High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Primary and Secondary Labels
2.1.2. Land Cover Maps
Backbone Maps
Specialist Maps
2.2. Methods
2.2.1. Construction of ECOSG+
Definition of a Specialist Agreement Score
Refinement of Backbone Maps
Best-Guess Map
Quality Assessment
Assembling
2.2.2. Evaluation of ECOSG+
- Comparison to derived measurable quantities. For example, ref. [22] trained a machine learning model to derive the skin temperature from the land cover and compared the derived skin temperature to the measured skin temperature. This method allows quantitative evaluation of the land cover maps of large domains but requires measured quantities at a comparable resolution over a comparable domain.
- Human validation. For example, LUCAS [23] and CLC+ [24] are validated by human experts. In the case of LUCAS, experts went to designated sites to verify the land cover. In the case of CLC+, experts validated the land cover classes by photo-interpretation. In both cases, human validation requires a sufficient number of trained staff and a carefully designed validation procedure.
- Comparison to trusted land cover maps. For example, ref. [25] and ref. [1] trained and validated a machine learning model using the CORINE land cover map. In this method, the quality of the evaluation is dependent on the quality of the trusted map. It, therefore, requires the existence of a trusted map of proven quality with an appropriate set of labels, and preferably a higher spatial resolution and greater detail than the map being assessed. Although this is considered less accurate than human validation [26], this method validates every pixel on the trusted map domain.
Reference Maps
- LUCAS 2022: In situ data at validated sites over all of Europe translated to primary labels (see Table A7). A translation to secondary labels is not possible.
- NLC 2018: A raster map providing primary labels at 10 m resolution, created by the National Mapping Division of Tailte Éireann (formerly Ordnance Survey of Ireland) in partnership with the Irish Environmental Protection Agency (EPA) and translated to primary labels (see Table A8). A translation to secondary labels is not possible, and the map only covers Ireland.
- ECOSGIMO: A raster map at 25 m (provided at 60 m) resolution providing secondary labels, using national datasets and expert rules. Most of the covers over nature come from a habitat classification map [27] from the Icelandic Institute of National History (IINH) based on the EUNIS classification system. The habitat types were translated to secondary labels for Snow, Water bodies, Bare land, Grassland, Crops, and Flooded vegetation. The secondary labels for Forests and Shrubs are based on data from the Icelandic Forest Service, Icelandic Forest Research, Mógilsá. Two maps were used, i.e., a map of native birch forests and shrubs and a map of afforestation with different coniferous and broadleaf species. The urban local climate zone labels come from the CORINE Land Cover 2018 [28] with a few updates in Reykjavík city. Recent lava fields were added as rocks with data from the Icelandic Meteorological Institute and other national institutes in Iceland.
Comparison Scores
Baseline Maps
- ECOSG is used as a baseline to quantify the improvement on the land cover map currently used in the HARMONIE-AROME NWP model.
- ECOSG+300 refers to ECOSG+ resampled at ECOSG’s native resolution of 300 m. This baseline aims to show whether the improvement is due to the increase in resolution or the correction of some labels.
- ESA WorldCover v200 is one of the most commonly used land cover maps, and therefore makes a good standard.
3. Results
3.1. Qualitative Evaluation
3.1.1. Overview of the ECOSG+ Map and Its Quality Score
3.1.2. Distribution of Labels
3.1.3. Zoom on a Few Patches
3.2. Quantitative Evaluations
3.2.1. Europe-Wide Evaluation Against LUCAS
3.2.2. Small Scale Feature Evaluation Against NLC 2018
3.2.3. Secondary Label Evaluation Against ECOSGIMO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECOSG | ECOCLIMAP-SG: a physiography database currently used in NWP |
ECOSG+ | ECOCLIMAP-SG+: the land cover map described in this manuscript |
EURAT | Europe–Atlantic domain (longitudes: −32 to 42, latitudes: 20 to 72) |
LCZ | Local climate zone |
LULC | Land use land cover |
NWP | Numerical weather prediction |
Appendix A. Tables of Land Cover Datasets Used in the Creation of ECOSG+
Name | Reference | Resolution | AOI | Usage in ECOSG + |
---|---|---|---|---|
CALC2020 | [41] | 10 m | circumpolar Arctic | |
CGLSLC100 | [42] | 100 m | global | ( = 7, 8, 9, 10, 11, 12, 13, 14) |
CGLSLC100F | [42] | 100 m | global | ( = 16, 17, 18) |
ESAGHSurban | ESA WorldCover and GHS-BUILT-S according to Table A5 | 10 m | world | |
ESAWorldcereal | [43] | 10 m | world | ( = 19, 20, 21) |
ESA WorldCover | [29] | 10 m | world | |
ESRI2020 | [8] | 10 m | world | |
FROMGLC10 | [44] | 10 m | world | |
GHS-BUILT-C | [45] | 10 m | global | ( = 31) |
GHS-BUILT-S | [46] | 10 m | global | (ESAGHSurban) |
GLCZ | [47] | 100 m | global | ( = 4, 5, 15, 16, 17, 18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33) |
GLC_FCS302020 | [48] | 30 m | world | , ( = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) |
GRWLwatermask | [49] | 30 m | global | ( = 1, 2, 3) |
GWL_FCS30 | [50] | 30 m | world | ( = 22, 23) |
Hydrolakes | [51] | MMA: 10 ha | world | ( = 2) |
OSMsurfacewater | [52] | 90 m | world | ( = 1, 3) |
Name | Reference | Resolution | AOI | Usage in ECOSG + |
---|---|---|---|---|
CLCplus | [24] | 10 m | Europe | , ( = 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18) |
Coastal2018 | [53] | Vector MMU: 0.5 ha MMW:10 m | Europe Coastal areas | ( = 1, 2, 3, 4, 5, 6, 31, 32) |
ELC10 | [7] | 10 m | Europe | |
EUCROPMAP | [19] | 10 m | Europe | ( = 19, 20, 21) |
EUMAPOSMgrass | [54] | 30 m | Europe | ( = 16, 17, 18) |
EUMAPlandcover | [55] | 30 m | Europe | ( = 4, 5, 6, 15, 23) |
EUSALP | [56] | up to 5 m | European Alps Macro region | ( = 4, 5, 6, 31) |
EUhydrocoastline | [57] | Vector MMU: 1 ha | Europe | ( = 1) |
Geoclimate | [58] | Vector MMW: 60 m | Run over multiple large urban area across Europe | ( = 16, 17, 18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33) |
GRA2018 | [59] | 10 m | Europe | ( = 16, 17, 18) |
IMD2018 | [60] | 10 m | Europe | |
N2K2018 | [61] | Vector MMU: 0.5 ha MMW:10 m | Europe Natura 2000 zones | ( = 1, 2, 3, 4, 5, 6, 31, 32) |
OpenEuroRegionalCoast OpenEuroRegionalIce OpenEuroRegionalLake OpenEuroRegionalRailrdL OpenEuroRegionalRoadL1 OpenEuroRegionalRoadL2 OpenEuroRegionalSea OpenEuroRegionalSoilcrs OpenEuroRegionalWatercrs OpenEuroRegionalWatercrsL | [62] | Vector data 1:25,000 missing linear small scale features | Europe | ( = 1, 2, 3, 4, 5, 6, 31, 32) |
RPZ2018 | [63] | Vector MMU: 0.5 ha MMW:10 m | Europe riparian zones | ( = 1, 2, 3, 4, 5, 6, 31, 32) |
S2GLC | [6] | 10 m | Europe | , ( = 7, 8, 9, 10, 11, 12, 13, 14) |
Name | Reference | Resolution | AOI | Usage in ECOSG + |
---|---|---|---|---|
COSc2020 | [64] | 10 m | Portugal | |
Icelandhabitat | [27] | 1:25,000 | Iceland | , ( = 1, 2, 3) |
MACATECOSG | MACAT and COSc2020 using Table A6 | 10 m | Portugal | ( = 19, 20, 21) |
NLCSweden2018 | [65] | 10 m | Sweden | |
OCS2020 | [66] | 10 m | Metropolitan France | , ( = 4, 5), grassland, Shr… |
WFDCanalIE | [67] | Vector data 1:50,000 | Ireland | ( = 3) |
WFDCoastalIE | [68] | Vector data 1:50,000 | Ireland | ( = 1) |
WFDLakeIE | [69] | Vector data 1:50,000 | Ireland | ( = 2) |
WFDRiverIE | [70] | Vector data 1:50,000 | Ireland | ( = 3) |
WFDTransitionalIE | [71] | Vector data 1:50,000 | Ireland | ( = 1) |
Appendix B. Conversion Tables for Particular Cases
ESAGHSurban Primary Label | ESA WorldCover Labels | GHS-BUILT-S Fraction |
---|---|---|
Water bodies | 80 Permanent Water bodies | Not used |
Bare land | 60 Bare/sparse vegetation | Not used |
Snow | 70 Snow and ice | Not used |
Forest | 10 Tree cover | Not used |
Shrubs | 20 Shrubland | Not used |
Grassland | 30 Grassland | Not used |
Flooded vegetation | 90 Herbaceous wetland; 95 Mangroves; 100 Moss and lichen | Not used |
Urban | 50 Built-up | >5% of built up surfaces |
MACATECOSG Secondary Label | COSc2020 Label | MACAT Labels |
---|---|---|
19. Winter C3 Crops | 211 Culturas anuais de outono/inverno (winter crops) | 1101, 1203, 1305 Aveia (Oat); 1102, 1204, 1306 Azevém (Ryegrass); 1103, 1301, 1307 Trigo (Wheat); 1104, 1302, 1308 Triticale (Triticale); 1105, 1303, 1309 Centeio (Rye); 1106, 1304, 1310 Cevada (Barley); 1311 Courgete (Zucchini); 1312 Pimento (Pepper); 1401 Tremocilha (Lupini beans); 1402 Ervilha (Pea); 1403 Grão de bico (Chickpea); 1404 Fava (Fava); 1405 Trevo (Clover); 1406 Feijão (Bean); 1407 Tremoço (Lupine); 1409 Ervilhaças (Peas) |
20. Summer C3 Crops | 212 Culturas anuais de primavera/verão (summer crops) | 1101, 1203, 1305 Aveia (Oat); 1102, 1204, 1306 Azevém (Ryegrass); 1103, 1301, 1307 Trigo (Wheat); 1104, 1302, 1308 Triticale (Triticale); 1105, 1303, 1309 Centeio (Rye); 1106, 1304, 1310 Cevada (Barley); 1311 Courgete (Zucchini); 1312 Pimento (Pepper); 1401 Tremocilha (Lupini beans); 1402 Ervilha (Pea); 1403 Grão de bico (Chickpea); 1404 Fava (Fava); 1405 Trevo (Clover); 1406 Feijão (Bean); 1407 Tremoço (Lupine); 1409 Ervilhaças (Peas) |
21. C4 Crops | 211 Culturas anuais de outono/inverno (winter crops); 212 Culturas anuais de primavera/verão (summer crops); 213 Outras áreas agrícolas (other crops) | 1201 Milho (Corn); 1202 Sorgo (Sorghum) |
Appendix C. Conversion Tables Used for the Evaluation
Primary Label | LUCAS C3 Code and Name |
---|---|
Water bodies | G10 Inland Water bodies, G11 Inland fresh Water bodies, G12 Inland salty Water bodies, G20 Inland running water, G21 Inland fresh running water, G22 Inland salty running water, G30 Transitional Water bodies, G40 Sea and ocean |
Bare land | F10 Rocks and stones, F20 Sand, F40 Other bare soil |
Snow | G50 Glaciers, Permanent snow |
Forest | C, C1, C10 Broadleaved woodland, C2, C20 Coniferous woodland, C21 Spruce dominated coniferous woodland, C22 Pine-dominated coniferous woodland, C23 Other coniferous woodland, C30 Mixed woodland, C31 Spruce dominated mixed woodland, C32 Pine dominated mixed woodland, C33 Other mixed woodland |
Shrubs | D, D1, D10 Shrubland with sparse tree cover, D2, D20 Shrubland without tree cover |
Grassland | E, E1, E10 Grassland with sparse tree/shrub cover |
E2, E20 Grassland without tree/shrub cover | |
E3, E30 Spontaneously re-vegetated surfaces | |
Crops | every B code from B00 Cropland to B84 Permanent industrial crops |
Flooded vegetation | H, H10 Inland wetlands, H11 Inland marshes, H12 Peatbogs, H20 Coastal wetlands, H21 Salt marshes, H22 Salines and other chemical deposits, H23 Intertidal flats, F3, F30 Lichens and moss |
Urban | A00 Artificial land, A1, A10 Roofed built-up areas, A11 Buildings with one to three floors, A12 Buildings with more than three floors, A13 Greenhouses, A2, A20 Artificial non-built up areas, A21 Non built-up area features, A22 Non built-up linear features, A30 Other Artificial Areas |
Primary Label | NLC 2018 Code and Label |
---|---|
Water Bodies | 810 Rivers and Streams, 820 Lakes and Ponds, 830 Artificial Water bodies, 840 Transitional Water bodies, 850 Marine Water |
Bareland | 210 Exposed Rock and Sediments, 220 Coastal Sediments, 230 Mudflats, 240 Bare Soil and Disturbed Ground, 250 Burnt Areas |
Snow | None |
Forest | 410 Coniferous Forest, 420 Mixed Forest, 430 Transitional Forest, 440 Broadleaved Forest and Woodland 470 Treelines |
Shrubs | 450 Scrub, 460 Hedgegrows |
Grassland | 510 Improved Grassland, 520 Amenity Grassland, 530 Dry Grassland |
Crops | 310 Cultivated Land |
Flooded vegetation | 540 Wet Grassland, 550 Saltmarsh, 570 Swamp, 610 Raised Bog, 620 Blanket Bog, 630 Cutover Bog, 640 Bare Peat, 650 Fens, 710 Bracken, 720 Dry Heath, 730 Wet Heath |
Urban | 110 Buildings, 120 Ways, 130 Other Artificial Surfaces |
Appendix D. Exceptions and Special Cases in the Construction of ECOSG+
Appendix D.1. Exceptions in the Land Cover Maps
- The Geoclimate dataset consists of a map of LCZ obtained by running the Geoclimate tool [58] on the main European urban areas.
- The Copernicus Imperviousness HRL does not provide secondary labels but distinguishes secondary labels ‘(‘4. Bare land”, “5. Bare rocks”) and concrete runways (“31. LCZ8: large low-rise”) (see Appendix D.2). We extract the artificial imperviousness density, denoted , from this dataset.
- ESAGHSurban is a combination of ESA WorldCover v200 and the GHS built-up surface (GHS-BUILT-S) converted to primary labels, where GHS-BUILT-S was resampled to the target grid, and missing urban areas have been added from ESA WorldCover following Table A5.
Appendix D.2. Exceptions in the Specialist Agreement Score
- “0. No data”. The specialist agreement score is set to 0 everywhere for this label.
- Null denominator: . When no specialist map provides the label at x, the specialist agreement score is set to 0.
- {“4. Bare land”, “5. Bare rocks”}. Preliminary experiments showed that confusion often occurs between sand, rocks (secondary labels “4. Bare land”, “5. Bare rocks”) and concrete runways (“31. LCZ8: large low-rise”), which can be disambiguated thanks to the artificial imperviousness density. Therefore, maps providing the labels “4. Bare land” and “5. Bare rocks” see their score penalized by the imperviousness density (sand and rocks with high imperviousness are likely to be wrong).
Appendix D.3. Exceptions in the Refinement Process
- Joint Maximum in Score
- Bioclimatic Classification
- The Forest Primary Label
- The bioclimatic classification (i.e., “boreal”, “temperate”, or “tropical”);
- The dominant leaf type (i.e., “broadleaf”, “needleleaf”);
- The leaf cycle (i.e., “deciduous”, “evergreen”).
Appendix E. Limitations of NLC 2018: Comparison Against LUCAS
ECOSG+ | ECOSG | NLC 2018 | ESA WorldCover | |
---|---|---|---|---|
Water bodies | 0.843 | 0.684 | 0.896 * | 0.892 |
Bare land | 0.086 | 0.086 | 0.280 * | 0.053 |
Forest | 0.537 | 0.164 | 0.605 | 0.614 * |
Shrubs | NaN | NaN | 0.080 * | NaN |
Grassland | 0.784 | 0.692 | 0.730 | 0.788 * |
Crops | 0.644 | 0.411 | 0.690 | 0.737 * |
Flooded vegetation | 0.269 * | 0.205 | 0.262 | 0.092 |
Urban | 0.273 | 0.188 | 0.456 * | 0.295 |
1 | See CNRM wiki page on ECOCLIMAP-SG: https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki (access on 13 September 2024). |
2 | Except for one map of Portugal that does not include the snow primary label. |
3 | In the case of a joint maximum in , we take the with the highest . If the highest is also a joint maximum, we take the with the lowest label number (see Appendix D.3 for an example). |
4 | Primary labels when the reference is LUCAS 2022 or NLC 2018, secondary labels when the reference is ECOSGIMO. |
References
- Walsh, E.; Bessardon, G.; Gleeson, E.; Ulmas, P. Using machine learning to produce a very high resolution land-cover map for Ireland. Adv. Sci. Res. 2021, 18, 65–87. [Google Scholar] [CrossRef]
- CNRM. Research Demonstration Project Paris 2024 Olympics; CNRM: Toulouse, France, 2024. [Google Scholar]
- Lemonsu, A.; Alessandrini, J.; Capo, J.; Claeys, M.; Cordeau, E.; de Munck, C.; Dahech, S.; Dupont, J.; Dugay, F.; Dupuis, V.; et al. The heat and health in cities (H2C) project to support the prevention of extreme heat in cities. Clim. Serv. 2024, 34, 100472. [Google Scholar] [CrossRef]
- Hagelin, S.; Auger, L.; Brovelli, P.; Dupont, O. Nowcasting with the AROME model: First results from the high-resolution AROME airport. Weather Forecast. 2014, 29, 773–787. [Google Scholar] [CrossRef]
- Lean, H.W.; Theeuwes, N.E.; Baldauf, M.; Barkmeijer, J.; Bessardon, G.; Blunn, L.; Bojarova, J.; Boutle, I.A.; Clark, P.A.; Demuzere, M.; et al. The hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100 m scale weather and climate models. Q. J. R. Meteorol. Soc. 2024, 1–38. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Lydon, K.; Smith, G. National Land Cover Map of Ireland 2018 Final Report; Technical Report, Tailte Éireann in Partnership with the Environmental Protection Agency (EPA) and with the Support of Members of the Cross-Governmental National Landcover and Habitat Mapping (NLCHM) Working Group; Tailte Éireann: Dublin, Ireland, 2023. [Google Scholar]
- Mallet, C.; Le Bris, A. Current Challenges in Operational Very High Resolution Land-cover Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2020, 43, 703–710. [Google Scholar] [CrossRef]
- Radoux, J.; Bourdouxhe, A.; Copp, T.; Vroey, M.D.; Dufr, M.; Defourny, P. A Consistent Land Cover Map Time Series at 2 m Spatial Resolution—The LifeWatch 2006–2015–2018–2019 Dataset for Wallonia. Data 2023, 8, 13. [Google Scholar] [CrossRef]
- Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Faroux, S.; Kaptué Tchuenté, A.T.; Roujean, J.L.; Masson, V.; Martin, E.; Le Moigne, P.; Le Moigne, P. ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System. Mon. Weather Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Schulz, J.P.; Mercogliano, P.; Adinolfi, M.; Apreda, C.; Bassani, F.; Bucchignani, E.; Campanale, A.; Cinquegrana, D.; Dumitrache, R.; Fedele, G.; et al. A New Urban Parameterisation for the ICON Atmospheric Model. In Proceedings of the COSMO General Meeting, Gdansk, Poland, 11–15 September 2023. [Google Scholar]
- Hoffmann, J. The future of satellite remote sensing in hydrogeology. Hydrogeol. J. 2005, 13, 247–250. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Keany, E.; Bessardon, G.; Gleeson, E. Using machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zones. Adv. Sci. Res. 2022, 19, 13–27. [Google Scholar] [CrossRef]
- D’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Rieutord, T.; Bessardon, G.; Gleeson, E. High-resolution land use land cover dataset for meteorological modelling – Part 2: ECOCLIMAP-SG-ML an ensemble land cover map. Earth Syst. Sci. Data 2024. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Kimpson, T.; Choulga, M.; Chantry, M.; Balsamo, G.; Boussetta, S.; Dueben, P.; Palmer, T. Deep learning for quality control of surface physiographic fields using satellite Earth observations. Hydrol. Earth Syst. Sci. 2023, 27, 4661–4685. [Google Scholar] [CrossRef]
- Ballin, M.; Barcaroli, G.; Masselli, G. New LUCAS 2022 Sample and Subsamples Design: Criticalities and Solutions; Technical Report; Publications Office of the European Union: Brussels, Belgium, 2022. [Google Scholar] [CrossRef]
- EEA. CLC+Backbone 2018 (Raster 10 m), Europe, 3-Yearly, Feb. 2023; EEA: Copenhagen, Denmark, 2022. [Google Scholar] [CrossRef]
- Ulmas, P.; Liiv, I. Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification. arXiv 2020, arXiv:2003.02899. [Google Scholar]
- Camacho Olmedo, M.T.; García-Álvarez, D.; Gallardo, M.; Mas, J.F.; Paegelow, M.; Castillo-Santiago, M.Á.; Molinero-Parejo, R. Validation of Land Use Cover Maps: A Guideline. In Land Use Cover Datasets and Validation Tools: Validation Practices with QGIS; Springer International Publishing: Cham, Switzerland, 2022; pp. 35–46. [Google Scholar] [CrossRef]
- Ottósson, J.G.; Sveinsdóttir, A.; Harðardóttir, M. Vistgerðir á Íslandi. Fjölrit Náttúrufræðistofnunar 2016, 54, 1–299. [Google Scholar]
- EEA. CORINE Land Cover 2018 (Raster 100 m), Europe, 6-Yearly—Version 2020_20u1, May 2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Zanaga, D.; Kerchove, R.V.D.; Daems, D.; Keersmaecker, W.D.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200; ESA: Paris, France, 2022. [Google Scholar] [CrossRef]
- Maslov, K.A.; Persello, C.; Schellenberger, T.; Stein, A. Towards Global Glacier Mapping with Deep Learning and Open Earth Observation Data. arXiv 2024, arXiv:2401.15113. [Google Scholar]
- Mitkari, K.V.; Arora, M.K.; Tiwari, R.K.; Sofat, S.; Gusain, H.S.; Tiwari, S.P. Large-Scale Debris Cover Glacier Mapping Using Multisource Object-Based Image Analysis Approach. Remote Sens. 2022, 14, 3202. [Google Scholar] [CrossRef]
- Nath, A.; Koley, B.; Choudhury, T.; Saraswati, S.; Ray, B.C.; Um, J.S.; Sharma, A. Assessing Coastal Land-Use and Land-Cover Change Dynamics Using Geospatial Techniques. Sustainability 2023, 15, 7398. [Google Scholar] [CrossRef]
- Bessardon, G.; Gleeson, E. Using the Best Available Physiography to Improve Weather Forecasts for Ireland. 2019. Available online: https://presentations.copernicus.org/EMS2019/EMS2019-702_presentation.pdf (accessed on 30 April 2021).
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Bruzzone, L.; Bovolo, F.; Amodio, A.; Brovelli, M.; Corsi, M.; Defourny, P.; Domingo, C.; Gamba, P.; Kolitzus, D.; Lamarche, C.; et al. ESA High Resolution Land Cover Climate Change Initiative: High Resolution Land Cover Maps in Amazonia (Eastern Amazonas Region) at 10 m Spatial Resolution for 2019 in Geotiff Format, v1.2; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2024. [Google Scholar] [CrossRef]
- Bruzzone, L.; Bovolo, F.; Amodio, A.; Brovelli, M.; Corsi, M.; Defourny, P.; Domingo, C.; Gamba, P.; Kolitzus, D.; Lamarche, C.; et al. ESA High Resolution Land Cover Climate Change Initiative: High Resolution Land Cover Maps in Africa (Eastern Sahel Region) at 10 m Spatial Resolution for 2019 in Geotiff Format, v1.2; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2024. [Google Scholar] [CrossRef]
- Roy, S.; Schwehr, K.; Pasquarella, V.; Swetnam, T. Samapriya/Awesome-Gee-Community-Datasets: Community Catalog; Zenodo: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Bessardon, G.; Rieutord, T.; Gleeson, E.; Oswald, S. ECOCLIMAP-SG+: An Agreement-Based High-Resolution Land Use Land Cover Dataset for Meteorological Modelling; Zenodo: Genève, Switzerland, 2024. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Feng, X.; Cheng, X.; Liu, C.; Huang, H. CALC-2020: A new baseline land cover map at 10 m resolution for the circumpolar Arctic. Earth Syst. Sci. Data 2023, 15, 133–153. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Roo, B.D.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe; Zenodo: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tricht, K.V.; Degerickx, J.; Gilliams, S.; Zanaga, D.; Battude, M.; Grosu, A.; Brombacher, J.; Lesiv, M.; Bayas, J.C.L.; Karanam, S.; et al. WorldCereal: A dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping. Earth Syst. Sci. Data 2023, 15, 5491–5515. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Pesaresi, M.; Politis, P. GHS-BUILT-C R2023A—GHS Settlement Characteristics, Derived from Sentinel2 Composite (2018) and Other GHS R2023A Data; European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Pesaresi, M.; Politis, P. GHS-BUILT-S R2023A—GHS Built-Up Surface Grid, Derived from Sentinel2 Composite and Landsat, Multitemporal (1975–2030); European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; Vliet, J.V.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data 2022, 14, 3835–3873. [Google Scholar] [CrossRef]
- Liangyun, L.; Xiao, Z.; Xidong, C.; Yuan, G.; Jun, M. GLC_FCS30-2020: Global Land Cover with Fine Classification System at 30m in 2020; Zenodo: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global River Widths from Landsat (GRWL) Database; Zenodo: Genève, Switzerland, 2018. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Chen, X.; Lin, S.; Wang, J.; Mi, J.; Liu, W. GWL_FCS30: A global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 2023, 15, 265–293. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- EEA. Coastal Zones Land Cover/Land Use 2018 (Vector), Europe, 6-Yearly, February 2021; European Environment Agency (EEA) Datahub: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Witjes, M. OSM Grass; OpenGeoHub Foundation: Doorwerth, The Netherlands, 2022. [Google Scholar]
- Parente, L.; Witjes, M.; Hengl, T.; Landa, M.; Brodsky, L. Continental Europe Land Cover Mapping at 30m Resolution Based CORINE and LUCAS on Samples; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Marsoner, T.; Simion, H.; Giombini, V.; Vigl, L.E.; Candiago, S. A detailed land use/land cover map for the European Alps macro region. Sci. Data 2023, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- EEA. EU-Hydro—Coastline—Version 1.2, September 2020; European Environment Agency (EEA) Datahub: Copenhagen, Denmark, 2020. [Google Scholar]
- Bocher, E.; Bernard, J.; Wiederhold, E.; Leconte, F.; Petit, G.; Palominos, S.; Noûs, C. GeoClimate: A Geospatial processing toolbox for environmental and climate studies. J. Open Source Softw. 2021, 6, 3541. [Google Scholar] [CrossRef]
- EEA. Grassland 2018 (Raster 10 m), Europe, 3-Yearly, August 2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- EEA. Imperviousness Density 2018 (Raster 10 m), Europe, 3-Yearly, August 2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- EEA. N2K 2018 (Vector), Europe, 6-Yearly, July 2021; EEA: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Eurogeographics. EuroRegionalMap; EuroGeographics AISBL: Brussels, Belgium, 2021. [Google Scholar]
- EEA. Riparian Zones Land Cover/Land Use 2018 (Vector), Europe, 6-Yearly, December 2021; EEA: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Naturvårdsverket. Nationella marktäckedata 2018: Basskikt; Swedish Environmental Protection Agency: Stockholm, Sweden, 2018.
- Thierion, V.; Vincent, A.; Valero, S. Theia OSO Land Cover Map 2020; Zenodo: Genève, Switzerland, 2022. [Google Scholar] [CrossRef]
- EPA. Water Framework Directive Canal Waterbodies; EPA: Johnstown Castle Estate, Wexford, Ireland, 2020. [Google Scholar]
- EPA. Water Framework Directive Coastal Waterbodies; EPA: Johnstown Castle Estate, Wexford, Ireland, 2020. [Google Scholar]
- EPA. Water Framework Directive Lake Waterbodies; EPA: Johnstown Castle Estate, Wexford, Ireland, 2020. [Google Scholar]
- EPA. Water Framework Directive River Waterbodies; EPA: Johnstown Castle Estate, Wexford, Ireland, 2020. [Google Scholar]
- EPA. Water Framework Directive Transitional Waterbodies; EPA: Johnstown Castle Estate, Wexford, Ireland, 2020. [Google Scholar]
- CEC. North American Land Cover, 2020 (Landsat, 30m); Commission for Environmental Cooperation (CEC): Montreal, QC, Canada, 2023. [Google Scholar]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States. GIScience Remote Sens. 2023, 60, 1143. [Google Scholar] [CrossRef]
- Wu, Q. geemap: A Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef]
ECOSG+ | ECOSG+300 | ECOSG | ESA WorldCover | |
---|---|---|---|---|
Water bodies | 0.786 | 0.709 | 0.600 | 0.831 * |
Bare land | 0.154 * | 0.146 | 0.126 | 0.138 |
Snow | 0.788 * | 0.783 | 0.708 | 0.643 |
Forest | 0.709 | 0.648 | 0.545 | 0.749 * |
Shrubs | 0.114 | 0.094 | 0.091 | 0.171 * |
Grassland | 0.599 | 0.522 | 0.304 | 0.622 * |
Crops | 0.614 | 0.570 | 0.471 | 0.705 * |
Flooded vegetation | 0.438 * | 0.376 | 0.342 | 0.367 |
Urban | 0.374 | 0.321 | 0.279 | 0.418 * |
ECOSG+ | ECOSG | ESA WorldCover | |
---|---|---|---|
Water bodies | 0.964 | 0.932 | 0.966 * |
Bare land | 0.109 | 0.151 | 0.043 |
Forest | 0.725 * | 0.299 | 0.710 |
Shrubs | 0.000 | 0.000 | 0.000 |
Grassland | 0.746 * | 0.703 | 0.726 |
Crops | 0.675 * | 0.400 | 0.643 |
Flooded vegetation | 0.171 | 0.552 * | 0.025 |
Urban | 0.465 * | 0.340 | 0.427 |
ECOSG+ | ECOSG | ESA WorldCover | |
---|---|---|---|
Water bodies | 0.986 * | 0.976 | 0.978 |
Bare land | 0.800 * | 0.749 | 0.706 |
Snow | 0.966 * | 0.950 | 0.907 |
Forest | 0.106 | 0.069 | 0.253 * |
Shrubs | 0.047 | 0.055 | 0.228 * |
Grassland | 0.738 * | 0.566 | 0.738 * |
Flooded vegetation | 0.174 | 0.223 * | 0.028 |
Urban | 0.411 * | 0.334 | 0.344 |
ECOSG+ | ECOSG | Gap (New–Old) | |
---|---|---|---|
1. Sea and oceans | 0.992 | 0.989 | 0.003 |
2. Lakes | 0.837 | 0.523 | 0.314 |
3. Rivers | 0.632 | 0.201 | 0.431 |
4. Bare land | 0.428 | 0.740 | −0.312 |
5. Bare rocks | 0.072 | 0.016 | 0.056 |
6. Permanent snow and ice | 0.966 | 0.950 | 0.016 |
7. Boreal broadleaf deciduous | 0.102 | 0.000 | 0.101 |
8. Temperate broadleaf deciduous | 0.001 | 0.002 | −0.001 |
12. Boreal needleleaf evergreen | 0.013 | 0.012 | 0.001 |
13. Boreal needleleaf deciduous | NaN | NaN | NaN |
15. Shrubs | 0.047 | 0.056 | −0.09 |
16. Boreal grassland | 0.444 | NaN | 0.444 |
17. Temperate grassland | 0.126 | 0.298 | −0.172 |
23. Flooded grassland | 0.174 | 0.030 | 0.144 |
25. LCZ2: compact mid rise | 0.046 | NaN | 0.046 |
28. LCZ5: open midrise | NaN | NaN | NaN |
29. LCZ6: open low-rise | 0.569 | 0.355 | 0.214 |
31. LCZ8: large low-rise | 0.400 | NaN | 0.400 |
32. LCZ9: sparsely built | 0.033 | NaN | 0.033 |
33. LCZ10: heavy industry | 0.329 | NaN | 0.329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessardon, G.; Rieutord, T.; Gleeson, E.; Pálmason, B.; Oswald, S. High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset. Land 2024, 13, 1811. https://doi.org/10.3390/land13111811
Bessardon G, Rieutord T, Gleeson E, Pálmason B, Oswald S. High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset. Land. 2024; 13(11):1811. https://doi.org/10.3390/land13111811
Chicago/Turabian StyleBessardon, Geoffrey, Thomas Rieutord, Emily Gleeson, Bolli Pálmason, and Sandro Oswald. 2024. "High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset" Land 13, no. 11: 1811. https://doi.org/10.3390/land13111811
APA StyleBessardon, G., Rieutord, T., Gleeson, E., Pálmason, B., & Oswald, S. (2024). High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset. Land, 13(11), 1811. https://doi.org/10.3390/land13111811