Spatiotemporal Changes and Influencing Factors of the Coupled Production–Living–Ecological Functions in the Yellow River Basin, China
Abstract
:1. Introduction
2. Data Processing and Study Area
2.1. Construction of the PLEF Indicator System
2.2. Selection of Factors Influencing the PLEF Coupling Coordination Level in the YRB
2.3. Research Methods
2.3.1. Data Standardization
2.3.2. Revised Coupling Coordination Model
2.3.3. Spatial Analysis Method
2.3.4. Spatial Markov Chain Model
2.3.5. Geographically Weighted Random Forest Model
2.4. Data Sources
2.5. Study Area
3. Result
3.1. Temporal Evolution Characteristics of the PLEF Coupling Coordination Level in the YRB
3.1.1. Temporal Evolution Characteristics of the PLEF in the YRB
3.1.2. Spatial Differentiation Characteristics of PLEF Coupling Coordination in the YRB
3.1.3. Dynamic Transfer Characteristics of the PLEF Coupling Coordination Level in the YRB
3.2. Analysis of the Impact Mechanism of the PLEF Coupling Coordination Level in the YRB
3.2.1. Overall Analysis of the Influencing Factors
3.2.2. Heterogeneity Analysis of the Influencing Factors
- (a)
- Economic level
- (b)
- Social development
- (c)
- Terrain environment
3.2.3. Influence Mechanism of PLEF Coupling Coordination Level in the YRB
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, W.; Shi, J.; Xu, Z.; Wang, T.; Zhang, H.; Su, X. Evaluating the Sustainable Land Use in Ecologically Fragile Regions: A Case Study of the Yellow River Basin in China. Int. J. Environ. Res. Public Health 2022, 19, 3222. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Xi, F. Simulation of the evolution track of future Production–Living–Ecological Space under the framework of comprehensive assessment of climate change: A case study of Heilongjiang Province, China. Environ. Technol. Innov. 2023, 30, 103129. [Google Scholar] [CrossRef]
- Xie, X.; Li, X.; Fan, H.; Fan, H.; He, W. Spatial analysis of production-living-ecological functions and zoning method under symbiosis theory of Henan, China. Environ. Sci. Pollut. Res. 2021, 28, 69093–69110. [Google Scholar] [CrossRef]
- Zou, Y.; Yi, C.; Rao, Y.; Luo, F.; Lv, C.; Wu, P. Identify Optimization Type of Rural Settlements Based on “Production–Living–Ecological” Functions and Vitality: A Case Study of a Town in Northern China. Land 2023, 12, 1905. [Google Scholar] [CrossRef]
- Liberati, M.R.; Rittenhouse, C.D.; Vokoun, J.C. Addressing ecological, economic, and social tradeoffs of refuge expansion in constrained landscapes. Landsc. Ecol. 2019, 34, 627–647. [Google Scholar] [CrossRef]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Chen, Y.; Su, X.; Wang, X. Spatial transformation characteristics and conflict measurement of production-living-ecology: Evidence from urban agglomeration of China. Int. J. Environ. Res. Public Health 2022, 19, 1458. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior–A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, Q.; Cai, H. Unravelling regional development through the production-living-ecological perspective: Assessing heterogeneity and expert insights. Urban Clim. 2024, 55, 101937. [Google Scholar] [CrossRef]
- Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy: Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G. Identification and classification of urban PLES spatial functions based on multisource data and machine learning. Land 2022, 11, 1824. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Q. Quantitative recognition and characteristic analysis of production-living-ecological space evolution for five resource-based cities: Zululand, Xuzhou, Lota, Surf Coast and Ruhr. Remote Sens. 2021, 13, 1563. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Z.; Li, C.; Song, Z.; Zhang, X. Land use function transformation in the Jinong’an New Area based on ecological-production-living spaces and associated eco-environment effects. Acta Ecol. Sin. 2020, 40, 7113–7122. [Google Scholar]
- Wang, A.; Liao, X.; Tong, Z.; Du, W.; Zhang, J.; Liu, X.; Liu, M. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Fang, Y.; Ai, D.; Yang, Y.; Sun, W.; Zu, J. Multi-objective spatial suitability evaluation and conflict optimization considering productivity, sustainability, and livability in southwestern mountainous areas of China. Sustainability 2021, 14, 371. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable land use diagnosis based on the perspective of production–living–ecological spaces in China. Land Use Policy 2022, 122, 106386. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Wang, L.; Mi, X.; Wu, X.; Cheng, Z. Spatiotemporal evolution patterns of “production-living-ecological” spaces and the coordination level and optimization of the functions in Jilin Province. Sustainability 2021, 13, 13192. [Google Scholar] [CrossRef]
- Li, W.; Cai, Z.; Jin, L. Spatiotemporal characteristics and influencing factors of the coupling coordinated development of production-living-ecology system in China. Ecol. Indic. 2022, 145, 109738. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, X.; Nie, H.; Wang, X.; Zang, S. Coupling coordination analysis and obstacle factors identification of rural living-production-ecological functions in a farming-pastoral ecotone. Ecol. Indic. 2024, 158, 111398. [Google Scholar] [CrossRef]
- Yu, S.; Deng, W.; Xu, Y.; Zhang, X.; Xiang, H. Evaluation of the production-living-ecology space function suitability of Pingshan County in the Taihang mountainous area, China. J. Mt. Sci. 2020, 17, 2562–2576. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, W.; Sheng, Z.; Zhu, Z.; Tang, H. Eco-environmental effect and driving factors of changing “production-living-ecological space” in northern Xinjiang, China. Front. Ecol. Evol. 2023, 11, 1248702. [Google Scholar] [CrossRef]
- Li, D.; Cao, L.; Zhou, Z.; Zhao, K.; Du, Z.; Han, K. Coupling coordination degree and driving factors of new-type urbanization and low-carbon development in the Yangtze River Delta: Based on nighttime light data. Environ. Sci. Pollut. Res. 2022, 29, 81636–81657. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Xu, N.; Chen, W.; Wang, G.; Liang, J.; Pan, S.; Duan, B. Spatio-temporal variation and influencing factors of the coupling coordination degree of production-living-ecological space in China. Int. J. Environ. Res. Public Health 2022, 19, 10370. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, Q.; Su, K.; Zhan, H.; Lu, D.; Xiang, H.; Zhou, L. Identification and optimization of production-living-ecological space in an ecological foundation area in the upper reaches of the Yangtze River: A case study of Jiangxi District of Chongqing, China. Land 2021, 10, 863. [Google Scholar] [CrossRef]
- Doxiadis, C.A. Ekistics, the Science of Human Settlements: Ekistics starts with the premise that human settlements are susceptible of systematic investigation. Science 1970, 170, 393–404. [Google Scholar] [CrossRef]
- Sun, X.; Chu, D.; Li, Q.; Shi, Y.; Bi, A. Dynamic successive assessment of Rural Human Settlements Environment in China. Ecol. Indic. 2023, 157, 111177. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, L.; Tang, Y.; Jiang, Y. Understanding and evaluating the resilience of rural human settlements with a social-ecological system framework: The case of Chongqing Municipality, China. Land Use Policy 2024, 136, 106966. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze River economic Belt, China. Ecol. Indic. 2023, 147, 109925. [Google Scholar] [CrossRef]
- Lin, S.; Hou, L. SDGs-oriented evaluation of the sustainability of rural human settlement environment in Zhejiang, China. Heliyon 2023, 9, e13492. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Lin, N.; Lin, Y.; Yuan, S.; Zhang, L.; Zhu, J.; Wang, K.; Gan, M.; Zhu, C. Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China. Land Use Policy 2022, 116, 106058. [Google Scholar] [CrossRef]
- Xia, N.; Hai, W.; Tang, M.; Tang, M.; Song, J.; Quan, W.; Zhang, B.; Ma, M. Spatiotemporal evolution law and driving mechanism of production–living–ecological space from 2000 to 2020 in Xinjiang, China. Ecol. Indic. 2023, 154, 110807. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Zhi, C.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Qin, B. Optimization of spatial layout based on ESV-FLUS model from the perspective of “Production-Living-Ecological”: A case study of Wuhan City. Ecol. Model. 2023, 481, 110356. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, J. Characteristics and influencing mechanisms of production -living-ecological space dynamics in the Three Gorges Reservoir Area (TGRA), Chongqing, China. Reg. Sustain. 2024, 5, 100139. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zou, L. Spatial-temporal evolution and driving mechanism of rural production-living-ecological space in Pintan islands, China. Habitat Int. 2023, 137, 102833. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Hong, T.; Liang, N.; Li, H. Study on the Spatial and Temporal Evolution Characteristics and Driving Factors of the “Production–Living–Ecological Space” in Changfeng County. Sustainability 2023, 15, 10445. [Google Scholar] [CrossRef]
- Kong, D.; Chen, H.; Wu, K. The evolution of “Production-Living-Ecological” space, eco-environmental effects and its influencing factors in China. J. Nat. Resour. 2021, 36, 1116–1135. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. [Google Scholar] [CrossRef]
- Chung, K.L. Markov Chains; Springer: New York, NY, USA, 1967. [Google Scholar]
- Le Gallo, J. Space-time analysis of GDP disparities among European regions: A Markov chains approach. Int. Reg. Sci. Rev. 2004, 27, 138–163. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Wei, F.; Yang, M.; Gu, X.; Sun, Q.; Wang, X. Spatial and temporal characteristics and evolutionary prediction of urban health development efficiency in China: Based on super-efficiency SBM model and spatial Markov chain model. Ecol. Indic. 2023, 147, 109985. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, J.; McClure, S. Distribution of the environmental and socioeconomic risk factors on COVID-19 death rate across continental USA: A spatial nonlinear analysis. Environ. Sci. Pollut. Res. 2021, 28, 6587–6599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, E.; Zhang, C.; Liu, C.; Li, J. Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value Based on the Markov–FLUS Model in Ezhou City, China. Sustainability 2024, 16, 6237. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 2018, 98, 146–151. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Niang, G.A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.O.; Wolff, W.; Kalogirou, S. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2021, 36, 121–136. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A geographically weighted random forest approach to predict corn yield in the US corn belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, S.; Xu, S.; Zhang, J.; Mumtaz, F.; Zhang, M. Spatial patterns and its influencing factors on villages around the Ji-shape bend of the Yellow River. Front. Environ. Sci. 2024, 12, 1477693. [Google Scholar] [CrossRef]
- Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z. Evaluation and prediction of the level of high-quality development: A case study of the Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Deng, Z.; Ma, J.; Chen, G.; Zhang, M.; Li, D. Comparative Changes of Influence Factors of Rural Residential Area Based on Spatial Econometric Regression Model: A Case Study of Lishan Township, Hubei Province, China. Sustainability 2018, 10, 3403. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Zhao, Y.; Wang, K.; Zhao, M.; Ma, J.; Wu, J.; Xu, C.; Liu, W.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Liu, L.; Liang, L.; Gao, P.; Fan, C.; Wang, H.; Wang, H. Coupling relationship and interactive response between ecological protection and high-quality development in the Yellow River Basin. J. Nat. Resour. 2021, 36, 176–195. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J. Nonlinear impact and spatial effect of tourism urbanization on human settlement environment: Evidence from the Yellow River Basin, China. J. Clean. Prod. 2023, 428, 139432. [Google Scholar] [CrossRef]
- Takano, T.; Morita, H.; Nakamura, S.; Tagawa, T.; Kachi, N.; Kata, H.; Hayashi, Y. Evaluating the quality of life for sustainable urban development. Cities 2023, 142, 104561. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Xu, H. Response of ecosystem service values to land use change, 2002–2021. Ecol. Indic. 2024, 106, 111947. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, C.; Chen, E. Machine Learning in Modelling the Urban Thermal Field Variance Index and Assessing the Impacts of Urban Land Expansion on Seasonal Thermal Environment. Sustain. Cities Soc. 2024, 106, 105345. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, S.; Wan, D.; Liu, D. A study of land-economy-society-ecology coordination in the Yangtze River Delta based on coupled coordination degree model. Int. Rev. Econ. Financ. 2024, 95, 103474. [Google Scholar] [CrossRef]
- Willemen, L.; Hein, L.; Mensvoort, M.E.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- Balta, S.; Atik, M. Rural planning guidelines for urban-rural transition zones as a tool for the protection of rural landscape characters and retaining urban sprawl: Antalya case from Mediterranean. Land Use Policy 2022, 119, 106144. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Chen, E.; Li, J. Spatio-Temporal Characteristics and Influencing Factors of Land Disputes in China: Do Socio-Economic Factors Matter? Ecol. Indic. 2024, 160, 111938. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Chen, E.; Zhang, C.; Han, Y. Impact of seasonal global land surface temperature (LST) change on gross primary production (GPP) in the early 21st century. Sustain. Cities Soc. 2024, 110, 105572. [Google Scholar] [CrossRef]
- Wohlfart, C.; Kuenzer, C.; Chen, C.; Liu, G. Social–ecological challenges in the Yellow River basin (China): A review. Environ. Earth Sci. 2016, 75, 1066. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Indicator Layer | Indicator Weight | Indicator Attribute |
---|---|---|---|---|
Production function | Agricultural production level | Rate of land reclamation | 0.0977 | + |
Grain yield | 0.0964 | + | ||
Total value of production from fisheries, forestry, agriculture, and animal husbandry | 0.105 | + | ||
Nonagricultural production level | Corporate density | 0.1048 | + | |
Financial and insurance industry level | 0.1428 | + | ||
Percentage of the tertiary and secondary industries | 0.0405 | + | ||
Economic development benefits | Economic density | 0.1099 | + | |
Gross domestic product | 0.1175 | + | ||
Total imports and exports | 0.1843 | + | ||
Living function | Social security | Coverage rate of pension insurance | 0.0772 | + |
Unemployment rate | 0.0985 | − | ||
Public service capability | Education rate | 0.064 | + | |
Number of hospital beds per 10,000 residents | 0.0834 | + | ||
Public finance budget expenditure | 0.0725 | + | ||
Urban infrastructure level | Per capita road area | 0.0714 | + | |
Per capita electricity consumption | 0.1209 | + | ||
Population carrying capacity | Population density | 0.0921 | + | |
Urbanization rate | 0.463 | + | ||
Quality of life of the residents | Per capita general consumption expenditure | 0.0564 | + | |
Average salary for employees and staff | 0.102 | + | ||
Total consumer goods sales at retail | 0.1152 | + | ||
Ecological function | Ecological foundation | Forestland region | 0.1388 | + |
Grassland region | 0.1145 | + | ||
Water area | 0.1063 | + | ||
Value of ecological services | 0.0926 | + | ||
Ecological pressure | Industrial wastewater discharge volume | 0.1122 | − | |
Sulfur dioxide emissions | 0.0782 | − | ||
PM2.5 | 0.0627 | − | ||
Ecological environment condition | Per capita green space in a park | 0.0815 | + | |
Rate of green coverage in developed spaces | 0.0234 | + | ||
Ecological environment response | Thorough use of solid waste | 0.0988 | + | |
Harmless treatment rate of garbage | 0.0132 | + | ||
Number of environmental professionals | 0.0778 | + |
Criterion Layer | Characterization Layer | Indicator Layer | Symbol | VIF |
---|---|---|---|---|
Economic level | Economic development | Per capita GDP | RGDP | 6.532 |
Living standard | Per capita disposable income | DPI | 7.032 | |
Expenditure level | Engel’s coefficient | EC | 5.331 | |
Economic vitality | Nighttime light index | NTLI | 4.566 | |
Income | Average salary of staff and workers | WAGE | 8.134 | |
Social development | Level of public service facilities | General public budget expenditure | GPBE | 2.321 |
Urbanization level | Urbanization rate | URBAN | 3.465 | |
Medical resources | Number of hospital beds per thousand residents | HBS | 7.923 | |
Traffic level | Per capita road area | RPA | 6.021 | |
Communication resources | Communication coverage rate | CC | 7.971 | |
Terrain and environment | Relief | Slope | AC | 3.512 |
Vegetation level | Fractional vegetation cover | FCV | 2.125 | |
Hydrological conditions | Hydrological index | HI | 5.160 | |
Air quality | NO2 | NO2 | 2.913 | |
Land use degree | Land development intensity | LOD | 5.459 |
Coupling Coordination Index | Coupling Coordination Type | Characteristic |
---|---|---|
0 < D ≤ 0.3 | Serious imbalance | Each function has a very limited degree of growth, and there are substantial mutual constraints and very little coordination between functions. |
0.3 < D ≤ 0.4 | Mild imbalance | Each function has a comparatively modest degree of development, and there is little coordination between them. |
0.4 < D ≤ 0.6 | Basic coordination | Each function has a comparatively high degree of growth, and the phenomenon of mutual constraint steadily diminishes while there is some mutual promotion. |
0.6 < D ≤ 0.7 | Good coordination | Each function has a comparatively high degree of development, which has a positive promoting impact and demonstrates a tendency of coordinated development. |
0.7 < D ≤ 1 | High coordination | There is a high degree of connection and coordinated development between the functions, and the different functions’ levels of development and mutual reinforcement are noteworthy. |
2010 | 2014 | 2018 | 2022 | |
---|---|---|---|---|
Moran’s I | 0.137 * | 0.202 *** | 0.221 *** | 0.229 ** |
Z | 1.7361 | 2.5747 | 2.7321 | 2.7633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhang, M.; Hu, C.; Ma, L.; Chen, E.; Zhang, C.; Xia, G. Spatiotemporal Changes and Influencing Factors of the Coupled Production–Living–Ecological Functions in the Yellow River Basin, China. Land 2024, 13, 1909. https://doi.org/10.3390/land13111909
Lu Z, Zhang M, Hu C, Ma L, Chen E, Zhang C, Xia G. Spatiotemporal Changes and Influencing Factors of the Coupled Production–Living–Ecological Functions in the Yellow River Basin, China. Land. 2024; 13(11):1909. https://doi.org/10.3390/land13111909
Chicago/Turabian StyleLu, Zidao, Maomao Zhang, Chunguang Hu, Lianlong Ma, Enqing Chen, Cheng Zhang, and Guozhen Xia. 2024. "Spatiotemporal Changes and Influencing Factors of the Coupled Production–Living–Ecological Functions in the Yellow River Basin, China" Land 13, no. 11: 1909. https://doi.org/10.3390/land13111909
APA StyleLu, Z., Zhang, M., Hu, C., Ma, L., Chen, E., Zhang, C., & Xia, G. (2024). Spatiotemporal Changes and Influencing Factors of the Coupled Production–Living–Ecological Functions in the Yellow River Basin, China. Land, 13(11), 1909. https://doi.org/10.3390/land13111909