencing Factors. Agric. Water Manag. 2021, 244, 106540. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Tansey, K.; Zhang, S.; Li, H.; Wang, L. Developing a Fused Vegetation Temperature Condition Index for Drought Monitoring at Field Scales Using Sentinel-2 and MODIS Imagery. Comput. Electron. Agric. 2020, 168, 105144. [Google Scholar] [CrossRef]
Production | Time | Spatial Resolution | Temporal Resolution | Description | Source |
---|---|---|---|---|---|
MOD13C2_NDVI | January 2001–December 2020 | 0.05 Deg (5 km) | Monthly | Building VCI | http://modis.gsfc.nasa.gov (accessed on 30 November 2021) |
MOD11C3_LST | January 2001–December 2020 | 0.05 Deg (5 km) | Monthly | Building TCI |
Data Type | Production | Time | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|---|
SPEI | SPEI1, SPEI3 | January 2001–December 2020 | 0.5 Deg (55 km) | Monthly | https://spei.csic.es/map |
scPDSI | scPDSI- 4.05 early | January 2001–December 2020 | 0.5 Deg (55 km) | Monthly | http://climexp.knmi.nl |
Land cover types | GLASS-GLC | 2020 | 5 km | Yearly | https://essd.copernicus.org |
Crop yields | - | 2001–2016 | 0.5 Deg (55 km) | Yearly | https://www.nature.com/sdata |
Single Drought Indices | Data Source | Formula |
---|---|---|
TCI | MOD11C3_LST | |
VCI | MOD13C2_NDVI | |
PCI | GPM_P | |
SMCI | GLDAS_SM |
SDDI | Drought-Wetness Class |
---|---|
0–0.4 | Extreme drought |
0.4–0.6 | Moderate drought |
0.6–0.8 | Mild drought |
0.8–1 | No drought |
1–2 | Wetness |
Consistency | Asia | Australia | Europe | North America | South America | Africa |
---|---|---|---|---|---|---|
SDDI~SPEI1 | 87.1 | 99.4 | 85.4 | 77.4 | 89.9 | 85.0 |
SDDI~SPEI3 | 87.3 | 99.7 | 84.4 | 78.8 | 90.8 | 89.5 |
SDDI~scPDSI | 88.5 | 98.8 | 78.8 | 78.9 | 84.0 | 88.5 |
Average | 87.6 | 99.3 | 82.9 | 78.4 | 88.2 | 87.7 |
Drought Classes | Asia | Australia | Europe | North America | South America | Africa | Total |
---|---|---|---|---|---|---|---|
Extreme drought | 4.74 | 1.05 | 0.00 | 0.25 | 0.39 | 8.67 | 15.10 |
Moderate drought | 7.58 | 3.75 | 0.17 | 2.34 | 1.41 | 4.75 | 19.99 |
Mild drought | 11.42 | 0.84 | 3.07 | 8.35 | 4.01 | 5.65 | 33.35 |
No drought | 9.74 | 0.23 | 4.12 | 5.25 | 7.43 | 3.87 | 30.63 |
Wetness | 0.44 | 0.00 | 0.03 | 0.13 | 0.34 | 0.00 | 0.93 |
Total | 33.91 | 5.88 | 7.38 | 16.32 | 13.58 | 22.94 | 100.00 |
Intersection Areas | Intersection Areas as a Percentage of Drought-Wetness (%) | Intersection Areas as a Percentage of Land Cover Types (%) |
---|---|---|
No drought and Wetness—Forest land | 86.69 | 67.91 |
Mild drought—Cropland, Grassland, Shrub land and Tundra land | 93.27 | 59.52 |
Extreme and Moderate drought—Barren land | 58.33 | 74.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Wang, J.; Ma, L.; Wang, X.; Xie, B.; Zhou, J.; Zhang, H. Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data. Land 2024, 13, 95. https://doi.org/10.3390/land13010095
Wei W, Wang J, Ma L, Wang X, Xie B, Zhou J, Zhang H. Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data. Land. 2024; 13(1):95. https://doi.org/10.3390/land13010095
Chicago/Turabian StyleWei, Wei, Jiping Wang, Libang Ma, Xufeng Wang, Binbin Xie, Junju Zhou, and Haoyan Zhang. 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data" Land 13, no. 1: 95. https://doi.org/10.3390/land13010095
APA StyleWei, W., Wang, J., Ma, L., Wang, X., Xie, B., Zhou, J., & Zhang, H. (2024). Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data. Land, 13(1), 95. https://doi.org/10.3390/land13010095