Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation
Abstract
:1. Introduction
1.1. Challenges Facing Biodiversity Conservation
1.2. The Leading Role of Spain, the European Union and Andalusia in the Conservation of Biodiversity
1.3. Geographic Information Technologies for Mapping Green Infrastructures
1.4. Objectives
- Design a methodology to facilitate GI mapping.
- Identify specific threats to existing PAs arising from land use and land cover changes over a recent highly dynamic time period (1984–2007).
- Identify and map the current PAs which, due to their characteristics and high ecological values, will be integrated as a priority into existing GI.
- Locate and assess those areas, currently unprotected, which could be added to the existing GI resource, due to their characteristics and values.
- Assess the current connectivity between the different PAs of the RENPA and determine the barriers that may hinder or interrupt the flow of species.
- Assess the possible repercussions of GI on territorial planning.
2. Materials and Methods
2.1. Study Area
2.2. Temporal Dimension
2.3. Data and Methods
2.3.1. Green Infrastructure Components and Approach
- (1)
- Protected areas connectivity assessment;
- (2)
- Green infrastructure mapping using a multi-criteria evaluation (MCE) approach;
- (3)
- Ecological connectivity assessment.
Protected Area Connectivity Assessment
- -
- Core areas: The conservation of fauna and flora is a priority in these areas due to their level of governmental protection. Core areas include the PAs themselves, Habitats of Community Interest, and other ecosystems of high ecological value (wetlands, gallery forests, forest areas, coastal plains, etc.).
- -
- Ecological corridors: These seek to maintain the interconnection between core areas through links that guarantee the conditions for the movement and development of species. Linear corridors include rivers, gallery forests and livestock trails.
- -
- Buffer areas: We define these as areas of influence of 5 km around the core areas. We consider them as transition areas to safeguard the ecological network. They allow land use that is compatible with biodiversity conservation.
- -
- Other multifunctional elements: These are mainly composed of agricultural land that is managed sustainably.
Green Infrastructure Mapping Using Multi-Criteria Evaluation (MCE)
Biophysical Criteria
- -
- Slopes (S) and Aspects (A): gentle slopes and north- and west-facing sites tend to have lower exposure to direct sunlight, which affects soil stability and reduces the likelihood of landslides.
- -
- Proximity to forest areas (PFA): forest environments are suitable for GI, among other reasons, because of the ecosystem services they provide, because they are less fragmented and because of the biological diversity they harbour.
Social Criteria
- -
- Road safety (RS): The passage of wildlife crossing roads severely compromises their safety in their movements between core areas. For this reason, we give greater priority to those infrastructures that support lower traffic densities and, therefore, entail less risk of accidents for the species.
- -
- Habitats of Community Interest (HCIs) and proximity to Linear Corridors (PLC): Habitats of Community Interest, rivers and livestock trails are fundamental elements in the GI as links between core areas, so we prioritise proximity to these areas.
Socioeconomic Criteria
- -
- Accessibility from urban areas (AUA): The definition of GI advocates that it should be accessible for the cultural enjoyment of the surrounding population. However, we consider that the proximity of densely populated urban centres may interfere with its protection. For this reason, we promote proximity to small population centres.
- -
- Land use and land cover fragmentation (LULCF): Less fragmented territories are more likely to form stable ecosystems that facilitate wildlife conservation. Therefore, we prioritise those land use/land cover (LULC) changes that contribute positively to the expansion of GI in our territory. First, we apply the reclassification of the MUCVA 1:25,000-scale map series developed by the DUSPANAC project [71,72] to two maps from different time periods, 1984 and 2007. Secondly, we prepared a fragmentation map following the cross-tabulation methodology (Table S1, Supplementary Materials) presented by Rodriguez-Rodriguez et al. [73]. From highest to lowest priority, we established four categories: non-fragmented categories, a with positive impact on GI (positive); fragmented natural or semi-natural categories (fragmented positive); categories with neutral impact (neutral); and categories with negative impact (negative).
Configuration of Restrictions
2.3.2. Ecological Connectivity Assessment
2.3.3. Assessment of the Impact of Land Use/Land Cover Changes on Green Infrastructure
3. Results
3.1. Analysis of Land Use/Land Cover Change from 1984 to 2007
3.2. Analysis of the Multi-Criteria Evaluation Factors
3.3. Analysis of the Constraints
3.4. Land Suitability for Green Infrastructure
3.5. Definition of Ecological Corridors
3.6. Connectivity of Almeria’s Protected Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | The RENPA currently contains 311 Protected Natural Spaces. However, because two or more protected areas overlap in the same territory (two or more figures of protection concur), the term ‘protected area’ has been coined to designate the largest continuous geographical area over which one or more protection figures are established. Considering this interpretation, there are 249 protected areas in Andalusia. |
2 | https://www.juntadeandalucia.es/boja/2018/130/1 (accessed on 6 November 2024). |
3 | https://www.boe.es/diario_boe/txt.php?id=BOE-A-2021-11614 (accessed on 6 November 2024). |
References
- Sarkodie, S.A.; Strezov, V. Economic, social and governance adaptation readiness for mitigation of climate change vulnerability: Evidence from 192 countries. Sci. Total Environ. 2019, 656, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.; Leal Filho, W.; Casaleiro, P.; Nagy, G.J.; Diaz, H.; Al-Amin, A.Q.; de Andrade Guerra, J.B.; Hurlbert, M.; Farooq, H.; Klavins, M.; et al. Climate change policies and agendas: Facing implementation challenges and guiding responses. Environ. Sci. Policy 2020, 104, 190–198. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Barr, S.L.; Lemieux, C.J. Assessing organizational readiness to adapt to climate change in a regional protected areas context: Lessons learned from Canada. Mitig. Adapt. Strat. Glob. Change 2021, 26, 34. [Google Scholar] [CrossRef]
- Coldrey, K.M.; Turpie, J.K. The future representativeness of Madagascar’s protected area network in the face of climate change. Afr. J. Ecol. 2021, 59, 253–263. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, D.; Martínez-Vega, J. Protected area effectiveness against land development in Spain. J. Environ. Manag. 2018, 215, 345–357. [Google Scholar] [CrossRef]
- Custodio, E.; Sahuquillo, A.; Albiac, J. Sustainability of intensive groundwater development: Experience in Spain. Sustain. Water Resour. Manag. 2019, 5, 11–26. [Google Scholar] [CrossRef]
- Camacho, C.; Negro, J.J.; Elmberg, J.; Fox, A.D.; Nagy, S.; Pain, D.J.; Green, A.J. Groundwater extraction poses extreme threat to Doñana World Heritage Site. Nat. Ecol. Evol. 2022, 6, 654–655. [Google Scholar] [CrossRef]
- Llamas, M.R. Conflicts between wetland conservation and groundwater exploitation: Two case histories in Spain. Environ. Geol. Water Sci. 1988, 11, 241–251. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, D.; Martínez-Vega, J. Analysing subtle threats to conservation: A nineteen year assessment of fragmentation and isolation of Spanish protected areas. Landsc. Urban. Plan. 2019, 185, 107–116. [Google Scholar] [CrossRef]
- Santiago-Ramos, J.; Feria-Toribio, J.M. Assessing the effectiveness of protected areas against habitat fragmentation and loss: A long-term multi-scalar analysis in a mediterranean region. J. Nat. Conserv. 2021, 64, 126072. [Google Scholar] [CrossRef]
- Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, M.P. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain Between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE 2016, 11, e0161344. [Google Scholar] [CrossRef]
- García, F.J. Planeamiento urbanístico y cambio climático: La infraestructura verde como estrategia de adaptación. Cuad. Investig. Urbanística 2019, 122, 1–101. [Google Scholar] [CrossRef]
- UNEP-WCMC; IUCN. Protected Planet Report; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland, 2016; 84p. [Google Scholar]
- He, M.; Cliquet, A. Challenges for Protected Areas Management in China. Sustainability 2020, 12, 5879. [Google Scholar] [CrossRef]
- Hermoso, V.; Morán-Ordóñez, A.; Lanzas, M.; Brotons, L. Designing a network of green infrastructure for the EU. Landsc. Urban. Plan. 2020, 196, 103732. [Google Scholar] [CrossRef]
- Coppola, E.; Rouphael, Y.; De Pascale, S.; Moccia, F.D.; Cirillo, C. Ameliorating a complex urban ecosystem through instrumental use of softscape buffers: Proposal for a green infrastructure network in the metropolitan area of Naples. Front. Plant Sci. 2019, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Zulian, G.; Geneletti, D. Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy). Land 2018, 7, 112. [Google Scholar] [CrossRef]
- Ministerio de Fomento. Ley De 7 De Diciembre De 1916, De Parques Nacionales De España. Gaceta de Madrid. 18 December 1916, p. 575. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1916-5866 (accessed on 22 July 2024).
- Mollá, M. Las políticas de parques nacionales en España. Ería 2015, 97, 157–171. [Google Scholar] [CrossRef]
- Hewitt, R.; Martínez, F.J.E.; Pera, F. Cambios recientes en la ocupación del suelo de los parques nacionales españoles y su entorno. Cuad. Geográficos Univ. Granada 2016, 55, 46–84. [Google Scholar]
- Ojeda-Rivera, J.F. Desarrollo económico, transformación de paisajes y protección de la naturaleza en Andalucía. Cuad. Geográficos Univ. Granada 1987, 16, 47–56. [Google Scholar] [CrossRef]
- Tolón, A.; Lastra, X. Los Espacios Naturales Protegidos. Concepto, evolución y situación actual en España. M + A. Rev. Electrónica Medioambiente 2008, 5, 1–25. Available online: https://www.ucm.es/data/cont/media/www/pag-41228/ART/A.TOLON/X./LASTRA.pdf (accessed on 6 November 2024).
- Elorrieta-Sanz, B.; Olcina-Cantos, J. Infraestructura verde y ordenación del territorio en España. Ciudad. Territorio. Estud. Territ. 2021, 207, 23–46. [Google Scholar] [CrossRef]
- Bishop, K.; Phillips, A.; Warren, L. Protected for ever?: Factors shaping the future of protected areas policy. Land Use Policy 1995, 12, 291–305. [Google Scholar] [CrossRef]
- Beaufoy, G. The EU Habitats Directive in Spain: Can it contribute effectively to the conservation of extensive agro -ecosystems? J. Appl. Ecol. 1998, 35, 974–978. [Google Scholar] [CrossRef]
- de la Fuente, B.; Mateo-Sánchez, M.C.; Rodríguez, G.; Gastón, A.; de Ayala, R.P.; Colomina-Pérez, D.; Saura, S. Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure. Land Use Policy 2018, 75, 429–441. [Google Scholar] [CrossRef]
- Farina, A. Principles and Methods in Landscape Ecology; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Nix, H.A. Ecological Principles for the Design of Wildlife Corridors. Conserv. Biol. 1993, 7, 627–630. Available online: http://www.jstor.org/stable/2386693 (accessed on 6 November 2024). [CrossRef]
- Rodríguez, V.; Aguilera, F. ¿ Infraestructuras verdes en la planificación territorial española? Ciudad. Territ. Estud. Territ. 2016, 48, 399–418. Available online: https://recyt.fecyt.es/index.php/CyTET/article/view/76490 (accessed on 6 November 2024).
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar] [CrossRef]
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Committee of the Regions: Brussels, Belgium, 2013; Available online: https://www.eea.europa.eu/policy-documents/green-infrastructure-gi-2014-enhancing (accessed on 6 November 2024).
- MITECO Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Estrategia Nacional de Infraestructura Verde y de la Conectividad y Restauración Ecológicas; MITECO: Madrid, Spain, 2021; Available online: https://www.miteco.gob.es/es/biodiversidad/temas/ecosistemas-y-conectividad/infraestructura-verde/infr_verde.html (accessed on 6 August 2024).
- Chang, Q.; Li, X.; Huang, X.; Wu, J. A GIS-Based Green Infrastructure Planning for Sustainable Urban Land Use and Spatial Development. Procedia Environ. Sci. 2012, 12, 491–498. [Google Scholar] [CrossRef]
- Firehock, K.E.; Walker, R.A. Green Infrastructure: Map and Plan the Natural World with GIS; Esri Press: Redlands, CA, USA, 2019; p. 282. [Google Scholar]
- Aguilera, F.; Rodríguez, V.M.; Gómez, M. Definición de infraestructuras verdes: Una propuesta metodológica integrada mediante análisis espacial. Doc. Anal. Geogr. 2018, 64, 313–337. [Google Scholar] [CrossRef]
- Velázquez, J.C.; Rodríguez, V.M. Identification and assessment of green infrastructure in the Community of Madrid. Landsc. Res. 2023, 48, 297–312. [Google Scholar] [CrossRef]
- Gallardo, M.; Martínez-Vega, J. Modeling land-use scenarios in protected areas of an urban region in Spain. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho, M.T., Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer: Berlin, Germany, 2018; pp. 307–328. [Google Scholar] [CrossRef]
- Mironova, E.E. GIS modeling of green infrastructure of mediterranean cities for the management of urbanized ecosystems. Arid Ecosyst. 2021, 11, 149–155. [Google Scholar] [CrossRef]
- Caparrós, J.L.; Milán, J.; Rueda, N.; de Pablo, J. Mapping green infrastructure and socioeconomic indicators as a public management tool: The case of the municipalities of Andalusia (Spain). Environ. Sci. Eur. 2020, 32, 144. [Google Scholar] [CrossRef]
- Valladares, F.; Gil, P.; Forner, A. Bases Científico-Técnicas Para la Estrategia Estatal de Infraestructura Verde y de la Conectividad y Restauración Ecológicas; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2017; Available online: https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/temas/ecosistemas-y-conectividad/basescientifico-tecnicaseeivcre_tcm30-479558.pdf (accessed on 6 November 2024).
- Comunidad de Madrid. Planificación de la Red de Corredores Ecológicos de la Comunidad de Madrid: Identificación de Oportunidades Para El Bienestar Social y la Conservación del Patrimonio Natural; Consejería de Medio Ambiente, Vivienda y Ordenación del Territorio: Madrid, Spain, 2010; Available online: https://www.comunidad.madrid/sites/default/files/aud/urbanismo/cma_urb_es_memoria_corredores_ecologicos_-_parte_1.pdf (accessed on 6 November 2024).
- Dudley, N. (Ed.) Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Duflot, R.; Aviron, S.; Ernoult, A.; Fahrig, L.; Burel, F. Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: A case study. Ecol. Res. 2015, 30, 75–83. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Song, J.; Zhu, W.; Zhou, Y. Semi-natural habitats: A comparative research between the European Union and China in agricultural landscapes. Land Use Policy 2024, 141, 107115. [Google Scholar] [CrossRef]
- Fernández, E.M.; Pérez, A.C.; Reyes, J.E.; del Corral, D.F.; Cruzada, S.M.; Mardones, F.C.; Vázquez, J.A.C. Lo natural es político. Las áreas protegidas y la construcción del medioambiente como objeto de gobierno en Andalucía (1978–1989). Investig. Reg. 2023, 1, 39–55. Available online: https://recyt.fecyt.es/index.php/IR/article/view/94827 (accessed on 6 November 2024).
- Junta de Andalucía. Informe Medio Ambiente en Andalucía; Consejería de Medio Ambiente: Sevilla, Spain, 1997; Available online: https://www.juntadeandalucia.es/medioambiente/portal/acceso-rediam/informe-medio-ambiente/los-25-primeros-informes-de-medio-ambiente-en-andalucia-1987–2011 (accessed on 6 August 2024).
- Junta de Andalucía. Áreas Protegidas de la Renpa. Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-%C3%ADndice/-/asset_publisher/zX2ouZa4r1Rf/content/mapa-actualizado-de-la-renpa/20151 (accessed on 16 August 2024).
- Armas, C.; Rodríguez-Echeverría, S.; Pugnaire, F.I. A field test of the stress-gradient hypothesis along an aridity gradient. J. Veg. Sci. 2011, 22, 818–827. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; Peña-Fernández, A.; Molina, L.; Aguilera, P.A. The Role of Technology in Greenhouse Agriculture: Towards a Sustainable Intensification in Campo de Dalías (Almería, Spain). Agronomy 2021, 11, 101. [Google Scholar] [CrossRef]
- Sánchez, L.M. Modelo territorial innovador y articulación urbana en el poniente almeriense. Investig. Geogr. 2013, 59, 57–74. [Google Scholar] [CrossRef]
- Górgolas, P. El Urbanismo en el Litoral Andaluz Tras la Última Burbuja Inmobiliaria—Cambio de Ciclo o Reincidencia; Tirant Humanidades: Valencia, Spain, 2020; 215p. [Google Scholar]
- Diputación de Almería. Agenda 21 Provincia de Almería; Diputación de Almería: Almería, Spain, 2009; Available online: https://www.dipalme.org/Servicios/Anexos/Anexos.nsf/58C0DDAA24FEE3E3C1257650003A80FC/$file/Documento%20de%20diagnostico%20volumen%20I.pdf (accessed on 6 August 2024).
- Eastman, J. TerrSet 2020. In Geospatial Monitoring and Modeling System Tutorial; Clark University: Worcester, MA, USA, 2020; Available online: https://clarklabs.org/wp-content/uploads/2020/05/Terrset-Manual.pdf (accessed on 6 November 2024).
- Junta de Andalucía. Plan Director Para la Mejora de la Conectividad Ecológica en Andalucía, Una Estrategia de Infraestructura Verde; Consejería Medio Ambiente y Ordenación del Territorio: Sevilla, Spain, 2018; Available online: https://www.juntadeandalucia.es/sites/default/files/2021-06/PDMCEA_areas_estrategicas_2018.pdf (accessed on 6 August 2024).
- Vogt, P. User Guide of Guidos Toolbox; JRC: Brussels, Belgium, 2017; Available online: https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/ (accessed on 6 August 2024).
- Wickham, J.; Riitters, K.; Vogt, P.; Costanza, J.; Neale, A. An inventory of continental US terrestrial candidate ecological restoration areas based on landscape context. Restor. Ecol. 2017, 25, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Osewe, E.O.; Niţă, M.D.; Abrudan, I.V. Assessing the Fragmentation, Canopy Loss and Spatial Distribution of Forest Cover in Kakamega National Forest Reserve, Western Kenya. Forests 2022, 13, 2127. [Google Scholar] [CrossRef]
- Clerici, N.; Vogt, P. Ranking European regions as providers of structural riparian corridors for conservation and management purposes. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 477–483. [Google Scholar] [CrossRef]
- Rincón, V.; Velázquez, J.; Pascual, Á.; Herráez, F.; Gómez, I.; Gutiérrez, J.; Sánchez, B.; Hernando, A.; Santamaría, T.; Sánchez-Mata, D. Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: Implications for their conservation. Biodivers. Conserv. 2022, 31, 585–612. [Google Scholar] [CrossRef]
- Schmid, M.S.; Aubry, C.; Grigor, J.; Fortier, L. The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Limnol. Oceanogr. Methods 2016, 15, 129–160. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban. Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef]
- Gómez, M.; Barredo, J.I. Sistemas de Información Geográfica y Evaluación Multicriterio; Ra-Ma: Madrid, Spain, 2005; p. 304. [Google Scholar]
- Romero, C. Teoría de la Decisión Multicriterio: Conceptos, Técnicas y Aplicaciones; Alianza Universidad-Textos: Madrid, Spain, 1993; p. 195. [Google Scholar]
- Cunha, N.S.; Magalhães, M.R. Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecol. Indic. 2019, 104, 802–818. [Google Scholar] [CrossRef]
- Dindaroglu, T. Determination of ecological networks for vegetation connectivity using GIS & AHP technique in the Mediterranean degraded karst ecosystems. J. Arid Environ. 2021, 188, 104385. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980; p. 343. [Google Scholar]
- Escobar, F.; Hewitt, R.; Hernández, V. Usos del suelo en los parques nacionales españoles. Evolución y modelado participativo. In Proyectos de Investigación en Parques Nacionales; Amengual, P., Asensio, B., Eds.; Organismo Autónomo de Parques Nacionales: Madrid, Spain, 2015; pp. 175–211. [Google Scholar]
- Hewitt, R.; Van Delden, H.; Escobar, F. Participatory land use modelling, pathways to an integrated approach. Environ. Model. Softw. 2014, 52, 149–165. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, D.; Martínez-Vega, J.; Echavarría, P. A twenty-year GIS-based assessment of environmental sustainability of land use changes in and around protected areas of a fast developing country: Spain. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 169–179. [Google Scholar] [CrossRef]
- Boitani, L.; Falcucci, A.; Maiorano, L.; Rondinini, C. Ecological Networks as Conceptual Frameworks or Operational Tools in Conservation. Conserv. Biol. 2007, 21, 1414–1422. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.M.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 2013, 88, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, R.; Carver, S. Linking wilderness mapping and connectivity modelling: A methodological framework for wildland network planning. Biol. Conserv. 2020, 251, 108679. [Google Scholar] [CrossRef]
- Cole, J.R.; Koen, E.L.; Pedersen, E.J.; Gallo, J.A.; Kross, A.; Jaeger, J.A. Impacts of anthropogenic land transformation on species-specific habitat amount, fragmentation, and connectivity in the Adirondack-to-Laurentians (A2L) transboundary wildlife linkage between 2000 and 2015: Implications for conservation and ecological restoration. Landsc. Ecol. 2023, 38, 1–31. [Google Scholar] [CrossRef]
- Gallo, J.A.; Butts, E.C.; Miewald, T.A.; Foster, K.A. Comparing and Combining Omniscape and Linkage Mapper Connectivity Analyses in Western Washington; Conservation Biology Institute: Corvallis, OR, USA, 2019. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Hörnsten, L.; Fredman, P. On the distance to recreational forests in Sweden. Landsc. Urban. Plan. 2000, 51, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Zhao, B. Assessing the inequities in access to peri-urban parks at the regional level: A case study in China’s largest urban agglomeration. Urban. For. Urban. Green. 2021, 65, 127334. [Google Scholar] [CrossRef]
- Serrano, P.Y. It Is What It Is: Local Resistances and Life-Sustaining Strategies in Western Almeria’s Agro-Industrial Plastic Sea; The University of Manchester: Manchester, UK, 2022. [Google Scholar]
- Araque, E. Las adquisiciones de montes en la provincia de Almería (1940-1992). Los ejemplos de las cuencas del Andarax y Almanzora. Nimbus Rev. Climatol. Meteorol. Paisaje 2012, 29, 61–79. Available online: http://hdl.handle.net/10835/2994 (accessed on 6 November 2024).
- Mendoza-Fernández, A.; Martínez-Hernández, F.; Garrido-Becerra, J.A.; Pérez-García, F.J.; Medina-Cazorla, J.M.; de Giles, J.P.; Mota, J.F. Is the endangered flora of the Iberian southeast adequately protected? Gaps in the Network of Protected Natural Areas of Andalusia (RENPA): The case of the province of Almería. Acta Bot. Gall. 2009, 156, 637–648. [Google Scholar] [CrossRef]
- Muñoz, A.; Requejo, J. Recursos Naturales y Crecimiento Económico en el Campo de Dalías; Agencia de Medio Ambiente: Sevilla, Spain, 1991; 256p. [Google Scholar]
- Martínez-Vega, J.; Mili, S.; Gallardo, M. Modelling Land Use and Land Cover Changes in the Mediterranean Agricultural Ecosystems. In Modeling for Sustainable Management in Agriculture, Food and the Environment; Vlontzos, G., Ampatzidis, Y., Manos, B., Pardalos, P.M., Eds.; Routledge-CRC Press: Boca Raton, FL, USA, 2022; pp. 40–73. [Google Scholar]
- Collinge, S.K. Spatial arrangement of habitat patches and corridors: Clues from ecological field experiments. Landsc. Urban. Plan. 1998, 42, 157–168. [Google Scholar] [CrossRef]
- Salviano, I.R.; Gardon, F.R.; dos Santos, R.F. Ecological corridors and landscape planning: A model to select priority areas for connectivity maintenance. Landsc. Ecol. 2021, 36, 3311–3328. [Google Scholar] [CrossRef]
- Zhou, D.; Song, W. Identifying Ecological Corridors and Networks in Mountainous Areas. Int. J. Environ. Res. Public Health 2021, 18, 4797. [Google Scholar] [CrossRef]
- Martín, B.; Ortega, E.; de Isidro, A.; Iglesias-Merchan, C. Improvements in high-speed rail network environmental evaluation and planning: An assessment of accessibility gains and landscape connectivity costs in Spain. Land Use Policy 2021, 103, 105301. [Google Scholar] [CrossRef]
- Alados, C.L.; Puigdefábregas, J.; Martínez-Fernández, J. Ecological and socio-economical thresholds of land and plant-community degradation in semi-arid Mediterranean areas of southeastern Spain. J. Arid Environ. 2011, 75, 1368–1376. [Google Scholar] [CrossRef]
- Fonseca, A.; Zina, V.; Duarte, G.; Aguiar, F.C.; Rodríguez-González, P.M.; Ferreira, M.T.; Fernandes, M.R. Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability 2021, 13, 10508. [Google Scholar] [CrossRef]
- Egea, F.J.; Glass, R. Almeria: A model for sustainable intensive production. In Aspects of Applied Biology; Rothamsted Research: Harpenden, UK, 2017; Volume 136, pp. 233–236. [Google Scholar]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Valera, D.L. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. [Google Scholar] [CrossRef] [PubMed]
- Entrena-Duran, F. (Ed.) Expansion of Greenhouse Farming in the Area of El Ejido: A Case Study on the Environmental and Social Consequences of Agroindustry in Southeast Spain. In Food Production and Eating Habits from Around the World: A Multidisciplinary Approach; Nova Science Publishers: New York, NY, USA, 2015; Chapter 3; pp. 29–44. [Google Scholar]
- Sarrión-Gavilán, M.D.; Benítez-Márquez, M.D.; Mora-Rangel, E.O. Spatial distribution of tourism supply in Andalusia. Tour. Manag. Perspect. 2015, 15, 29–45. [Google Scholar] [CrossRef]
- Díez-Garretas, B.; Comino, O.; Pereña, J.; Asensi, A. Spatio-temporal changes (1956-2013) of coastal ecosystems in Southern Iberian Peninsula (Spain). Mediterr. Bot. 2019, 40, 111–119. [Google Scholar] [CrossRef]
- Yacamán, C.; Ferrer, D.; Mata, R. Green infrastructure planning in metropolitan regions to improve the connectivity of agricultural landscapes and food security. Land 2020, 9, 414. [Google Scholar] [CrossRef]
- García-Álvarez, D. The Influence of Scale in LULC Modeling. A Comparison Between Two Different LULC Maps (SIOSE and CORINE, Lecture Notes in Geoinformation and Cartography). In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M., Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer: Cham, Germany, 2018; pp. 187–213. [Google Scholar] [CrossRef]
- Zaragozí, B.; Rodríguez-Sala, J.J.; Trilles, S.; Ramón-Morte, A. Integration of New Data Layers to Support the Land Cover and Use Information System of Spain (SIOSE, GISTAM 2020. Communications in Computer and Information Science): An Approach from Object-Oriented Modelling. In Geographical Information Systems Theory, Applications and Management; Grueau, C., Laurini, R., Ragia, L., Eds.; Springer: Cham, Germany, 2021; Volume 1411, pp. 85–101. [Google Scholar] [CrossRef]
- MITECO. Mapa Forestal de España a Escala 1:50.000 (MFE50), Madrid, Spain. 2024. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/mapa-forestal-espana/mfe_50.html (accessed on 29 August 2024).
- Büttner, G. CORINE Land Cover and Land Cover Change Products (Remote Sensing and Digital Image Processing). In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 55–74. [Google Scholar] [CrossRef]
- Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. (Eds.) European Landscape Dynamics: Corine Land Cover Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.G.; Ichinose, T.; Chen, W.; Skidmore, A.K. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol. Model. 2011, 222, 748–761. [Google Scholar] [CrossRef]
- Ghoddousi, A.; Bleyhl, B.; Sichau, C.; Ashayeri, D.; Moghadas, P.; Sepahvand, P.; Hamidi, A.K.; Soofi, M.; Kuemmerle, T. Mapping connectivity and conflict risk to identify safe corridors for the Persian leopard. Landsc. Ecol. 2020, 35, 1809–1825. [Google Scholar] [CrossRef]
- CNIG. Centro de Descargas; Centro Nacional de Información Geográfica: Madrid, Spain, 2024; Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 6 August 2024).
- REDIAM. Descarga de Información Ambiental; Red de Información Ambiental de Andalucía: Sevilla, Spain, 2024; Available online: https://portalrediam.cica.es/descargas (accessed on 6 August 2024).
Criteria (Columns) | WLC | |||
---|---|---|---|---|
Factors (Rows) | Biophysical | Social | Socioeconomic | Score |
Weighting | 0.105 | 0.637 | 0.258 | |
Slope (S) | 0.150 | 0.016 | ||
Aspect (A) | 0.150 | 0.016 | ||
Proximity to forest areas (PFA) | 0.700 | 0.073 | ||
Road Safety (RS) | 0.100 | 0.064 | ||
Presence of HCIs 1 | 0.300 | 0.191 | ||
Proximity to linear corridors (PLC) | 0.600 | 0.382 | ||
Land Use fragmentation (LULCF) | 0.600 | 0.155 | ||
Population Accessibility | 0.400 | 0.103 |
Land Use/Land Cover | Surface Area in 1984 (km2) | Surface Area in 2007 (km2) | 1984–2007 Difference (km2) | Growth 1984–2007 (Index in Base 100) 2 |
---|---|---|---|---|
Urban | 72.89 | 119.42 | 46.53 | 63.89 |
Industrial | 8.18 | 25.34 | 17.16 | 209.67 |
Road, rail, air, port and other technical infrastructure | 16.80 | 39.46 | 22.66 | 134.86 |
Water infrastructure, salt works and aquaculture | 11.95 | 17.64 | 5.69 | 47.59 |
Mining, landfill and construction sites | 29.01 | 85.29 | 56.27 | 193.96 |
Altered, eroded and felled | 204.99 | 113.63 | −91.36 | −44.57 |
Intensive greenhouse crops | 224.96 | 356.33 | 131.36 | 58.39 |
Intensive crops: irrigated woody crops | 71.70 | 135.71 | 64.01 | 89.28 |
Intensive crops: other irrigated crops | 531.30 | 424.85 | −106.45 | −20.04 |
Rainfed crops: other rainfed crops | 1964.20 | 1783.31 | −180.89 | −9.21 |
Rainfed crops: olive groves and vineyards | 31.99 | 63.37 | 31.38 | 98.10 |
Eucalyptus plantations | 0.77 | 0.75 | −0.01 | −1.57 |
Pine forests | 238.84 | 391.94 | 153.10 | 64.10 |
Other woodland or mixed woodland | 30.90 | 42.48 | 11.58 | 37.48 |
Pasture | 154.88 | 226.36 | 71.48 | 46.15 |
Scrubland | 5070.73 | 4838.83 | −231.89 | −4.57 |
Rivers and natural watercourses | 92.34 | 90.02 | −2.32 | −2.51 |
Natural lagoons | 0.01 | 1.30 | 1.29 | 11,727.27 |
Natural coastal system | 10.74 | 11.73 | 0.98 | 9.16 |
Non-tidal marshland | 1.21 | 1.22 | 0.01 | 0.41 |
Tidal marshland | 0.34 | 0.09 | −0.25 | −74.03 |
Sea and tidal areas | 0.40 | 0.07 | −0.33 | −82.29 |
S | A | pFA | RS | HCI | dLC | LUF | aUA | |
---|---|---|---|---|---|---|---|---|
S | −0.070 | −0.257 | −0.179 | −0.266 | 0.085 | 0.142 | −0.082 | |
A | −0.070 | 0.059 | 0.038 | 0.023 | −0.022 | 0.067 | 0.037 | |
pFA | −0.257 | 0.059 | 0.094 | −0.019 | 0.241 | 0.259 | 0.569 | |
RS | −0.179 | 0.038 | 0.094 | 0.099 | −0.158 | 0.118 | 0.061 | |
HCI | −0.266 | 0.023 | −0.019 | 0.099 | −0.105 | 0.169 | −0.079 | |
dLC | 0.085 | −0.022 | 0.241 | −0.158 | −0.105 | −0.097 | 0.182 | |
LUF | 0.142 | 0.067 | 0.259 | 0.118 | 0.169 | −0.097 | 0.181 | |
aUA | −0.082 | 0.037 | 0.569 | 0.061 | −0.079 | 0.182 | 0.181 |
ID | Area (km2) | Landscape Suitability | |||
---|---|---|---|---|---|
High (%) | Medium (%) | Low (%) | Null (%) | ||
1 | 63.88 | 26.40 | 15.46 | 56.83 | 1.31 |
2 | 50.64 | 25.79 | 18.13 | 53.69 | 2.39 |
3 | 43.32 | 1.54 | 47.62 | 42.59 | 8.25 |
4 | 36.21 | 10.93 | 49.35 | 15.41 | 24.31 |
5 | 35.33 | 25.91 | 40.85 | 32.41 | 0.82 |
6 | 34.75 | 22.14 | 21.76 | 52.99 | 3.12 |
7 | 21.64 | 35.90 | 38.90 | 12.41 | 12.80 |
8 | 20.78 | 18.61 | 10.90 | 70.50 | 0.00 |
9 | 19.61 | 9.07 | 6.00 | 84.93 | 0.00 |
10 | 18.14 | 31.26 | 24.21 | 35.04 | 9.49 |
11 | 14.76 | 17.76 | 38.00 | 19.39 | 24.85 |
12 | 14.24 | 7.24 | 37.24 | 55.52 | 0.00 |
13 | 13.21 | 20.04 | 36.58 | 43.38 | 0.00 |
14 | 7.71 | 0.05 | 96.96 | 0.44 | 2.55 |
15 | 5.59 | 13.68 | 46.27 | 15.72 | 24.32 |
MUCVA 1984 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Core | Background | Branch | Edge | Perforation | Islet | Bridge | Loop | Total | HFI | |
Nature Reserve | 5.59 | 0.18 | 0.01 | 0.11 | 0.14 | 0.00 | 0.00 | 0.00 | 6.02 | 1.94 |
National Park | 137.41 | 6.16 | 0.10 | 0.03 | 3.66 | 0.00 | 0.01 | 0.27 | 147.63 | 1.94 |
Natural Park | 887.28 | 68.70 | 1.54 | 1.09 | 20.63 | 0.10 | 0.41 | 0.64 | 980.39 | 1.91 |
Natural Site | 219.29 | 13.78 | 0.25 | 0.34 | 4.44 | 0.02 | 0.09 | 0.15 | 238.36 | 1.93 |
Special Area of Conservation | 1326.78 | 42.15 | 1.50 | 1.30 | 17.25 | 0.04 | 0.64 | 0.84 | 1390.50 | 1.96 |
Candidate GI | 468.05 | 109.88 | 2.15 | 3.62 | 19.00 | 0.20 | 0.57 | 0.79 | 604.25 | 1.79 |
Other PAs | 4.25 | 0.67 | 0.02 | 0.17 | 0.27 | 0.01 | 0.00 | 0.01 | 5.39 | 1.81 |
Buffer 5 km | 2712.75 | 767.22 | 14.01 | 27.86 | 115.45 | 2.03 | 5.34 | 3.69 | 3648.35 | 1.76 |
MUCVA 2007 | ||||||||||
Core | Background | Branch | Edge | Perforation | Islet | Bridge | Loop | Total | HFI | |
Nature Reserve | 5.56 | 0.18 | 0.01 | 0.12 | 0.15 | 0.00 | 0.00 | 0.00 | 6.02 | 1.94 |
National Park | 140.11 | 3.76 | 0.05 | 0.01 | 3.42 | 0.00 | 0.00 | 0.28 | 147.63 | 1.96 |
Natural Park | 885.03 | 69.55 | 1.64 | 1.50 | 21.08 | 0.10 | 0.63 | 0.86 | 980.39 | 1.91 |
Natural Site | 221.58 | 11.59 | 0.19 | 0.13 | 4.68 | 0.01 | 0.03 | 0.15 | 238.36 | 1.94 |
Special Area of Conservation | 1314.32 | 49.64 | 1.60 | 2.51 | 20.51 | 0.06 | 0.80 | 1.07 | 1390.50 | 1.95 |
Candidate GI | 488.74 | 86.32 | 2.06 | 6.30 | 18.66 | 0.27 | 0.81 | 1.10 | 604.25 | 1.82 |
Other PAs | 3.95 | 0.91 | 0.02 | 0.36 | 0.12 | 0.01 | 0.01 | 0.01 | 5.39 | 1.76 |
Buffer 5 km | 2582.43 | 879.06 | 16.79 | 49.95 | 106.28 | 2.18 | 7.21 | 4.46 | 3648.35 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navas González, Á.; Hewitt, R.J.; Martínez-Vega, J. Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation. Land 2024, 13, 1916. https://doi.org/10.3390/land13111916
Navas González Á, Hewitt RJ, Martínez-Vega J. Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation. Land. 2024; 13(11):1916. https://doi.org/10.3390/land13111916
Chicago/Turabian StyleNavas González, Álvaro, Richard J. Hewitt, and Javier Martínez-Vega. 2024. "Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation" Land 13, no. 11: 1916. https://doi.org/10.3390/land13111916
APA StyleNavas González, Á., Hewitt, R. J., & Martínez-Vega, J. (2024). Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation. Land, 13(11), 1916. https://doi.org/10.3390/land13111916