Temperate Soils Exposed to Drought—Key Processes, Impacts, Indicators, and Unknowns
Abstract
:1. Introduction
2. Key Soil Moisture Processes and Properties Relating to Soil Moisture Storage and Infiltration
2.1. Soil Moisture Retention
2.2. Water Infiltration
2.3. Abiotic and Biotic Factors Influencing Soil Water Infiltration
2.3.1. Abiotic Factors
2.3.2. Biotic Factors Influencing Soil Water Infiltration
3. Impacts of Drought on Soil Properties
3.1. Soil Macrofauna
3.2. Soil Bacterial and Fungal Communities
3.3. Plant Responses to Drought
3.4. Interactions Between Microbes and Plants in Response to Drought
3.5. Wildfires
3.6. Drought Impacts on Macronutrient Cycling in Soils
3.7. Physical Changes in Soil Structure in Response to Drought and Rewetting
3.7.1. Aggregate Breakdown
3.7.2. Surface Crusting
3.7.3. Soil Water Repellency
3.7.4. Soil Structure, Shrink–Swell, and Cracking
3.8. Drought Impacts on Wetland Soils
4. Responses of Soils and Catchments to Drought Termination
4.1. Impacts on Soil Moisture Infiltration upon Rewetting
4.2. Enhanced Runoff and Erosion After Drought Termination
4.3. Linking Soil, Geology, and Land Cover to Catchment Response upon Rewetting
4.4. Biogeochemical Responses to Drought Termination
5. Soil Recovery After Drought
6. Soil Resilience to Drought
7. Key Questions and Unknowns
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Environment Agency. Review of the Research and Scientific Understanding of Drought; Environment Agency: Bristol, UK, 2023. [Google Scholar]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Chang. Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Kendon, M.; Marsh, T.; Parry, S. The 2010–2012 Drought in England and Wales. Weather 2013, 68, 88–95. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Magee, E.; Turner, S.; Sefton, C.; Parry, S.; Evans, J.; Szczykulska, M.; Haxton, T. An Appraisal of the Severity of the 2022 Drought and Its Impacts. Weather 2024, 79, 208–219. [Google Scholar] [CrossRef]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 Drought from a Climatological Perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European Seasonal Trends and Recent Changes of Drought Frequency and Severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under Multi-Year Droughts: How Severe Was the 2014–2018 Drought Period? Environ. Res. Lett. 2021, 16, 34062. [Google Scholar] [CrossRef]
- Zhang, F.; Biederman, J.A.; Dannenberg, M.P.; Yan, D.; Reed, S.C.; Smith, W.K. Five Decades of Observed Daily Precipitation Reveal Longer and More Variable Drought Events Across Much of the Western United States. Geophys. Res. Lett. 2021, 48, e2020GL092293. [Google Scholar] [CrossRef]
- Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought Vulnerability in the United States: An Integrated Assessment. Water 2020, 12, 2033. [Google Scholar] [CrossRef]
- Parry, S.; Wilby, R.L.; Prudhomme, C.; Wood, P.J. A Systematic Assessment of Drought Termination in the United Kingdom. Hydrol. Earth Syst. Sci. 2016, 20, 4265–4281. [Google Scholar] [CrossRef]
- Parry, S.; Prudhomme, C.; Wilby, R.L.; Wood, P.J. Drought Termination: Concept and Characterisation. Prog. Phys. Geogr. Earth Environ. 2016, 40, 743–767. [Google Scholar] [CrossRef]
- Mo, K.C. Drought Onset and Recovery over the United States. J. Geophys. Res. Atmos. 2011, 116, D20106. [Google Scholar] [CrossRef]
- The Guardian Why Are Some Areas of the UK in Drought? A Visual Guide. Available online: https://www.theguardian.com/environment/2022/aug/19/why-areas-uk-drought-visual-guide?CMP=share_btn_url (accessed on 11 September 2024).
- Geng, S.M.; Yan, D.H.; Zhang, T.X.; Weng, B.S.; Zhang, Z.B.; Qin, T.L. Effects of Drought Stress on Agriculture Soil. Nat. Hazards 2015, 75, 1997–2011. [Google Scholar] [CrossRef]
- Clarke, D.; Hess, T.M.; Haro-Monteagudo, D.; Semenov, M.A.; Knox, J.W. Assessing Future Drought Risks and Wheat Yield Losses in England. Agric. Meteorol. 2021, 297, 108248. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Scasta, J.D.; Weir, J.R.; Stambaugh, M.C. Droughts and Wildfires in Western U.S. Rangelands. Rangelands 2016, 38, 197–203. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Martin-StPaul, N.K.; Moron, V.; Trigo, R.M. Extreme Wildfire Events Are Linked to Global-Change-Type Droughts in the Northern Mediterranean. Nat. Hazards Earth Syst. Sci. 2018, 18, 847–856. [Google Scholar] [CrossRef]
- Chen, A. Evaluating the Relationships between Wildfires and Drought Using Machine Learning. Int. J. Wildland Fire 2022, 31, 230–239. [Google Scholar] [CrossRef]
- Jones, L.; Banks, V.; Jefferson, I. Chapter 8—Swelling and Shrinking Soils. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2020, 29, 223–242. [Google Scholar] [CrossRef]
- Harrison, A.M.; Plim, J.F.M.; Harrison, M.; Jones, L.D.; Culshaw, M.G. The Relationship between Shrink–Swell Occurrence and Climate in South-East England. Proc. Geol. Assoc. 2012, 123, 556–575. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Maskey, S.; Trambauer, P. Chapter 10—Hydrological Modeling for Drought Assessment. In Hydro-Meteorological Hazards, Risks and Disasters; Shroder, J.F., Paron, P., Baldassarre, G.D., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 263–282. ISBN 978-0-12-394846-5. [Google Scholar]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–Atmospheric Feedbacks during Droughts and Heatwaves: State of the Science and Current Challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–Atmosphere Coupling and Climate Change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Wouters, H.; Keune, J.; Petrova, I.Y.; van Heerwaarden, C.C.; Teuling, A.J.; Pal, J.S.; de Arellano, J.V.-G.; Miralles, D.G. Soil Drought Can Mitigate Deadly Heat Stress Thanks to a Reduction of Air Humidity. Sci. Adv. 2022, 8, eabe6653. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 2nd ed.; PrenticeHall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Islam, W.; Noman, A.; Naveed, H.; Huang, Z.; Chen, H.Y.H. Role of Environmental Factors in Shaping the Soil Microbiome. Environ. Sci. Pollut. Res. 2020, 27, 41225–41247. [Google Scholar] [CrossRef]
- Clothier, B. Soil Water Sorptivity and Conductivity. Remote Sens. Rev. 1990, 5, 281–291. [Google Scholar] [CrossRef]
- Assouline, S. Infiltration into Soils: Conceptual Approaches and Solutions. Water Resour. Res. 2013, 49, 1755–1772. [Google Scholar] [CrossRef]
- Horton, R.E. An Approach toward a Physical Interpretation of Infiltration Capacity. Soil Sci. Soc. Am. Proc. 1940, 5, 24. [Google Scholar] [CrossRef]
- Miyazaki, T. Water Flow in Soils; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Gao, H.; Shao, M. Effects of Temperature Changes on Soil Hydraulic Properties. Soil. Tillage Res. 2015, 153, 145–154. [Google Scholar] [CrossRef]
- Giraldez, J.V.; Sposito, G. Infiltration in Swelling Soils. Water Resour. Res. 1985, 21, 33–44. [Google Scholar] [CrossRef]
- Raats, P.A.C. Unstable Wetting Fronts in Uniform and Non-Uniform Soils. Soil. Sci. Soc. Am. J. 1973, 37, 681–685. [Google Scholar] [CrossRef]
- Philip, J.R. Stability Analysis of Infiltration. Soil. Sci. Soc. Am. J. 1975, 39, 1042–1049. [Google Scholar] [CrossRef]
- Jury, W.A.; Wang, Z.; Tuli, A. A Conceptual Model of Unstable Flow in Unsaturated Soil during Redistribution. Vadose Zone J. 2003, 2, 61–67. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Effects of Long-Term Irrigation with Treated Wastewater on the Hydraulic Properties of a Clayey Soil. Water Resour. Res. 2011, 47, W08530. [Google Scholar] [CrossRef]
- Römkens, M.J.M.; Baumhardt, R.L.; Parlange, J.Y.; Whisler, F.D.; Parlange, M.B.; Prasad, S.N. Effect of Rainfall Characteristics on Seal Hydraulic Conductance; Ghent University Press: Ghent, Belgium, 1986; pp. 228–235. [Google Scholar]
- Römkens, M.J.M.; Baumhardt, R.L.; Parlange, M.B.; Whisler, F.D.; Parlange, J.-Y.; Prasad, S.N. Rain-Induced Surface Seals: Their Effect on Ponding and Infiltration. Ann. Geophys. 1986, 4B, 417–424. [Google Scholar]
- Lebron, I.; Madsen, M.D.; Chandler, D.G.; Robinson, D.A.; Wendroth, O.; Belnap, J. Ecohydrological Controls on Soil Moisture and Hydraulic Conductivity within a Pinyon-Juniper Woodland. Water Resour. Res. 2007, 43, W08422. [Google Scholar] [CrossRef]
- Robinson, D.A.; Hopmans, J.W.; Filipovic, V.; van der Ploeg, M.; Lebron, I.; Jones, S.B.; Reinsch, S.; Jarvis, N.; Tuller, M. Global Environmental Changes Impact Soil Hydraulic Functions through Biophysical Feedbacks. Glob. Chang. Biol. 2019, 25, 1895–1904. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water Infiltration and Soil Structure Related to Organic Matter and Its Stratification with Depth. Soil. Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Jarvis, N.; Forkman, J.; Koestel, J.; Kätterer, T.; Larsbo, M.; Taylor, A. Long-Term Effects of Grass-Clover Leys on the Structure of a Silt Loam Soil in a Cold Climate. Agric. Ecosyst. Environ. 2017, 247, 319–328. [Google Scholar] [CrossRef]
- Rawls, W.J.; Nemes, A.; Pachepsky, Y. Effect of Soil Organic Carbon on Soil Hydraulic Properties. In Development of Pedotransfer Functions in Soil Hydrology; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2004; Volume 30, pp. 95–114. [Google Scholar]
- Yang, F.; Zhang, G.-L.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Yang, R.-M.; Yang, F. Organic Matter Controls of Soil Water Retention in an Alpine Grassland and Its Significance for Hydrological Processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
- Robinson, D.A.; Nemes, A.; Reinsch, S.; Radbourne, A.; Bentley, L.; Keith, A.M. Global Meta-Analysis of Soil Hydraulic Properties on the Same Soils with Differing Land Use. Sci. Total Environ. 2022, 852, 158506. [Google Scholar] [CrossRef]
- Bodner, G.; Leitner, D.; Kaul, H.-P. Coarse and Fine Root Plants Affect Pore Size Distributions Differently. Plant Soil. 2014, 380, 133–151. [Google Scholar] [CrossRef]
- Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; de Kroon, H.; Mommer, L.; et al. Plant Species Diversity Affects Infiltration Capacity in an Experimental Grassland through Changes in Soil Properties. Plant Soil. 2015, 397, 1–16. [Google Scholar] [CrossRef]
- Koestel, J.; Schlüter, S. Quantification of the Structure Evolution in a Garden Soil over the Course of Two Years. Geoderma 2019, 338, 597–609. [Google Scholar] [CrossRef]
- Berry, E.C. Earthworms and Other Fauna in the Soil. In Soil Biology; CRC Press: Boca Raton, FL, USA, 2018; pp. 61–90. [Google Scholar]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-Use and Land-Management Change: Relationships with Earthworm and Fungi Communities and Soil Structural Properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef]
- Smettem, K.R.J. The Relation of Earthworms to Soil Hydraulic Properties. Soil. Biol. Biochem. 1992, 24, 1539–1543. [Google Scholar] [CrossRef]
- Hallett, P.D. A Brief Overview of the Causes, Impacts and Amelioration of Soil Water Repellency—A Review. Soil. Water Res. 2008, 3, 521–528. [Google Scholar] [CrossRef]
- Thompson, S.E.; Harman, C.J.; Heine, P.; Katul, G.G. Vegetation-Infiltration Relationships across Climatic and Soil Type Gradients. J. Geophys. Res. Biogeosciences 2010, 115, G02023. [Google Scholar] [CrossRef]
- Basche, A.D.; DeLonge, M.S. Comparing Infiltration Rates in Soils Managed with Conventional and Alternative Farming Methods: A Meta-Analysis. PLoS ONE 2019, 14, e0215702. [Google Scholar] [CrossRef] [PubMed]
- Gongalsky, K.B. Soil Macrofauna: Study Problems and Perspectives. Soil. Biol. Biochem. 2021, 159, 108281. [Google Scholar] [CrossRef]
- Jouquet, P.; Dauber, J.; Lagerlöf, J.; Lavelle, P.; Lepage, M. Soil Invertebrates as Ecosystem Engineers: Intended and Accidental Effects on Soil and Feedback Loops. Appl. Soil. Ecol. 2006, 32, 153–164. [Google Scholar] [CrossRef]
- Capowiez, Y.; Sammartino, S.; Michel, E. Burrow Systems of Endogeic Earthworms: Effects of Earthworm Abundance and Consequences for Soil Water Infiltration. Pedobiologia 2014, 57, 303–309. [Google Scholar] [CrossRef]
- Capowiez, Y.; Bottinelli, N.; Sammartino, S.; Michel, E.; Jouquet, P. Morphological and Functional Characterisation of the Burrow Systems of Six Earthworm Species (Lumbricidae). Biol. Fertil. Soils 2015, 51, 869–877. [Google Scholar] [CrossRef]
- Holmstrup, M. Sensitivity of Life History Parameters in the Earthworm Aporrectodea Caliginosa to Small Changes in Soil Water Potential. Soil. Biol. Biochem. 2001, 33, 1217–1223. [Google Scholar] [CrossRef]
- McDaniel, J.P.; Barbarick, K.A.; Stromberger, M.E.; Cranshaw, W. Survivability of Aporrectodea Caliginosa in Response to Drought Stress in a Colorado Soil. Soil. Sci. Soc. Am. J. 2013, 77, 1667–1672. [Google Scholar] [CrossRef]
- Eggleton, P.; Inward, K.; Smith, J.; Jones, D.T.; Sherlock, E. A Six Year Study of Earthworm (Lumbricidae) Populations in Pasture Woodland in Southern England Shows Their Responses to Soil Temperature and Soil Moisture. Soil. Biol. Biochem. 2009, 41, 1857–1865. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate Change Effects on Earthworms—A Review. Soil. Org. 2019, 91, 114. [Google Scholar]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of Soil Microbial Communities to Water Stress: Results from a Meta-Analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef]
- Or, D.; Smets, B.F.; Wraith, J.M.; Dechesne, A.; Friedman, S.P. Physical Constraints Affecting Bacterial Habitats and Activity in Unsaturated Porous Media—A Review. Adv. Water Resour. 2007, 30, 1505–1527. [Google Scholar] [CrossRef]
- Malik, A.A.; Bouskill, N.J. Drought Impacts on Microbial Trait Distribution and Feedback to Soil Carbon Cycling. Funct. Ecol. 2022, 36, 1442–1456. [Google Scholar] [CrossRef]
- Manzoni, S.; Schaeffer, S.M.; Katul, G.; Porporato, A.; Schimel, J.P. A Theoretical Analysis of Microbial Eco-Physiological and Diffusion Limitations to Carbon Cycling in Drying Soils. Soil. Biol. Biochem. 2014, 73, 69–83. [Google Scholar] [CrossRef]
- Fuchslueger, L.; Bahn, M.; Hasibeder, R.; Kienzl, S.; Fritz, K.; Schmitt, M.; Watzka, M.; Richter, A. Drought History Affects Grassland Plant and Microbial Carbon Turnover during and after a Subsequent Drought Event. J. Ecol. 2016, 104, 1453–1465. [Google Scholar] [CrossRef]
- Canarini, A.; Schmidt, H.; Fuchslueger, L.; Martin, V.; Herbold, C.W.; Zezula, D.; Gündler, P.; Hasibeder, R.; Jecmenica, M.; Bahn, M.; et al. Ecological Memory of Recurrent Drought Modifies Soil Processes via Changes in Soil Microbial Community. Nat. Commun. 2021, 12, 5308. [Google Scholar] [CrossRef] [PubMed]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil Bacterial Networks Are Less Stable under Drought than Fungal Networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Dahanayake, A.C.; Webb, J.A.; Greet, J.; Brookes, J.D. How Do Plants Reduce Erosion? An Eco Evidence Assessment. Plant Ecol. 2024, 225, 593–604. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant Survival under Drought Stress: Implications, Adaptive Responses, and Integrated Rhizosphere Management Strategy for Stress Mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef]
- Sevanto, S. Drought Impacts on Phloem Transport. Curr. Opin. Plant Biol. 2018, 43, 76–81. [Google Scholar] [CrossRef]
- Chagas Torres, L.; Keller, T.; Paiva de Lima, R.; Antônio Tormena, C.; Veras de Lima, H.; Fabíola Balazero Giarola, N. Impacts of Soil Type and Crop Species on Permanent Wilting of Plants. Geoderma 2021, 384, 114798. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Makowski, D.; Bastos, A.; Stoy, P.C.; Ibrom, A.; Knohl, A.; Migliavacca, M.; Cuntz, M.; Šigut, L.; et al. Uncovering the Critical Soil Moisture Thresholds of Plant Water Stress for European Ecosystems. Glob. Chang. Biol. 2022, 28, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? N. Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant Adaptation to Drought Stress. F1000Research 2016, 5, 1554. [Google Scholar] [CrossRef]
- Turner, S.; Barker, L.J.; Hannaford, J.; Muchan, K.; Parry, S.; Sefton, C. The 2018/2019 Drought in the UK: A Hydrological Appraisal. Weather 2021, 76, 248–253. [Google Scholar] [CrossRef]
- Abbasi, A.O.; Salazar, A.; Oh, Y.; Reinsch, S.; del Rosario Uribe, M.; Li, J.; Rashid, I.; Dukes, J.S. Reviews and Syntheses: Soil Responses to Manipulated Precipitation Changes—An Assessment of Meta-Analyses. Biogeosciences 2020, 17, 3859–3873. [Google Scholar] [CrossRef]
- de Vries, F.; Lau, J.; Hawkes, C.; Semchenko, M. Plant-Soil Feedback under Drought: Does History Shape the Future? Trends Ecol. Evol. 2023, 38, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Kannenberg, S.A.; Phillips, R.P. Soil Microbial Communities Buffer Physiological Responses to Drought Stress in Three Hardwood Species. Oecologia 2017, 183, 631–641. [Google Scholar] [CrossRef]
- Kour, D.; Yadav, A.N. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr. Microbiol. 2022, 79, 248. [Google Scholar] [CrossRef]
- Rubin, R.L.; van Groenigen, K.J.; Hungate, B.A. Plant Growth Promoting Rhizobacteria Are More Effective under Drought: A Meta-Analysis. Plant Soil. 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Ullah, A.; Nisar, M.; Ali, H.; Hazrat, A.; Hayat, K.; Keerio, A.A.; Ihsan, M.; Laiq, M.; Ullah, S.; Fahad, S.; et al. Drought Tolerance Improvement in Plants: An Endophytic Bacterial Approach. Appl. Microbiol. Biotechnol. 2019, 103, 7385–7397. [Google Scholar] [CrossRef]
- Ullah, A.; Akbar, A.; Luo, Q.; Khan, A.H.; Manghwar, H.; Shaban, M.; Yang, X. Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microb. Ecol. 2019, 77, 429–439. [Google Scholar] [CrossRef]
- Gontia-Mishra, I.; Sapre, S.; Sharma, A.; Tiwari, S. Amelioration of Drought Tolerance in Wheat by the Interaction of Plant Growth-Promoting Rhizobacteria. Plant Biol. 2016, 18, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.C.M.; Wieder, W.R.; Grandy, A.S. Addressing Agricultural Nitrogen Losses in a Changing Climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Remke, M.J.; Johnson, N.C.; Wright, J.; Williamson, M.; Bowker, M.A. Sympatric Pairings of Dryland Grass Populations, Mycorrhizal Fungi and Associated Soil Biota Enhance Mutualism and Ameliorate Drought Stress. J. Ecol. 2021, 109, 1210–1223. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Zou, Y.-N. Arbuscular Mycorrhizal Fungi and Tolerance of Drought Stress in Plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Wu, Q.-S., Ed.; Springer: Singapore, 2017; pp. 25–41. ISBN 978-981-10-4115-0. [Google Scholar]
- Xu, Q.; Fu, H.; Zhu, B.; Hussain, H.A.; Zhang, K.; Tian, X.; Duan, M.; Xie, X.; Wang, L. Potassium Improves Drought Stress Tolerance in Plants by Affecting Root Morphology, Root Exudates, and Microbial Diversity. Metabolites 2021, 11, 131. [Google Scholar] [CrossRef]
- Buchenau, N.; van Kleunen, M.; Wilschut, R.A. Direct and Legacy-Mediated Drought Effects on Plant Performance Are Species-Specific and Depend on Soil Community Composition. Oikos 2022, 2022, e08959. [Google Scholar] [CrossRef]
- Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Van den Berg, J.; De Kort, A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ferreira, C.S.S.; Ritsema, C.J. Soil Surface Changes Increase Runoff and Erosion Risk after a Low–Moderate Severity Fire. Geoderma 2015, 239–240, 58–67. [Google Scholar] [CrossRef]
- Stavi, I. Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water 2019, 11, 1042. [Google Scholar] [CrossRef]
- Bond, W.J.; Keane, R. Fires, Ecological Effects of. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland Fire Ash: Production, Composition and Eco-Hydro-Geomorphic Effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Patel, K.F.; Fansler, S.J.; Campbell, T.P.; Bond-Lamberty, B.; Smith, A.P.; RoyChowdhury, T.; McCue, L.A.; Varga, T.; Bailey, V.L. Soil Texture and Environmental Conditions Influence the Biogeochemical Responses of Soils to Drought and Flooding. Commun. Earth Environ. 2021, 2, 127. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Drought Effect on Plant Nitrogen and Phosphorus: A Meta-Analysis. N. Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.C.; Nogueira, R.; da Silva, M.A.; de Albuquerque, M.B. Drought Stress and Plant Nutrition. Plant Stress 2011, 5, 32–41. [Google Scholar]
- Yue, K.; Yang, W.; Peng, Y.; Peng, C.; Tan, B.; Xu, Z.; Zhang, L.; Ni, X.; Zhou, W.; Wu, F. Individual and Combined Effects of Multiple Global Change Drivers on Terrestrial Phosphorus Pools: A Meta-Analysis. Sci. Total Environ. 2018, 630, 181–188. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, H.; Ai, Z.; Wang, M.; Wang, G.; Liu, G.; Geissen, V.; Ritsema, C.J.; Xue, S. Impacts of Extreme Weather Events on Terrestrial Carbon and Nitrogen Cycling: A Global Meta-Analysis. Environ. Pollut. 2023, 319, 120996. [Google Scholar] [CrossRef]
- Bogati, K.; Walczak, M. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy 2022, 12, 189. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.B.; Ryan, M.H.; Renton, M.; Lambers, H. Plant Responses to Limited Moisture and Phosphorus Availability: A Meta-Analysis. Adv. Agron. 2014, 124, 143–200. [Google Scholar]
- Bi, W.; Zhang, D.; Weng, B.; Dong, Z.; Wang, F.; Wang, W.; Lin, W.; Yan, D. Research Progress on the Effects of Droughts and Floods on Phosphorus in Soil-Plant Ecosystems Based on Knowledge Graph. HydroResearch 2023, 6, 29–35. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Li, M.; Zhao, C.; Yu, K.; Hagedorn, F. Responses of Soil Nitrogen and Phosphorus Cycling to Drying and Rewetting Cycles: A Meta-Analysis. Soil. Biol. Biochem. 2020, 148, 107896. [Google Scholar] [CrossRef]
- Turner, B.L.; Haygarth, P.M. Changes in Bicarbonate-Extractable Inorganic and Organic Phosphorus by Drying Pasture Soils. Soil. Sci. Soc. Am. J. 2003, 67, 344–350. [Google Scholar] [CrossRef]
- Klaus, V.H.; Friedritz, L.; Hamer, U.; Kleinebecker, T. Drought Boosts Risk of Nitrate Leaching from Grassland Fertilisation. Sci. Total Environ. 2020, 726, 137877. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- García-Palacios, P.; Crowther, T.W.; Dacal, M.; Hartley, I.P.; Reinsch, S.; Rinnan, R.; Rousk, J.; van den Hoogen, J.; Ye, J.-S.; Bradford, M.A. Evidence for Large Microbial-Mediated Losses of Soil Carbon under Anthropogenic Warming. Nat. Rev. Earth Environ. 2021, 2, 507–517. [Google Scholar] [CrossRef]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying Global Soil Carbon Losses in Response to Warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef]
- Treseder, K.K.; Schimel, J.P.; Garcia, M.O.; Whiteside, M.D. Slow Turnover and Production of Fungal Hyphae during a Californian Dry Season. Soil. Biol. Biochem. 2010, 42, 1657–1660. [Google Scholar] [CrossRef]
- Yang, Y.J.; Liu, S.R.; Wang, H.; Chen, L.; Lu, L.H.; Cai, D.X. Reduction in Throughfall Reduces Soil Aggregate Stability in Two Subtropical Plantations. Eur. J. Soil. Sci. 2019, 70, 301–310. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, M.; Jia, X.; Zhang, C. Understory Vegetation and Drought Effects on Soil Aggregate Stability and Aggregate-Associated Carbon on the Loess Plateau in China. Soil. Sci. Soc. Am. J. 2018, 82, 106–114. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Chen, Q.; Long, L.; Xiang, J. Evolution of Particle Breakage and Volumetric Deformation of Binary Granular Soils under Impact Load. Granul. Matter 2017, 19, 71. [Google Scholar] [CrossRef]
- Sharma, P.P.; Gupta, S.C.; Rawls, W.J. Soil Detachment by Single Raindrops of Varying Kinetic Energy. Soil. Sci. Soc. Am. J. 1991, 55, 301–307. [Google Scholar] [CrossRef]
- Govers, G.; Takken, I.; Helming, K. Soil Roughness and Overland Flow. Agronomie 2000, 20, 131–146. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil Water Repellency: Its Causes, Characteristics and Hydro-Geomorphological Significance. Earth Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; MacDonald, L.H. Soil Water Repellency: A Key Factor in Post-Fire Erosion. In Fire Effects on Soils and Restoration Strategies; CRC Press: Boca Raton, FL, USA, 2009; pp. 213–240. [Google Scholar]
- Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M. ‘Natural Background’ Soil Water Repellency in Conifer Forests of the North-Western USA: Its Prediction and Relationship to Wildfire Occurrence. J. Hydrol. 2009, 371, 12–21. [Google Scholar] [CrossRef]
- York, C.A.; Canaway, P.M. Water Repellent Soils as They Occur on UK Golf Greens. J. Hydrol. 2000, 231–232, 126–133. [Google Scholar] [CrossRef]
- Graber, E.R.; Tagger, S.; Wallach, R. Role of Divalent Fatty Acid Salts in Soil Water Repellency. Soil. Sci. Soc. Am. J. 2009, 73, 541–549. [Google Scholar] [CrossRef]
- Unestam, T. Water Repellency, Mat Formation, and Leaf-Stimulated Growth of Some Ectomycorrhizal Fungi. Mycorrhiza 1991, 1, 13–20. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ryo, M.; Lehmann, A.; Aguilar-Trigueros, C.A.; Buchert, S.; Wulf, A.; Iwasaki, A.; Roy, J.; Yang, G. The Role of Multiple Global Change Factors in Driving Soil Functions and Microbial Biodiversity. Science 2019, 366, 886–890. [Google Scholar] [CrossRef]
- Seaton, F.M.; Jones, D.L.; Creer, S.; George, P.B.L.; Smart, S.M.; Lebron, I.; Barrett, G.; Emmett, B.A.; Robinson, D.A. Plant and Soil Communities Are Associated with the Response of Soil Water Repellency to Environmental Stress. Sci. Total Environ. 2019, 687, 929–938. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Ryel, R.J.; Jones, S.B. Soil Water Repellency: A Method of Soil Moisture Sequestration in Pinyon–Juniper Woodland. Soil. Sci. Soc. Am. J. 2010, 74, 624–634. [Google Scholar] [CrossRef]
- Epstein, A.K.; Pokroy, B.; Seminara, A.; Aizenberg, J. Bacterial Biofilm Shows Persistent Resistance to Liquid Wetting and Gas Penetration. Proc. Natl. Acad. Sci. USA 2011, 108, 995–1000. [Google Scholar] [CrossRef]
- Hawkins, A.B. Some Engineering Geological Effects of Drought: Examples from the UK. Bull. Eng. Geol. Environ. 2013, 72, 37–59. [Google Scholar] [CrossRef]
- Jarvis, N.J.; Leeds-Harrison, P.B. Modelling Water Movement in Drained Clay Soil. II. Application of the Model in Evesham Series Clay Soil. J. Soil. Sci. 1987, 38, 499–509. [Google Scholar] [CrossRef]
- Bradley, C.; Mosugu, M.E.; Gerrard, A.J. Simulation Modelling of Variable Patterns of Water Movement through a Cracking Clay Soil. Soil. Use Manag. 2005, 21, 386–395. [Google Scholar] [CrossRef]
- Harris, G.L.; Catt, J.A. Overview of the Studies on the Cracking Clay Soil at Brimstone Farm, UK. Soil. Use Manag. 1999, 15, 233–239. [Google Scholar] [CrossRef]
- Leeds-Harrison, P.B.; Shipway, C.J.P.; Jarvis, N.J.; Youngs, E.G. The Influence of Soil Macroporosity on Water Retention, Transmission and Drainage in a Clay Soil. Soil. Use Manag. 1986, 2, 47–50. [Google Scholar] [CrossRef]
- Holtz, R.D.; Kovacs, W.D. Water in Soils, I: Capillarity, Shrinkage, Swelling, Frost Action: An Introduction to Geotechnical Engineering; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1981; Volume 7632, pp. 166–198. [Google Scholar]
- Somasundaram, J.; Lal, R.; Sinha, N.K.; Dalal, R.; Chitralekha, A.; Chaudhary, R.S.; Patra, A.K. Chapter Three—Cracks and Potholes in Vertisols: Characteristics, Occurrence, and Management. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 149, pp. 93–159. [Google Scholar]
- Poulsen, T.G. Predicting Evaporation from Moist, Cracked Soil, Based on near-Surface Wind Speed, Crack Width and Crack Distance. Eur. J. Soil. Sci. 2022, 73, e13215. [Google Scholar] [CrossRef]
- Hatano, R.; Nakamoto, H.; Sakuma, T.; Okajima, H. Evapotranspiration in Cracked Clay Field Soil. Soil. Sci. Plant Nutr. 1988, 34, 547–555. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.-S.; Cheng, Q.; Zhu, C.; Yin, L.-Y.; Shi, B. Drought-Induced Soil Desiccation Cracking Behavior with Consideration of Basal Friction and Layer Thickness. Water Resour. Res. 2020, 56, e2019WR026948. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Lebron, I.; Reinsch, S.; Domínguez, M.T.; Smith, A.R.; Jones, D.L.; Marshall, M.R.; Emmett, B.A. Experimental Evidence for Drought Induced Alternative Stable States of Soil Moisture. Sci. Rep. 2016, 6, 20018. [Google Scholar] [CrossRef]
- Stirling, E.; Fitzpatrick, R.W.; Mosley, L.M. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth Sci. Rev. 2020, 210, 103387. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Dawson, Q.; Leeds-Harrison, P.B. Physical Properties of Low-Lying Agricultural Peat Soils in England. Geoderma 2010, 154, 196–202. [Google Scholar] [CrossRef]
- Estop-Aragonés, C.; Knorr, K.-H.; Blodau, C. Controls on in Situ Oxygen and Dissolved Inorganic Carbon Dynamics in Peats of a Temperate Fen. J. Geophys. Res. Biogeosciences 2012, 117, G02002. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Dawson, Q.; Leeds-Harrison, P.B.; Szatyłowicz, J.; Gnatowski, T. Water-Table Management in Lowland UK Peat Soils and Its Potential Impact on CO2 Emission. Soil. Use Manag. 2007, 23, 359–367. [Google Scholar] [CrossRef]
- Estop-Aragonés, C.; Zając, K.; Blodau, C. Effects of Extreme Experimental Drought and Rewetting on CO2 and CH4 Exchange in Mesocosms of 14 European Peatlands with Different Nitrogen and Sulfur Deposition. Glob. Chang. Biol. 2016, 22, 2285–2300. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, Y.; Wu, N.; Zhu, D.; Li, W.; Gao, Y.; Zhu, Q.; Yang, G.; Peng, C. Spatiotemporal Variations in Nitrous Oxide Emissions from an Open Fen on the Qinghai–Tibetan Plateau: A 3-Year Study. Water Air Soil. Pollut. 2012, 223, 6025–6034. [Google Scholar] [CrossRef]
- Moinet, G.Y.K.; Cieraad, E.; Hunt, J.E.; Fraser, A.; Turnbull, M.H.; Whitehead, D. Soil Heterotrophic Respiration Is Insensitive to Changes in Soil Water Content but Related to Microbial Access to Organic Matter. Geoderma 2016, 274, 68–78. [Google Scholar] [CrossRef]
- Hughes, S.; Reynolds, B.; Hudson, J.A.; Freeman, C. Effects of Summer Drought on Peat Soil Solution Chemistry in an Acid Gully Mire. Hydrol. Earth Syst. Sci. 1997, 1, 661–669. [Google Scholar] [CrossRef]
- Dawson, Q.; Kechavarzi, C.; Leeds-Harrison, P.B.; Burton, R.G.O. Subsidence and Degradation of Agricultural Peatlands in the Fenlands of Norfolk, UK. Geoderma 2010, 154, 181–187. [Google Scholar] [CrossRef]
- Masroor, M.; Sajjad, H.; Rehman, S.; Singh, R.; Hibjur Rahaman, M.; Sahana, M.; Ahmed, R.; Avtar, R. Analysing the Relationship between Drought and Soil Erosion Using Vegetation Health Index and RUSLE Models in Godavari Middle Sub-Basin, India. Geosci. Front. 2022, 13, 101312. [Google Scholar] [CrossRef]
- Fullen, M.A. Erosion Rates on Bare Loamy Sand Soils in East Shropshire, UK. Soil. Use Manag. 1992, 8, 157–162. [Google Scholar] [CrossRef]
- Fullen, M.A.; Reed Harrison, A. Rainfall, Runoff and Erosion on Bare Arable Soils in East Shropshire, England. Earth Surf. Process Landf. 1986, 11, 413–425. [Google Scholar] [CrossRef]
- Ballesteros Cánovas, J.A.; Stoffel, M.; Martín-Duque, J.F.; Corona, C.; Lucía, A.; Bodoque, J.M.; Montgomery, D.R. Gully Evolution and Geomorphic Adjustments of Badlands to Reforestation. Sci. Rep. 2017, 7, 45027. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy Maize and Soil Erosion—Risk Assessment and Erosion Control Concepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the Impact of Overgrazing on Soil Erosion and Land Degradation in a Dry Mediterranean Agro-Forest Landscape (Crete, Greece). Arid. Land Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Chappell, A.; Warren, A. Spatial Scales of 137Cs-Derived Soil Flux by Wind in a 25 Km2 Arable Area of Eastern England. CATENA 2003, 52, 209–234. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Birkel, C.; Dick, J.; Geris, J.; Soulsby, C. Storage Dynamics in Hydropedological Units Control Hillslope Connectivity, Runoff Generation, and the Evolution of Catchment Transit Time Distributions. Water Resour. Res. 2014, 50, 969–985. [Google Scholar] [CrossRef]
- Soulsby, C.; Birkel, C.; Geris, J.; Dick, J.; Tunaley, C.; Tetzlaff, D. Stream Water Age Distributions Controlled by Storage Dynamics and Nonlinear Hydrologic Connectivity: Modeling with High-Resolution Isotope Data. Water Resour. Res. 2015, 51, 7759–7776. [Google Scholar] [CrossRef]
- Blumstock, M.; Tetzlaff, D.; Dick, J.J.; Nuetzmann, G.; Soulsby, C. Spatial Organization of Groundwater Dynamics and Streamflow Response from Different Hydropedological Units in a Montane Catchment. Hydrol. Process 2016, 30, 3735–3753. [Google Scholar] [CrossRef]
- Geris, J.; Tetzlaff, D.; Soulsby, C. Resistance and Resilience to Droughts: Hydropedological Controls on Catchment Storage and Run-off Response. Hydrol. Process 2015, 29, 4579–4593. [Google Scholar] [CrossRef]
- Soulsby, C.; Scheliga, B.; Neill, A.; Comte, J.-C.; Tetzlaff, D. A Longer-Term Perspective on Soil Moisture, Groundwater and Stream Flow Response to the 2018 Drought in an Experimental Catchment in the Scottish Highlands. Hydrol. Process. 2021, 35, e14206. [Google Scholar] [CrossRef]
- Kleine, L.; Tetzlaff, D.; Smith, A.; Goldhammer, T.; Soulsby, C. Using Isotopes to Understand Landscape-Scale Connectivity in a Groundwater-Dominated, Lowland Catchment under Drought Conditions. Hydrol. Process. 2021, 35, e14197. [Google Scholar] [CrossRef]
- Kleine, L.; Tetzlaff, D.; Smith, A.; Wang, H.; Soulsby, C. Using Water Stable Isotopes to Understand Evaporation, Moisture Stress, and Re-Wetting in Catchment Forest and Grassland Soils of the Summer Drought of 2018. Hydrol. Earth Syst. Sci. 2020, 24, 3737–3752. [Google Scholar] [CrossRef]
- Barnard, R.L.; Blazewicz, S.J.; Firestone, M.K. Rewetting of Soil: Revisiting the Origin of Soil CO2 Emissions. Soil. Biol. Biochem. 2020, 147, 107819. [Google Scholar] [CrossRef]
- Canarini, A.; Kiær, L.P.; Dijkstra, F.A. Soil Carbon Loss Regulated by Drought Intensity and Available Substrate: A Meta-Analysis. Soil. Biol. Biochem. 2017, 112, 90–99. [Google Scholar] [CrossRef]
- Birch, H.F. The Effect of Soil Drying on Humus Decomposition and Nitrogen Availability. Plant Soil. 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Jin, X.; Wu, F.; Wu, Q.; Heděnec, P.; Peng, Y.; Wang, Z.; Yue, K. Effects of Drying-Rewetting Cycles on the Fluxes of Soil Greenhouse Gases. Heliyon 2023, 9, e12984. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Yang, Y.; Zou, J. Effects of Drying–Rewetting on Soil CO2 Emissions and the Regulatory Factors Involved: A Meta-Analysis. Plant Soil. 2024, 499, 349–361. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Caruso, T. Soil Microbial Community Responses to Climate Extremes: Resistance, Resilience and Transitions to Alternative States. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190112. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Zhang, W.; Zhang, C. Soil Property Plays a Vital Role in Vegetation Drought Recovery in Karst Region of Southwest China. J. Geophys. Res. Biogeosci 2021, 126, e2021JG006544. [Google Scholar] [CrossRef]
- Kaisermann, A.; de Vries, F.T.; Griffiths, R.I.; Bardgett, R.D. Legacy Effects of Drought on Plant–Soil Feedbacks and Plant–Plant Interactions. N. Phytol. 2017, 215, 1413–1424. [Google Scholar] [CrossRef]
- van der Putten, W.H.; Bradford, M.A.; Pernilla Brinkman, E.; van de Voorde, T.F.J.; Veen, G.F. Where, When and How Plant–Soil Feedback Matters in a Changing World. Funct. Ecol. 2016, 30, 1109–1121. [Google Scholar] [CrossRef]
- Ploughe, L.W.; Jacobs, E.M.; Frank, G.S.; Greenler, S.M.; Smith, M.D.; Dukes, J.S. Community Response to Extreme Drought (CRED): A Framework for Drought-Induced Shifts in Plant–Plant Interactions. N. Phytol. 2019, 222, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought Characterization from a Multivariate Perspective: A Review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought Modeling—A Review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Seaton, F.M.; Barrett, G.; Burden, A.; Creer, S.; Fitos, E.; Garbutt, A.; Griffiths, R.I.; Henrys, P.; Jones, D.L.; Keenan, P.; et al. Soil Health Cluster Analysis Based on National Monitoring of Soil Indicators. Eur. J. Soil. Sci. 2021, 72, 2414–2429. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil. Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Robinson, D.A.; Bentley, L.; Jones, L.; Feeney, C.; Garbutt, A.; Tandy, S.; Lebron, I.; Thomas, A.; Reinsch, S.; Norton, L.; et al. Five Decades Experience of Long-Term Soil Monitoring, and Key Design Principles, to Assist the EU Soil Health Mission. Eur. J. Soil. Sci. 2024, 75, e13570. [Google Scholar] [CrossRef]
- Reynolds, B.; Chamberlain, P.M.; Poskitt, J.; Woods, C.; Scott, W.A.; Rowe, E.C.; Robinson, D.A.; Frogbrook, Z.L.; Keith, A.M.; Henrys, P.A.; et al. Countryside Survey: National “Soil Change” 1978–2007 for Topsoils in Great Britain—Acidity, Carbon, and Total Nitrogen Status. Vadose Zone J. 2013, 12, 1–15. [Google Scholar] [CrossRef]
- Seaton, F.M.; Reinsch, S.; Goodall, T.; White, N.; Jones, D.L.; Griffiths, R.I.; Creer, S.; Smith, A.; Emmett, B.A.; Robinson, D.A. Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland. Ecosystems 2022, 25, 1279–1294. [Google Scholar] [CrossRef]
- Sayer, E.J.; Oliver, A.E.; Fridley, J.D.; Askew, A.P.; Mills, R.T.E.; Grime, J.P. Links between Soil Microbial Communities and Plant Traits in a Species-Rich Grassland under Long-Term Climate Change. Ecol. Evol. 2017, 7, 855–862. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Alonso, R.; Arnan, X.; Bermejo, V.; Brotons, L.; de las Heras, J.; Estiarte, M.; Hódar, J.A.; Llorens, P.; Lloret, F.; et al. A Review of the Combination among Global Change Factors in Forests, Shrublands and Pastures of the Mediterranean Region: Beyond Drought Effects. Glob. Planet. Chang. 2017, 148, 42–54. [Google Scholar] [CrossRef]
- Hopkins, A.J.M.; Brace, A.J.; Bruce, J.L.; Hyde, J.; Fontaine, J.B.; Walden, L.; Veber, W.; Ruthrof, K.X. Drought Legacy Interacts with Wildfire to Alter Soil Microbial Communities in a Mediterranean Climate-Type Forest. Sci. Total Environ. 2024, 915, 170111. [Google Scholar] [CrossRef]
- de Vries, F.T.; Liiri, M.E.; Bjørnlund, L.; Bowker, M.A.; Christensen, S.; Setälä, H.M.; Bardgett, R.D. Land Use Alters the Resistance and Resilience of Soil Food Webs to Drought. Nat. Clim. Chang. 2012, 2, 276–280. [Google Scholar] [CrossRef]
- Ma, F.; Yan, Y.; Svenning, J.-C.; Quan, Q.; Peng, J.; Zhang, R.; Wang, J.; Tian, D.; Zhou, Q.; Niu, S. Opposing Effects of Warming on the Stability of Above- and Belowground Productivity in Facing an Extreme Drought Event. Ecology 2024, 105, e4193. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Laudicina, V.A.; Parra, A.; Albert-Belda, E.; Moreno, J.M. Drought and Its Legacy Modulate the Post-Fire Recovery of Soil Functionality and Microbial Community Structure in a Mediterranean Shrubland. Glob. Chang. Biol. 2019, 25, 1409–1427. [Google Scholar] [CrossRef] [PubMed]
- Cordero, I.; Leizeaga, A.; Hicks, L.C.; Rousk, J.; Bardgett, R.D. High Intensity Perturbations Induce an Abrupt Shift in Soil Microbial State. ISME J. 2023, 17, 2190–2199. [Google Scholar] [CrossRef]
- Preece, C.; Verbruggen, E.; Liu, L.; Weedon, J.T.; Peñuelas, J. Effects of Past and Current Drought on the Composition and Diversity of Soil Microbial Communities. Soil. Biol. Biochem. 2019, 131, 28–39. [Google Scholar] [CrossRef]
- Müller, L.M.; Bahn, M. Drought Legacies and Ecosystem Responses to Subsequent Drought. Glob. Chang. Biol. 2022, 28, 5086–5103. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, Y.; Zhou, S.; Song, J.; Fu, B. Soil Moisture Determines the Recovery Time of Ecosystems from Drought. Glob. Chang. Biol. 2023, 29, 3562–3574. [Google Scholar] [CrossRef]
- Renne, R.R.; Schlaepfer, D.R.; Palmquist, K.A.; Bradford, J.B.; Burke, I.C.; Lauenroth, W.K. Soil and Stand Structure Explain Shrub Mortality Patterns Following Global Change—Type Drought and Extreme Precipitation. Ecology 2019, 100, e02889. [Google Scholar] [CrossRef]
- Emsens, W.-J.; van Diggelen, R.; Aggenbach, C.J.S.; Cajthaml, T.; Frouz, J.; Klimkowska, A.; Kotowski, W.; Kozub, L.; Liczner, Y.; Seeber, E.; et al. Recovery of Fen Peatland Microbiomes and Predicted Functional Profiles after Rewetting. ISME J. 2020, 14, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Roghie, S.; Shiade, G.; Fathi, A.; Ghasemkheili, T.F.; Ebrahim, A.; Pessarakli, M. Plants’ Responses under Drought Stress Conditions: Effects of Strategic Management Approaches—A Review. J. Plant Nutr. 2023, 46, 2198–2230. [Google Scholar] [CrossRef]
- Blanchy, G.; Bragato, G.; Di Bene, C.; Jarvis, N.; Larsbo, M.; Meurer, K.; Garré, S. Soil and Crop Management Practices and the Water Regulation Functions of Soils: A Qualitative Synthesis of Meta-Analyses Relevant to European Agriculture. SOIL 2023, 9, 1–20. [Google Scholar] [CrossRef]
- Corstanje, R.; Deeks, L.R.; Whitmore, A.P.; Gregory, A.S.; Ritz, K. Probing the Basis of Soil Resilience. Soil. Use Manag. 2015, 31, 72–81. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Hallett, P.D.; Daniell, T.J.; Hawes, C.; Squire, G.S.; Mitchell, S.M.; Caul, S.; Valentine, T.A.; Binnie, K.; Adeloye, A.J.; et al. Probing Soil Physical and Biological Resilience Data from a Broad Sampling of Arable Farms in Scotland. Soil. Use Manag. 2015, 31, 491–503. [Google Scholar] [CrossRef]
- Gregory, A.S.; Watts, C.W.; Whalley, W.R.; Kuan, H.L.; Griffiths, B.S.; Hallett, P.D.; Whitmore, A.P. Physical Resilience of Soil to Field Compaction and the Interactions with Plant Growth and Microbial Community Structure. Eur. J. Soil. Sci. 2007, 58, 1221–1232. [Google Scholar] [CrossRef]
- Droste, N.; May, W.; Clough, Y.; Börjesson, G.; Brady, M.; Hedlund, K. Soil Carbon Insures Arable Crop Production against Increasing Adverse Weather Due to Climate Change. Environ. Res. Lett. 2020, 15, 124034. [Google Scholar] [CrossRef]
- Robinson, D. A Comparison of Soil-Water Distribution under Ridge and Bed Cultivated Potatoes. Agric. Water Manag. 1999, 42, 189–204. [Google Scholar] [CrossRef]
- Hudson, J.A. The Contribution of Soil Moisture Storage to the Water Balances of Upland Forested and Grassland Catchments. Hydrol. Sci. J. 1988, 33, 289–309. [Google Scholar] [CrossRef]
- Parry, S.; Mackay, J.D.; Chitson, T.; Hannaford, J.; Magee, E.; Tanguy, M.; Bell, V.A.; Facer-Childs, K.; Kay, A.; Lane, R.; et al. Divergent Future Drought Projections in UK River Flows and Groundwater. Hydrol. Earth Syst. Sci. 2024, 28, 417–440. [Google Scholar] [CrossRef]
- Brauns, B.; Cuba, D.; Bloomfield, J.P.; Hannah, D.M.; Jackson, C.; Marchant, B.P.; Heudorfer, B.; Van Loon, A.F.; Bessière, H.; Thunholm, B.; et al. The Groundwater Drought Initiative (GDI): Analysing and Understanding Drought across Europe. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 297–305. [Google Scholar] [CrossRef]
- Marchant, B.P.; Bloomfield, J.P. Spatio-Temporal Modelling of the Status of Groundwater Droughts. J. Hydrol. 2018, 564, 397–413. [Google Scholar] [CrossRef]
- Townsend, T.J.; Ramsden, S.J.; Wilson, P. How Do We Cultivate in England? Tillage Practices in Crop Production Systems. Soil. Use Manag. 2016, 32, 106–117. [Google Scholar] [CrossRef]
- Zipper, S.C.; Soylu, M.E.; Booth, E.G.; Loheide II, S.P. Untangling the Effects of Shallow Groundwater and Soil Texture as Drivers of Subfield-Scale Yield Variability. Water Resour. Res. 2015, 51, 6338–6358. [Google Scholar] [CrossRef]
- Cooper, H.V.; Sjögersten, S.; Lark, R.M.; Mooney, S.J. To till or Not to till in a Temperate Ecosystem? Implications for Climate Change Mitigation. Environ. Res. Lett. 2021, 16, 54022. [Google Scholar] [CrossRef]
Water Potential (MPa) | Soil Ecosystem Components |
---|---|
−0.02 to −0.04 | Diapause induced in the earthworm species Aporrectodea calignosa |
−0.06 to −0.19 | Diapause induced in most earthworm species |
−0.5 | Functional inhibition of soft-bodied fauna (e.g., nematodes) |
−0.6 | Functional inhibition of nitrifying bacteria |
−0.7 | Critical soil moisture threshold for (European) plants |
−1.5 | Permanent wilting point of plants |
−2 | Functional inhibition of hard-bodied fauna (e.g., arthropods) |
−2 | Functional inhibition of Gram-positive bacteria |
−4 | Functional inhibition of wood-decaying fungi |
−10 to −3 | Functional inhibition of fungi |
−10 | Functional inhibition of Actinomycetes |
−10 | Threshold where solute diffusion ceases; see Figure 4 where microbial activity drastically declines |
−13.9 | Start of microbial activity ceasing in mineral soils |
−36.5 | Start of microbial activity ceasing in surface litter |
−60 | Functional inhibition of some xerophilic fungi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinsch, S.; Robinson, D.A.; van Soest, M.A.J.; Keith, A.M.; Parry, S.; Tye, A.M. Temperate Soils Exposed to Drought—Key Processes, Impacts, Indicators, and Unknowns. Land 2024, 13, 1759. https://doi.org/10.3390/land13111759
Reinsch S, Robinson DA, van Soest MAJ, Keith AM, Parry S, Tye AM. Temperate Soils Exposed to Drought—Key Processes, Impacts, Indicators, and Unknowns. Land. 2024; 13(11):1759. https://doi.org/10.3390/land13111759
Chicago/Turabian StyleReinsch, Sabine, David A. Robinson, Maud A. J. van Soest, Aidan M. Keith, Simon Parry, and Andrew M. Tye. 2024. "Temperate Soils Exposed to Drought—Key Processes, Impacts, Indicators, and Unknowns" Land 13, no. 11: 1759. https://doi.org/10.3390/land13111759
APA StyleReinsch, S., Robinson, D. A., van Soest, M. A. J., Keith, A. M., Parry, S., & Tye, A. M. (2024). Temperate Soils Exposed to Drought—Key Processes, Impacts, Indicators, and Unknowns. Land, 13(11), 1759. https://doi.org/10.3390/land13111759