Effects of Land and Labor Costs Growth on Agricultural Product Prices and Farmers’ Income
Abstract
:1. Introduction
2. Typical Facts About Changes in Agricultural Product Prices and Farmers’ Income
2.1. Fluctuations in Agricultural Product Prices
2.2. Trajectory of Farmers’ Income
2.3. The Trajectory of Farmers’ Income with Fluctuating Agricultural Product Prices
3. Construction of Theoretical Models and Design of Econometric Model
3.1. Construction of Theoretical Models
3.2. Model Setting and Data Description
4. Results
4.1. Preliminary Regression Results and Analyses
4.2. Model Regression and Analysis of Different Causes
4.3. Robustness Tests
4.4. Further Analyses
4.5. Discussion
5. Conclusions, Policy Recommendations, and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y. Economic Development and Transition: Thought, Strategy and Viability; Cambridge University Press: London, UK, 2009; pp. 25–30. [Google Scholar]
- Warr, P. World food prices and poverty incidence in a food exporting country: A multihousehold general equilibrium analysis for Thailand. Agric. Econ. 2008, 39, 525–537. [Google Scholar] [CrossRef]
- Magana-Lemus, D.; Isdorj, A.; Rosson, C. Welfare impacts of increasing food prices in Mexico: An application of unrestricted Engel curves and LA/EASI demand system. In Proceedings of the 2013 Annual Meeting, Orlando, FL, USA, 2–5 February 2013. [Google Scholar]
- Molitor, K.; Braun, B.; Pritchard, B. The effects of food price changes on smallholder production and consumption decision-making: Evidence from Bangladesh. Geogr. Res. 2017, 55, 206–216. [Google Scholar] [CrossRef]
- Ivanic, M.; Martin, W. Implications of higher global food prices for poverty in low-income countries. Agric. Econ. 2010, 39, 405–416. [Google Scholar] [CrossRef]
- Faharuddin, F.; Yamin, M.; Mulyana, A.; Yunita, Y. Impact of food price increases on poverty in Indonesia: Empirical evidence from cross-sectional data. J. Asian Bus. Econ. Stud. 2023, 30, 126–142. [Google Scholar] [CrossRef]
- Iheonu, C.O.; Oladipupo, S.A. Food prices and poverty in Africa. Sustain. Dev. 2024, 32, 2700–2708. [Google Scholar] [CrossRef]
- Wright, B.D. The Economics of Grain Price Volatility. Appl. Econ. Perspect. Policy. 2011, 33, 32–58. [Google Scholar] [CrossRef]
- Brobakk, J.; Almas, R. Increasing food and energy prices in 2008: What were the causes and who was to blame? Int. J. Sociol. Agric. Food. 2016, 17, 672–684. [Google Scholar]
- Clapp, J.; Isakson, S.R. Risky Returns: The Implications of Financialization in the Food System. Dev. Chang. 2018, 49, 437–460. [Google Scholar] [CrossRef]
- Arboleda, M.; Purcell, T.F. The rentierization of food: Regimes of property and the making of Chile’s globalized agriculture. J. Peasant Stud. 2023, 50, 1924–1944. [Google Scholar] [CrossRef]
- Qin, F.; Wang, J.; Xu, Q. How Does the Digital Economy Affect Farmers’ Income?—Evidence from the Development of Rural E-commerce in China. China Econ. Q. 2022, 2, 591–612. [Google Scholar]
- Du, X.; Zhang, G. The Impact of Land Transfer on Income Distribution in Rural China: An Empirical Analysis Based on Rural Household Survey Data Collected in 10 Provinces in 2020. Chin. Rural Econ. 2022, 5, 107–126. [Google Scholar]
- Wang, X.; Zhao, Y. Competition of Bank and Common Prosperity of Rural Households: Based on the Perspectives of Absolute Income and Relative Income. Econ. Res. J. 2023, 9, 98–115. [Google Scholar]
- Ren, Z. Price Protection of Agricultural Products and Protection of Farmers’ Benefits. Financ. Econ. 2000, 3, 52–55. [Google Scholar]
- Yang, L. The Impacts of the Price Changes of Agricultural Product to Peasants’ Income. Reform. Strategy 2011, 9, 96–98. [Google Scholar]
- Tang, F. From “Valley Poor Injured Farmers” to “Fruit Freedom”: The influence of China’s Agricultural Price Fluctuations and Countermeasures Analysis. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2020. [Google Scholar]
- Zhu, N.; Qin, F. Analysis of farmers’ decision on key elements input in short-term production under the background of agricultural products price fluctuations: Based on the survey of large-scale layer farmers. J. China Agric. Univ. 2017, 5, 174–179. [Google Scholar]
- Yang, Y.; Lu, Q. Research on the relationship between the price of agricultural means of production and the producer price of agricultural products. Stat. Decis. 2010, 22, 107–109. [Google Scholar]
- Guo, Q.; Wan, D. The Empirical Research on the Food Prices, the Cost of Agricultural Production and the Income of Farmers based on VAR Model. Theory Pract. Financ. Econ. 2013, 6, 87–91. [Google Scholar]
- Guo, Q.; Chen, C. Dynamic Relationship Among Agricultural Production Cost, Agricultural Product Price and Farmers’ Income—An Empirical Analysis Based on PVAR Model. J. Shenyang Univ. (Soc. Sci.) 2023, 2, 58–69. [Google Scholar]
- Zhao, H.; Chen, L. Research on the relationship between agricultural product price level and farmer income growth—Empirical analysis based on Siping City of Jilin Province. Price Theory Pract. 2021, 10, 168–171. [Google Scholar]
- Swinnen, J. The political economy of agricultural and food policies. In The Routledge Handbook of Agricultural Economics; Cramer, G., Paudel, K., Schmitz, A., Eds.; Routledge: London, UK, 2018; pp. 381–398. [Google Scholar]
- International Monetary Fund. Introduction and Conclusions. The Common Agricultural Policy of the European Community; International Monetary Fund: Washington, DC, USA, 1988. [Google Scholar]
- International Food Policy Research Institute. 2022 Annual Report; International Food Policy Research Institute: Washington, DC, 2023. [Google Scholar]
- Department of Price of China’s National Development and Reform Commission. Compiled Materials of Costs and Profits of China’s Agricultural Products; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Zhang, J.; Wang, X. Study on the Threshold Effect in Fluctuations between Agricultural Labor Prices and Agricultural Product Prices. Price Theory Pract. 2024, 5, 1–5. [Google Scholar]
- Li, D.; Tsui, Y. The Generalized Efficiency Wage Hypothesis and the Scissors Problem. Can. J. Econ. 1990, 23, 144–158. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, J. Institutional intervention and structural price increases during China’s transition period. Res. Financ. Econ. Issues 2014, 2, 117–124. [Google Scholar]
- Zhang, M.; Yang, Y.; Zou, X. Strategic Coordination and Differential Design of China’s Food Subsidy Policy in the New Era. Issues Agric. Econ. 2021, 3, 53–61. [Google Scholar]
- Li, W.; Xiong, Y. The theory falsification of “Lewis Turning Point”: From the view of product market. Econ. Res. 2015, 5, 134–146. [Google Scholar]
- Mao, X.; Liu, Q. Has China Reached the Lewis Turning Point? J. Financ. Res. 2011, 8, 1–14. [Google Scholar]
- Tian, X.; Chen, L. “Stratum-related Land Rights”: An Analytical Framework of Rural Land Rights Allocation. J. Manag. World 2013, 9, 69–88. [Google Scholar]
- Chen, Y.; Zhong, F.; Ji, Y. Why Does “Zero Rent” Exist in Farmland Transfer: An Empirical Analysis from the Perspective of Rent Type. China Rural Surv. 2017, 4, 43–56. [Google Scholar]
- Liu, Y.; Lu, H.; Zhou, Y. An Analysis of the Evolution of Land Cost of Agricultural Production in China and Its Impact. J. Jiangxi Univ. Financ. Econ. 2019, 2, 145. [Google Scholar]
- Xu, Y.; Zhang, Y. Empirical Analysis of Influence of Non-Grain Agricultural Land Transfer on Land Cost of Grain Production. Agric. Econ. Manag. 2024, 2, 25–37. [Google Scholar]
- Gao, W. The Impact of Rising Grain Prices and Feed Prices on the Aquaculture Industry Cannot Be Ignored. China Financ. 2008, 19, 81–82. [Google Scholar]
- Cui, C.; Li, G. Analysis of Structural Change Characteristics and Influencing Factors of China’s Agricultural Product Prices. J. Appl. Stat. Manag. 2019, 38, 1–15. [Google Scholar]
- Ma, H.; Zhao, X. An Empirical Analysis of the Price Fluctuation Characteristics of China’s Small Agricultural Products—Taking Garlic as an Example. J. Agrotech. Econ. 2021, 6, 33–48. [Google Scholar]
- Wu, S.; Gao, Y.; Hu, Z. Judgment and Formation Mechanism of the Current Inversion Phenomenon of Chinese Food Prices and Its Coping Strategies. West Forum 2016, 6, 37–43. [Google Scholar]
- Acemoglu, D.; Aghion, P.; Zilibotti, F. Distance to Frontier, Selection, and Economic Growth. J. Eur. Econ. Assoc. 2006, 4, 37–74. [Google Scholar] [CrossRef]
- Wu, L. Study on Performance of Grain Subsidy Policies from the Perspective of Farmers’ Producing Behavior: Example of Anhui Province. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Chen, B.; Zhang, P.; Yang, R. Government Education Investment, Human Capital Investment and Urban-rural Income Gap in China. J. Manag. World 2010, 1, 36–43. [Google Scholar]
- Cao, A. Education Inequality, Urban-rural Income Gap and New Urbanization—An Empirical Study Based on Provincial Panel Data from 2001 to 2011. Jiangsu Higher Educ. 2015, 6, 68–71. [Google Scholar]
- Zhang, C.; Xiao, Y. Has Education Progress Narrowed the Urban-rural Income Gap? Popul. Dev. 2023, 2, 151–160. [Google Scholar]
- Bond, S. Dynamic Panel Data Models: A Guide to Micro Data Methods and Practice. Port. Econ. J. 2002, 1, 141–162. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data model. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Gao, Y.; Wen, T.; Wang, X. A Spatial Econometric Study on the Poverty Reduction Effect of China’s Fiscal and Financial Support for Agriculture Policy. Econ. Sci. 2013, 1, 36–46. [Google Scholar]
- Zhu, Q.; Lu, C. An Empirical Investigation into The Financial Support for Agriculture and Farmers’ Income. Jinan J. (Philos. Soc. Sci.) 2020, 3, 67–83. [Google Scholar]
- Li, G.; Feng, Z.; Fan, L. Education, Health and Farmers’ Income Growth—Evidence from Rural Areas of Hubei Province during the Transition Period. Chin. Rural Econ. 2006, 1, 66–74. [Google Scholar]
- Wang, Y.; Xiong, W.; Lai, D. The Educational Benefits of Farmers Returning to Their Hometown and Income Inequality under the Rural Revitalization Strategy—Based on a Comparative Analysis. Educ. Res. 2019, 9, 120–138. [Google Scholar]
- Zhang, L.; Zhang, X. Research on the Impact of External Shocks on the Price Fluctuations of Agricultural Products in China. Manag. World 2011, 1, 71–81. [Google Scholar]
- Xie, J.; Zhang, M. The Heterogeneity of Inflation Expectations between Agricultural and Industrial Sectors and Structural Inflation in China. Jilin Univ. J. (Soc. Sci.) 2023, 4, 56–64. [Google Scholar]
Salary Income | Business Income | Property Income | Transfer Income | |||||
---|---|---|---|---|---|---|---|---|
Value (CNY) | Percentage | Value (CNY) | Percentage | Value (CNY) | Percentage | Value (CNY) | Percentage | |
2003 | 905 | 34% | 1599 | 59% | 57 | 2% | 129 | 5% |
2004 | 980 | 32% | 1820 | 60% | 65 | 2% | 163 | 5% |
2005 | 1147 | 34% | 1931 | 57% | 73 | 2% | 219 | 6% |
2006 | 1336 | 36% | 2030 | 54% | 81 | 2% | 284 | 8% |
2007 | 1543 | 36% | 2315 | 54% | 100 | 2% | 368 | 9% |
2008 | 1766 | 35% | 2556 | 51% | 112 | 2% | 565 | 11% |
2009 | 1940 | 36% | 2643 | 49% | 122 | 2% | 729 | 13% |
2010 | 2278 | 36% | 2978 | 47% | 144 | 2% | 873 | 14% |
2011 | 2734 | 37% | 3367 | 46% | 157 | 2% | 1136 | 15% |
2012 | 3123 | 37% | 3660 | 44% | 165 | 2% | 1441 | 17% |
2013 | 3653 | 39% | 3935 | 42% | 195 | 2% | 1648 | 17% |
2014 | 4152 | 40% | 4237 | 40% | 222 | 2% | 1877 | 18% |
2015 | 4600 | 40% | 4504 | 39% | 252 | 2% | 2066 | 18% |
2016 | 5022 | 41% | 4741 | 38% | 272 | 2% | 2328 | 19% |
2017 | 5498 | 41% | 5028 | 37% | 303 | 2% | 2603 | 19% |
2018 | 5996 | 41% | 5358 | 37% | 342 | 2% | 2920 | 20% |
2019 | 6583 | 41% | 5762 | 36% | 377 | 2% | 3298 | 21% |
2020 | 6974 | 41% | 6077 | 35% | 419 | 2% | 3661 | 21% |
Mean | Median | Standard Error | Minimum | Maximum | |
---|---|---|---|---|---|
8.90 | 8.95 | 0.59 | 7.90 | 9.75 | |
106.15 | 104.50 | 7.38 | 89.00 | 136.90 | |
7.03 | 7.13 | 0.67 | 4.14 | 8.63 | |
8.19 | 8.27 | 0.87 | 4.90 | 10.28 | |
6.91 | 7.10 | 0.51 | 5.01 | 7.75 | |
7.49 | 7.58 | 0.70 | 5.14 | 9.74 | |
13.22 | 11.64 | 18.75 | −63.93 | 214.55 | |
106.28 | 104.58 | 7.10 | 90.64 | 179.90 | |
9.22 | 7.77 | 7.72 | −16.57 | 41.91 | |
96.42 | 95.51 | 20.21 | 57.79 | 131.88 | |
104.58 | 103.05 | 5.84 | 93.30 | 128.10 |
(1) OLS | (2) FE | (3) GMM | (4) GMM | |
---|---|---|---|---|
1.2110 (32.47) *** | 1.0820 (33.73) *** | 1.1247 (31.44) *** | 1.0817 (64.36) *** | |
−0.2871 (−4.80) *** | −0.3199 (−6.92) *** | −0.2611 (−10.80) *** | −0.3188 (−8.25) *** | |
0.0433 (1.14) | 0.2183 (5.92) *** | 0.0819 (2.27) ** | 0.2172 (5.95) *** | |
0.0109 (4.10) *** | 0.0134 (6.01) *** | 0.0137 (4.38) *** | 0.0135 (4.93) *** | |
−0.0043 (−3.48) *** | −0.0052 (−5.01) *** | −0.0055 (−3.81) *** | −0.0052 (−4.19) *** | |
0.0023 (1.25) | 0.0053 (2.25) ** | 0.0161 (1.82) * | 0.0052 (1.99) * | |
0.0007 (0.41) | 0.0035 (1.91) * | 0.0062 (1.68) * | 0.0038 (2.20) ** | |
0.0068 (2.21) ** | 0.0093 (1.78) * | 0.0394 (6.60) *** | 0.0099 (1.72) * | |
0.0047 (2.77) *** | 0.0147 (3.65) *** | 0.0177 (3.00) *** | 0.0149 (4.80) *** | |
Constant term | −0.3967 (−2.67) *** | 0.6589 (4.98) *** | −0.8423 (−4.48) *** | −0.8046 (−4.93) *** |
AR(1) | 0.001 | 0.000 | ||
AR(2) | 0.000 | 0.000 | ||
AR(3) | 0.001 | 0.001 | ||
AR(4) | 0.041 | 0.567 | ||
Hansen | 1.000 | 1.000 | ||
Cross-section fixed effect | Yes | Yes | ||
Time fixed effect | No | Yes | ||
Number of samples | 30 × 18 | 30 × 18 | 30 × 18 | 30 × 18 |
(5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|
1.1236 (47.93) *** | 1.0817 (61.22) *** | 0.5176 (56.09) *** | 1.0130 (50.11) *** | 1.0696 (60.56) *** | |
−0.3767 (−7.17) *** | −0.3113 (−7.93) *** | 0.1796 (19.78) *** | −0.2021 (−4.08) *** | −0.3106 (−7.34) *** | |
0.2262 (4.99) *** | 0.2099 (5.84) *** | 0.2530 (30.42) *** | 0.1672 (3.64) *** | 0.2221 (5.43) *** | |
0.0125 (3.42) *** | 0.0141 (4.89) *** | 0.0028 (3.36) *** | 0.0128 (3.52) *** | 0.0129 (4.48) *** | |
−0.0060 (−4.02) *** | −0.0057 (−4.27) *** | −0.0006 (−1.52) | 0.0001 (0.07) | −0.0051 (−3.83) *** | |
0.0027 (1.72) * | 0.0022 (2.20) ** | −0.0012 (−7.23) *** | −0.0109 (−4.75) *** | 0.0004 (0.24) | |
0.0078 (2.33) ** | 0.0052 (1.84) * | 0.0012 (1.54) | 0.0091 (2.78) ** | 0.0056 (2.05) ** | |
0.0073 (2.62) ** | 0.0035 (2.06) ** | 0.0008 (1.50) | 0.0019 (1.00) | 0.0037 (1.94) * | |
0.0007 (0.11) | 0.0097 (1.82) * | −0.0083 (−5.20) *** | 0.0122 (2.07) ** | 0.0088 (1.68) * | |
0.0197 (4.30) *** | 0.0148 (4.97) *** | 0.0024 (1.53) | 0.0178 (5.44) *** | 0.0137 (4.36) *** | |
Constant term | −0.6144 (−2.45) ** | −0.8174 (−4.88) *** | 0.2563 (4.69) *** | −1.4659 (−4.62) *** | −0.7449 (−4.51) *** |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(3) | 0.019 | 0.001 | 0.000 | 0.000 | 0.001 |
AR(4) | 0.625 | 0.723 | 0.000 | 0.876 | 0.333 |
Hansen | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Cross-section fixed effect | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Number of samples | 30 × 18 | 30 × 18 | 30 × 18 | 26 × 18 | 30 × 18 |
Explanatory Variables | Samples with Beijing, Shanghai, and Tianjin Removed | |||||
---|---|---|---|---|---|---|
(10) | (11) | (12) | (13) | (14) | (15) | |
1.0735 (53.36) *** | 1.0985 (39.75) *** | 1.0685 (51.25) *** | 0.5334 (46.02) *** | 1.0130 (50.11) *** | 1.0707 (51.96) *** | |
−0.3040 (−6.42) *** | −0.3783 (−7.27) *** | −0.2923 (−6.34) *** | 0.1602 (13.15) *** | −0.2021 (−4.08) *** | −0.3180 (−6.34) *** | |
0.2041 (4.63) *** | 0.2447 (5.26) *** | 0.1990 (4.91) *** | 0.2572 (20.73) *** | 0.1672 (3.64) *** | 0.2235 (4.71) *** | |
0.0120 (4.44) *** | 0.0100 (2.76) ** | 0.0128 (3.88) *** | 0.0027 (3.07) *** | 0.0128 (3.52) *** | 0.0158 (5.71) *** | |
−0.0045 (−3.60) *** | −0.0051 (−3.44) *** | −0.0051 (−3.37) *** | −0.0003 (−0.85) | 0.0001 (0.07) | −0.0066 (−5.19) *** | |
0.0031 (1.94) * | 0.0033 (2.87) *** | −0.0015 (−7.21) *** | −0.0109 (−4.75) *** | 0.0022 (1.44) | ||
0.0090 (2.15) ** | 0.0178 (3.81) *** | 0.0103 (2.58) ** | 0.0013 (0.71) | 0.0091 (2.78) ** | 0.0102 (2.41) ** | |
0.0036 (1.39) | 0.0036 (1.50) | 0.0018 (0.91) | 0.0007 (0.77) | 0.0019 (1.00) | 0.0026 (1.19) | |
0.0126 (2.32) ** | 0.0021 (0.32) | 0.0138 (2.47) ** | −0.0109 (−5.13) *** | 0.0122 (2.07) ** | 0.0133 (2.52) ** | |
0.0215 (3.76) *** | 0.0239 (5.05) *** | 0.0188 (5.37) *** | 0.0027 (1.42) | 0.0178 (5.44) *** | 0.0166 (4.66) *** | |
Constant term | −0.7457 (−4.73) *** | −0.4168 (−1.62) | −0.7575 (−3.98) *** | 0.2623 (4.49) *** | −1.4659 (−4.62) *** | −0.9080 (−5.68) *** |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(3) | 0.015 | 0.039 | 0.009 | 0.000 | 0.000 | 0.002 |
AR(4) | 0.816 | 0.580 | 0.818 | 0.000 | 0.876 | 0.612 |
Hansen | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Cross-section fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Number of samples | 27 × 18 | 27 × 18 | 27 × 18 | 27 × 18 | 26 × 18 | 27 × 18 |
Explanatory Variables | Samples of 2020 Removed | |||||
---|---|---|---|---|---|---|
(16) | (17) | (18) | (19) | (20) | (21) | |
1.0823 (60.64) *** | 1.0977 (49.43) *** | 1.0812 (57.70) *** | 0.5428 (39.49) *** | 1.0224 (44.76) *** | 1.0670 (60.17) *** | |
−0.3088 (−7.15) *** | −0.3593 (−7.48) *** | −0.3006 (−7.08) *** | 0.1521 (11.05) *** | −0.2040 (−3.90) *** | −0.2993 (−6.66) *** | |
0.2064 (5.13) *** | 0.2366 (5.61) *** | 0.1993 (5.12) *** | 0.2549 (21.88) *** | 0.1595 (3.23) *** | 0.2133 (4.85) *** | |
0.0122 (4.31) *** | 0.0118 (3.94) *** | 0.0132 (4.44) *** | 0.0022 (1.74) * | 0.0117 (3.04) *** | 0.0109 (3.37) *** | |
−0.0046 (−3.50) *** | −0.0046 (−3.34) *** | −0.0052 (−3.77) *** | 0.0000 (−0.05) | 0.0009 (0.45) | −0.0041 (−2.67) ** | |
0.0003 (2.77) ** | 0.0020 (1.73) * | −0.0016 (−6.42) *** | −0.0114 (−4.40) *** | −0.0004 (−0.23) | ||
0.0062 (1.98) * | 0.0100 (2.18) ** | 0.0063 (1.88) * | 0.0026 (2.80) *** | 0.0095 (2.71) ** | 0.0066 (2.05) ** | |
0.0039 (2.21) ** | 0.0044 (1.76) * | 0.0036 (2.06) ** | 0.0010 (0.89) | 0.0023 (1.16) | 0.0036 (1.86) * | |
0.0108 (1.86) * | 0.0065 (1.03) | 0.0111 (1.99) * | −0.0138 (−6.74) *** | 0.0138 (2.27) ** | 0.0103 (1.89) * | |
0.0145 (4.91) *** | 0.0185 (5.11) *** | 0.0146 (4.98) *** | 0.0046 (2.37) ** | 0.0173 (5.55) *** | 0.0135 (4.40) *** | |
Constant term | −0.7475 (−4.50) *** | −0.7340 (−4.21) *** | −0.7861 (−4.55) *** | 0.2738 (3.91) *** | −1.4671 (−4.60) *** | −0.6568 (−3.66) *** |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(3) | 0.002 | 0.007 | 0.002 | 0.000 | 0.000 | 0.001 |
AR(4) | 0.643 | 0.975 | 0.775 | 0.000 | 0.832 | 0.405 |
Hansen | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Cross-section fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Number of samples | 30 × 17 | 30 × 17 | 30 × 17 | 30 × 17 | 26 × 17 | 30 × 17 |
(22) | (23) | (24) | (25) | (26) | |
---|---|---|---|---|---|
q = 0.10 | q = 0.25 | q = 0.50 | q = 0.75 | q = 0.90 | |
0.1253 (1.86) * | 0.0857 (1.74) * | 0.1271 (2.20) ** | 0.2215 (3.51) *** | 0.2154 (1.84) * | |
0.0031 (2.03) ** | 0.0101 (2.14) ** | 0.0075 (2.07) ** | 0.3217 (2.11) ** | 0.3709 (1.82) * | |
0.2090 (1.79) * | 0.1872 (2.19) ** | 0.2089 (1.90) * | 0.2355 (2.01) ** | 0.2047 (1.82) * | |
0.0029 (1.84) * | 0.0033 (2.37) ** | 0.0002 (0.91) | 0.0002 (0.76) | 0.0007 (1.62) | |
0.0124 (1.39) | 0.0194 (2.72) *** | 0.0200 (1.09) | 0.1655 (4.75) *** | 0.2577 (3.69) *** | |
0.3685 (5.46) *** | 0.3903 (4.84) *** | 0.4254 (5.19) *** | 0.5487 (5.32) *** | 1.0065 (4.85) *** | |
−0.0817 (−1.00) | −0.1096 (−1.11) | −0.0946 (−1.26) | −0.0725 (−0.92) | −0.0254 (−0.21) | |
Constant term | 6.1562 (7.62) *** | 2.8026 (10.05) *** | 9.2469 (9.41) *** | 7.7722 (2.09) ** | 7.3804 (3.71) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, M.; Yang, X.; Wu, B. Effects of Land and Labor Costs Growth on Agricultural Product Prices and Farmers’ Income. Land 2024, 13, 1754. https://doi.org/10.3390/land13111754
Wu J, Zhang M, Yang X, Wu B. Effects of Land and Labor Costs Growth on Agricultural Product Prices and Farmers’ Income. Land. 2024; 13(11):1754. https://doi.org/10.3390/land13111754
Chicago/Turabian StyleWu, Jiang, Ming Zhang, Xu Yang, and Buda Wu. 2024. "Effects of Land and Labor Costs Growth on Agricultural Product Prices and Farmers’ Income" Land 13, no. 11: 1754. https://doi.org/10.3390/land13111754
APA StyleWu, J., Zhang, M., Yang, X., & Wu, B. (2024). Effects of Land and Labor Costs Growth on Agricultural Product Prices and Farmers’ Income. Land, 13(11), 1754. https://doi.org/10.3390/land13111754