China–ASEAN Tourism Economic Relationship Network: A Geopolitical Risk Perspective
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Geopolitics and Tourism
2.2. Cross-Border Tourism
2.3. Distance Decay Theory and Multidimensional Distance Framework
2.4. Spatial Network of Tourism Economy and Its Influencing Factors
2.5. Filling in the Gaps
3. Methods and Data
3.1. Research Method
3.1.1. The Modified Gravity Model
3.1.2. Social Network Analysis (SNA)
3.1.3. The Quadratic Assignment Procedure (QAP)
3.2. Data Source
4. Results
4.1. Analysis of Tourism Economic Connection Strength and Tourism Economic Connection Quantity
4.2. Characterisation of the Structure of the China–ASEAN Network
4.2.1. Structural Characteristics of Overall and Individual Network
4.2.2. Cooperative Status Index
4.3. Analysis of Influencing Factors
4.3.1. Analysis of QAP Correlations
4.3.2. Analysis of QAP Regression
5. Discussions
6. Conclusions, Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.R.; Williams, A.M.; Park, S.; Chen, J.L. Spatial Spillovers of Agglomeration Economies and Productivity in the Tourism Industry: The Case of the UK. Tour. Manag. 2021, 82, 104201. [Google Scholar] [CrossRef]
- Ruan, W.-Q.; Zhang, S.-N. Can Tourism Information Flow Enhance Regional Tourism Economic Linkages? J. Hosp. Tour. Manag. 2021, 49, 614–623. [Google Scholar] [CrossRef]
- Li, M. The Belt and Road Initiative: Geo-Economics and Indo-Pacific Security Competition. Int. Aff. 2020, 96, 169–187. [Google Scholar] [CrossRef]
- Li, J.; Van Assche, A.; Li, L.; Qian, G. Foreign Direct Investment along the Belt and Road: A Political Economy Perspective. J. Int. Bus. Stud. 2022, 53, 902–919. [Google Scholar] [CrossRef]
- Yu, Z.; Xiao, Y.; Li, J. How Does Geopolitical Uncertainty Affect Chinese Overseas Investment in the Energy Sector? Evidence from the South China Sea Dispute. Energy Econ. 2021, 100, 105361. [Google Scholar] [CrossRef]
- Seyfi, S.; Hall, C.M.; Shabani, B. COVID-19 and International Travel Restrictions: The Geopolitics of Health and Tourism. Tour. Geogr. 2023, 25, 357–373. [Google Scholar] [CrossRef]
- Lanouar, C.; Goaied, M. Tourism, Terrorism and Political Violence in Tunisia: Evidence from Markov-Switching Models. Tour. Manag. 2019, 70, 404–418. [Google Scholar] [CrossRef]
- Cheng, M. Mobilize Airbnb Support in Times of Humanitarian Crisis. Curr. Issues Tour. 2023, 26, 701–707. [Google Scholar] [CrossRef]
- Nazli, M. Adaptation of Local Businesses to the New Era during the COVID-19 and the Russia-Ukraine War: Case of Çeşme. Curr. Issues Tour. 2024, 27, 1173–1184. [Google Scholar] [CrossRef]
- Mostafanezhad, M.; Cheer, J.M.; Sin, H.L. Geopolitical Anxieties of Tourism: (Im)Mobilities of the COVID-19 Pandemic. Dialogues Hum. Geogr. 2020, 10, 182–186. [Google Scholar] [CrossRef]
- Demiralay, S.; Kilincarslan, E. The Impact of Geopolitical Risks on Travel and Leisure Stocks. Tour. Manag. 2019, 75, 460–476. [Google Scholar] [CrossRef]
- Demir, E.; Gozgor, G.; Paramati, S.R. Do Geopolitical Risks Matter for Inbound Tourism? Eurasian Bus. Rev. 2019, 9, 183–191. [Google Scholar] [CrossRef]
- Hazbun, W. Globalisation, Reterritorialisation and the Political Economy of Tourism Development in the Middle East. Geopolitics 2004, 9, 310–341. [Google Scholar] [CrossRef]
- Kim, S.; Prideaux, B.; Timothy, D. Factors Affecting Bilateral Chinese and Japanese Travel. Ann. Tour. Res. 2016, 61, 80–95. [Google Scholar] [CrossRef]
- Henry, J. The Geopolitics of Travel Blogging. Geopolitics 2021, 26, 817–837. [Google Scholar] [CrossRef]
- Bhandari, K. Tourism and the Geopolitics of Buddhist Heritage in Nepal. Ann. Tour. Res. 2019, 75, 58–69. [Google Scholar] [CrossRef]
- Gozgor, G.; Lau, M.C.K.; Zeng, Y.; Yan, C.; Lin, Z. The Impact of Geopolitical Risks on Tourism Supply in Developing Economies: The Moderating Role of Social Globalization. J. Travel Res. 2022, 61, 872–886. [Google Scholar] [CrossRef]
- Hailemariam, A.; Ivanovski, K. The Impact of Geopolitical Risk on Tourism. Curr. Issues Tour. 2021, 24, 3134–3140. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Das, D.; Dutta, A. Geopolitical Risk, Economic Policy Uncertainty and Tourist Arrivals: Evidence from a Developing Country. Tour. Manag. 2019, 75, 323–327. [Google Scholar] [CrossRef]
- Lee, K.-J.; Choi, S.-Y. A Comparative Wavelet Analysis of the Differential Sensitivities of Leisure and Business Travel to Geopolitical Risks and Economic Policy Uncertainty: A Study of Inbound Travel to South Korea. J. Hosp. Tour. Manag. 2023, 55, 202–208. [Google Scholar] [CrossRef]
- Su, X.; Li, C. Bordering Dynamics and the Geopolitics of Cross-Border Tourism between China and Myanmar. Political Geogr. 2021, 86, 102372. [Google Scholar] [CrossRef]
- Doğan, B.; Ghosh, S.; Tiwari, A.K.; Abakah, E.J.A. The Effect of Global Volatility, Uncertainty and Geopolitical Risk Factors on International Tourist Arrivals in Asia. Int. J. Tour. Res. 2023, 25, 1–62. [Google Scholar] [CrossRef]
- Lee, C.-C.; Olasehinde-Williams, G.; Akadiri, S.S. Geopolitical Risk and Tourism: Evidence from Dynamic Heterogeneous Panel Models. Int. J. Tour. Res. 2021, 23, 26–38. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Wang, F. Inbound Tourism Flows and Foreign Exchange Revenue in the ASEAN from China and the World. Curr. Issues Tour. 2022, 25, 524–540. [Google Scholar] [CrossRef]
- Cosar, K.; Thomas, B. The Geopolitics of International Trade in Southeast Asia. Rev. World Econ. 2021, 157, 207–219. [Google Scholar] [CrossRef]
- Weaver, D. Geopolitics and Touristrategic Borderlands: Balancing Nationalism and Globalisation in Hainan, China. Tour. Manag. 2023, 95, 104679. [Google Scholar] [CrossRef]
- Syed, Q.R.; Bouri, E.; Zafar, R.F.; Adekoya, O.B. Does Geopolitical Risk Mitigate Inbound Tourism? Evidence from Panel Quantile Regression. J. Public Aff. 2021, 22, e2784. [Google Scholar] [CrossRef]
- Huang, Y. Consuming Geopolitics and Feeling Maritime Territoriality: The Case of China’s Patriotic Tourism in the South China Sea. Political Geogr. 2022, 98, 102669. [Google Scholar] [CrossRef]
- An, N.; Dittmer, J. The Geopolitics of Tourism in the Indo-Pacific. Geopolitics 2023, 28, 1405–1421. [Google Scholar] [CrossRef]
- Dowler, L. Waging Hospitality: Feminist Geopolitics and Tourism in West Belfast Northern Ireland. Geopolitics 2013, 18, 779–799. [Google Scholar] [CrossRef]
- Ojeda, D. War and Tourism: The Banal Geographies of Security in Colombia’s “Retaking”. Geopolitics 2013, 18, 759–778. [Google Scholar] [CrossRef]
- Huang, Y.; Suliman, S. Geopolitics, (Re)Territorialisation, and China’s Patriotic Tourism in the South China Sea. Geopolitics 2023, 28, 1465–1488. [Google Scholar] [CrossRef]
- Pfoser, A.; Yusupova, G. Memory and the Everyday Geopolitics of Tourism: Reworking Post-Imperial Relations in Russian Tourism to the ‘near Abroad’. Ann. Tour. Res. 2022, 95, 103437. [Google Scholar] [CrossRef]
- An, N.; Zhang, J.; Wang, M. The Everyday Chinese Framing of Africa: A Perspective of Tourism-Geopolitical Encounter. Geopolitics 2023, 28, 1422–1441. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, G.; Wu, Y.; Mo, B. Impacts of Geopolitical Risks and Economic Policy Uncertainty on Chinese Tourism-Listed Company Stock. Int. J. Financ. Econ. 2022, 27, 320–333. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lou, R.; Wang, F. Geopolitical Risk and the Sustainable Utilization of Natural Resources: Evidence from Developing Countries. Resour. Policy 2023, 85, 103864. [Google Scholar] [CrossRef]
- Pratt, S.; Alizadeh, V. The Economic Impact of the Lifting of Sanctions on Tourism in Iran: A Computable General Equilibrium Analysis. Curr. Issues Tour. 2018, 21, 1221–1238. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, J.; Han, W. Short-Term and Long-Term Effects of Chinese and Global Economic Policy Uncertainty and Geopolitical Risks on Chinese Tourism. Int. Rev. Econ. Financ. 2024, 92, 1351–1360. [Google Scholar] [CrossRef]
- Balli, F.; Uddin, G.S.; Shahzad, S.J.H. Geopolitical Risk and Tourism Demand in Emerging Economies. Tour. Econ. 2019, 25, 997–1005. [Google Scholar] [CrossRef]
- Papagianni, E.; Evgenidis, A.; Tsagkanos, A.; Megalooikonomou, V. Tourism Demand in the Face of Geopolitical Risk: Insights from a Cross-Country Analysis. J. Travel Res. 2023, 63, 2094–2119. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y. Encountering and Experiencing the Geopolitics of Tourism (Im)Mobilities: A Case of China’s Tourism in the South China Sea. Aust. Geogr. 2023, 54, 545–559. [Google Scholar] [CrossRef]
- Park, J.; Musa, G.; Moghavvemi, S.; Thirumoorthi, T.; Taha, A.Z.; Mohtar, M.; Sarker, M.M. Travel Motivation among Cross Border Tourists: Case Study of Langkawi. Tour. Manag. Perspect. 2019, 31, 63–71. [Google Scholar] [CrossRef]
- Poulaki, I.; Papatheodorou, A.; Panagiotopoulos, A.; Liasidou, S. Exclave Accessibility and Cross-Border Travel: The Pene-Exclave of Ceuta, Spain. Tour. Geogr. 2022, 24, 152–176. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wong, P.P.Y.; Lai, P.C. A Geographic Analysis of Hosts’ Irritation Levels towards Mainland Chinese Cross-Border Day-Trippers. Tour. Manag. 2018, 68, 367–374. [Google Scholar] [CrossRef]
- Makkonen, T.; Williams, A.M.; Weidenfeld, A.; Kaisto, V. Cross-Border Knowledge Transfer and Innovation in the European Neighbourhood: Tourism Cooperation at the Finnish-Russian Border. Tour. Manag. 2018, 68, 140–151. [Google Scholar] [CrossRef]
- Freund, C.; Ornelas, E. Regional Trade Agreements. Annu. Rev. Econ. 2010, 2, 139–166. [Google Scholar] [CrossRef]
- Saayman, A.; Figini, P.; Cassella, S. The Influence of Formal Trade Agreements and Informal Economic Cooperation on International Tourism Flows. Tour. Econ. 2016, 22, 1274–1300. [Google Scholar] [CrossRef]
- Khalid, U.; Okafor, L.E.; Burzynska, K. Do Regional Trade Agreements Enhance International Tourism Flows? Evidence from a Cross-Country Analysis. J. Travel Res. 2022, 61, 1391–1408. [Google Scholar] [CrossRef]
- Ongan, S.; Gocer, I. The Causal Relationships between International Trade and International Tourism in NAFTA Countries: Applications of Time and Frequency Domain Approaches. Int. Trade J. 2020, 34, 319–338. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Ji, Q. Impacts of Regional Cooperation Agreements on International Tourism: Evidence from a Quasi-Natural Experiment. Int. Rev. Econ. Financ. 2022, 82, 663–676. [Google Scholar] [CrossRef]
- Goel, R.K.; Budak, J. Tourism Policies and Cross-Country Growth: A Disaggregated Analysis. Tour. Econ. 2010, 16, 535–548. [Google Scholar] [CrossRef]
- McKay, A.; Tekleselassie, T.G. Tall Paper Walls: The Political Economy of Visas and Cross-border Travel. World Econ. 2018, 41, 2914–2933. [Google Scholar] [CrossRef]
- Ryan, C.; Zhang, C.; Cui, J. The Evolution of Chinese Border Tourism Policies: An Intergovernmental Perspective on Border Tourism. Asia Pac. J. Tour. Res. 2022, 27, 157–172. [Google Scholar]
- Kotus, J.; Rzeszewski, M.; Ewertowski, W. Tourists in the Spatial Structures of a Big Polish City: Development of an Uncontrolled Patchwork or Concentric Spheres? Tour. Manag. 2015, 50, 98–110. [Google Scholar] [CrossRef]
- Rushton, G. Analysis of Spatial Behavior by Revealed Space Preference. Ann. Assoc. Am. Geogr. 1969, 59, 391–400. [Google Scholar] [CrossRef]
- Taylor, P.J. Distance Transformation and Distance Decay Functions. Geogr. Anal. 1971, 3, 221–238. [Google Scholar] [CrossRef]
- Dewar, K. Tourism Today: A Geographical Analysis: Douglas Pearce. Ann. Tour. Res. 1996, 23, 737–738. [Google Scholar] [CrossRef]
- Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D. Geographic Information Science and Systems; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Stoffelen, A.; Ioannides, D.; Vanneste, D. Obstacles to Achieving Cross-Border Tourism Governance: A Multi-Scalar Approach Focusing on the German-Czech Borderlands. Ann. Tour. Res. 2017, 64, 126–138. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Li, X. The World Is Flatter? Examining the Relationship between Cultural Distance and International Tourist Flows. J. Travel Res. 2019, 58, 224–240. [Google Scholar] [CrossRef]
- Sun, S.; Fong, D.K.C.; Law, R. Effect of Distance Decay on Chinese Who Travel to Macau. Ann. Tour. Res. 2018, 70, 105–107. [Google Scholar] [CrossRef]
- Gemawat, P. Distance Still Matters. Harv. Bus. Rev. 2001, 79, 137–147. [Google Scholar]
- Tokas, K. Impact of Multidimensional Distances on Inbound Tourist Arrivals: Evidence from India. J. Policy Res. Tour. Leis. Events 2023, 1–22. [Google Scholar] [CrossRef]
- Li, X.; Katsumata, S. The Impact of Multidimensional Country Distances on Consumption of Specialty Products: A Case Study of Inbound Tourists to Japan. J. Vacat. Mark. 2020, 26, 18–32. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, Y.; Wang, Y.; Zheng, Q. Impact of Comprehensive Distance on Inbound Tourist Satisfaction. Tour. Rev. 2022, 77, 1418–1435. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Xu, J.; Fujiki, Y. Evolution Characteristics of the Spatial Network Structure of Tourism Efficiency in China: A Province-Level Analysis. J. Destin. Mark. Manag. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Kang, S.; Lee, G.; Kim, J.; Park, D. Identifying the Spatial Structure of the Tourist Attraction System in South Korea Using GIS and Network Analysis: An Application of Anchor-Point Theory. J. Destin. Mark. Manag. 2018, 9, 358–370. [Google Scholar] [CrossRef]
- Aarstad, J.; Ness, H.; Haugland, S.A. Destination Cobranding in Interorganizational Networks: Assessing the Role of Central Tourism Organizations. J. Destin. Mark. Manag. 2020, 17, 100466. [Google Scholar] [CrossRef]
- Bai, J.; Chen, Y.; Long, Y. The Structural Equivalence of Tourism Cooperative Network in the Belt and Road Initiative Area. Environ. Res. 2021, 197, 111043. [Google Scholar] [CrossRef]
- Xie, W.; Li, H.; Yin, Y. Research on the Spatial Structure of the European Union’s Tourism Economy and Its Effects. IJERPH 2021, 18, 1389. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Zheng, X.; Han, F.; Yang, Z. The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors. Land 2022, 11, 241. [Google Scholar] [CrossRef]
- Yang, Z.; Li, T. Does High-Speed Rail Boost Urban Tourism Economy in China? Curr. Issues Tour. 2020, 23, 1973–1989. [Google Scholar] [CrossRef]
- Sisneros-Kidd, A.M.; Monz, C.; Hausner, V.; Schmidt, J.; Clark, D. Nature-Based Tourism, Resource Dependence, and Resilience of Arctic Communities: Framing Complex Issues in a Changing Environment. J. Sustain. Tour. 2019, 27, 1259–1276. [Google Scholar] [CrossRef]
- Xin, G.; Kim, H.-H.; Yang, J.-W. Spatial Structure Analysis of Tourism Economy in Shaanxi Province, China. Int. J. Adv. Appl. Sci. 2022, 9, 90–95. [Google Scholar] [CrossRef]
- Wang, J.; Tian, G. Driver or a Barrier to the Economy: Natural Resources a Blessing or a Curse for Developed Economies? Resour. Policy 2023, 87, 104331. [Google Scholar] [CrossRef]
- Li, X.; He, Q.; Xing, B.; Wu, J.; Ding, Y.; Ren, F.; Ding, Y. Research on the Spatial Differentiation Characteristics and Sustainable Development of UGGp in China. Geoheritage 2023, 15, 67. [Google Scholar] [CrossRef]
- Wang, D.; Qian, J.; Chen, T.; Zhao, M.; Zhang, Y. Influence of the High-Speed Rail on the Spatial Pattern of Regional Tourism—Taken Beijing–Shanghai High-Speed Rail of China as Example. Asia Pac. J. Tour. Res. 2014, 19, 890–912. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Chen, T.; Lu, L.; Niu, Y.; Alan, A.L. HSR Mechanisms and Effects on the Spatial Structure of Regional Tourism in China. J. Geogr. Sci. 2016, 26, 1725–1753. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial Network Structure of the Tourism Economy in Urban Agglomeration: A Social Network Analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Zhang, L.; Marzuki, A.; Liao, Z.; Zhao, K.; Huang, Z.; Chen, W. Spatial and Temporal Evolution of Guangdong Tourism Economic Network Structure from the Perspective of Social Networks. Heliyon 2023, 9, e18570. [Google Scholar] [CrossRef]
- Timothy, D.J.; Kim, S. Understanding the Tourism Relationships between South Korea and China: A Review of Influential Factors. Curr. Issues Tour. 2015, 18, 413–432. [Google Scholar] [CrossRef]
- Tian-Cole, S.; Cromption, J. A Conceptualization of the Relationships between Service Quality and Visitor Satisfaction, and Their Links to Destination Selection. Leis. Stud. 2003, 22, 65–80. [Google Scholar] [CrossRef]
- Nam, M.; Kim, I.; Hwang, J. Can Local People Help Enhance Tourists’ Destination Loyalty? A Relational Perspective. J. Travel Tour. Mark. 2016, 33, 702–716. [Google Scholar] [CrossRef]
- Yin, J.; Bi, Y.; Ji, Y. Structure and Formation Mechanism of China-ASEAN Tourism Cooperation. Sustainability 2020, 12, 5440. [Google Scholar] [CrossRef]
- Shih, H.-Y. Network Characteristics of Drive Tourism Destinations: An Application of Network Analysis in Tourism. Tour. Manag. 2006, 27, 1029–1039. [Google Scholar] [CrossRef]
- Liu, P.; Qin, Y.; Luo, Y.; Wang, X.; Guo, X. Structure of Low-Carbon Economy Spatial Correlation Network in Urban Agglomeration. J. Clean. Prod. 2023, 394, 136359. [Google Scholar] [CrossRef]
- Dekker, D.; Franses, P.H.; Krackhardt, D. An Equilibrium-Correction Model for Dynamic Network Data. J. Math. Sociol. 2003, 27, 193–215. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lee, C.-C.; Li, J. Structural Characteristics and Determinants of an International Green Technological Collaboration Network. J. Clean. Prod. 2021, 324, 129258. [Google Scholar] [CrossRef]
- Wong, I.A.; Zhang, G.; Zhang, Y.; Huang, G.I. The Dual Distance Model of Tourism Movement in Intra-Regional Travel. Curr. Issues Tour. 2021, 24, 1190–1198. [Google Scholar] [CrossRef]
- Li, Q.; Scollay, R.; Maani, S. Effects on China and ASEAN of the ASEAN-China FTA: The FDI Perspective. J. Asian Econ. 2016, 44, 1–19. [Google Scholar] [CrossRef]
- Wang, D.; Niu, Y.; Qian, J. Evolution and Optimization of China’s Urban Tourism Spatial Structure: A High Speed Rail Perspective. Tour. Manag. 2018, 64, 218–232. [Google Scholar] [CrossRef]
- Hu, F.; Li, Y. Geopolitical Risk Assessment and Influencing Factors of Countries Participating in the Belt and Road Initiative. Trop. Geogr. 2023, 43, 1160–1171. [Google Scholar] [CrossRef]
- Neacşu, M.-C. Geoeconomic vs. Geostrategic Conflicts. Case Study: Russia—Western World. Strateg. Impact 2016, 59, 13–22. [Google Scholar]
- Caldara, D.; Iacoviello, M. Measuring Geopolitical Risk. Int. Financ. Discuss. Pap. 2018, 18, 1–60. [Google Scholar] [CrossRef]
- Chen, S.; Huang, G.; Zhang, H.; Ye, Y.; Wu, Q. Analysing the Evolutionary Structure of the China–ASEAN Investment and Trade Networks: China’s Changing Position. China Int. J. 2022, 20, 114–141. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H. Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach. Foods 2022, 11, 1468. [Google Scholar] [CrossRef]
- Li, H.; Xie, W. Research on the Structural Characteristics and Evolutionary Process of China’s Tourism Investment Spatial Correlation Network. IJERPH 2022, 19, 15661. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.; Fu, H. An Application of Network Analysis on Tourist Attractions: The Case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Huang, Q.; Li, H.; Lin, R.-H.; Zhang, Q.; Li, X.-Y. Impact of Institutional Distance on Chinese Citizens’ Outbound Tourism Destination Selection. J. Qual. Assur. Hosp. Tour. 2022, 23, 823–851. [Google Scholar] [CrossRef]
- Mostafanezhad, M. The Geopolitical Turn in Tourism Geographies. Tour. Geogr. 2018, 20, 343–346. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Parkpian, P. Inbound Tourism in Thailand: Market Form and Scale Differentiation in ASEAN Source Countries. Tour. Manag. 2018, 64, 22–36. [Google Scholar] [CrossRef]
- Li, T.; Shi, H.; Yang, Z.; Ren, Y. Does the Belt and Road Initiative Boost Tourism Economy? Asia Pac. J. Tour. Res. 2020, 25, 311–322. [Google Scholar] [CrossRef]
- McKercher, B. The Implicit Effect of Distance on Tourist Behavior: A Comparison of Short and Long Haul Pleasure Tourists to Hong Kong. J. Travel Tour. Mark. 2008, 25, 367–381. [Google Scholar] [CrossRef]
- McKercher, B.; Mak, B. The Impact of Distance on International Tourism Demand. Tour. Manag. Perspect. 2019, 31, 340–347. [Google Scholar] [CrossRef]
- McKercher, B. Segment Transformation in Urban Tourism. Tour. Manag. 2008, 29, 1215–1225. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Zou, T.; Yan, H. Effects of the High Speed Rail Network on China’s Regional Tourism Development. Tour. Manag. Perspect. 2012, 1, 34–38. [Google Scholar] [CrossRef]
Perspective | Dimension | Reference |
---|---|---|
micro level | a space for anti-normalisation | [30,31] |
territorial socialisation | [32] | |
post-imperial periods | [33] | |
tourist encounters | [34] | |
macroeconomic level | tourism investment | [17] |
stock returns | [11] | |
the number of tourist arrivals and revenue | [19] |
Indicator | Formula | Description |
---|---|---|
Network density (D) | (6) | D is the network density, with the range of [0,1]; l represents the actual number of effective connections; and n is the size of the regional network, that is, the number of node countries. Network density is usually used to measure the closeness of the relevant countries in the research area. The greater the network density, the closer the connection. |
Degree centrality (RD) | (7) | and other countries. In-centralization is used to express the attraction of a country. Out-centralization reflects a country’s enthusiasm for communication in the network. |
Closeness centrality (RP) | (8) | . In-closeness centrality is used to measure the ease with which tourists from other countries can reach this country. Out-closeness centrality refers to the ease with which tourists from a country can reach other countries. |
Betweenness centrality (RB) | (9) | . Betweenness centrality can be used to express the ability of the node to control other nodes. |
Cooperative status index | (10) | represent the weights of degree centrality, betweenness centrality, and closeness centrality, respectively. We assign the weights of all three to 1/3. |
Variable | Description | Data Source |
---|---|---|
Institutional distance | WGI, www.govindicators.org | |
Geographical distance | Geographic distances are expressed as air distances from national capitals. | https://www.timeanddate.com/worldclock/distance.html (accessed on 6 October 2024) |
Economic distance | The economic distance is calculated with reference to Formula (4). | World Bank (https://data.worldbank.org.cn) |
Tourism resource endowment | The sum of the number of World Heritage Sites, world geoparks, and world biosphere reserves represents the quantity of tourism resources | UNESCO (https://www.unesco.org/) |
Tourism policy and regulations | Facilitation of visa policies, signing of tourism cooperation agreements, the number of support policies for tourism investment, and development of representative tourism policies and regulations. | ASEAN Main Portal (https://asean.org) |
Tourism promotion and cooperation | If country i and country j jointly carry out activities such as marketing and tourism fairs in year t. Such activity is recorded as 1, a lack of such activity is recorded as 0, and the matrix is constructed accordingly. | ASEAN Main Portal (https://asean.org) and Stats.gov.cn (http://www.stats.gov.cn) |
Geopolitical risks | All indicators were first standardized using the following formula:
where Ui, Li, and Ti represent the maximum, minimum, and mean values of the indicator Xi, respectively, and Si represents the standardized value of the indicator. Si represents the normalized value of the positive indicator, while -Si represents the normalized value of the negative indicator. Finally, the composite index is calculated using the following formula: | World Bank (https://data.worldbank.org.cn), Institute for Economics and Peace (www.economicsandpeace.org), U.S. Department of the Treasury (https://home.treasury.gov), Naciones Unidas (www.un.org/securitycouncil (accessed on 6 October 2024)) |
Years | First Six Bipartite Pairs | Last Six Bipartite Pairs | ||||
---|---|---|---|---|---|---|
2010 | Rankings | Bipartite pairs | Tourism economic connection strength | Rankings | Bipartite pairs | Tourism economic connection strength |
1 | Thailand–China | 111,932,542.2888 | 105 | Brunei–Cambodia | 0.0032 | |
2 | China–Thailand | 94,207,388.3459 | 106 | Cambodia–Brunei | 0.0011 | |
3 | Indonesia–China | 8,408,158.4925 | 107 | Brunei–Myanmar | 0.0006 | |
4 | China–Indonesia | 6,890,626.7787 | 108 | Brunei–Laos | 0.0006 | |
5 | Malaysia–China | 1,195,676.6705 | 109 | Myanmar–Brunei | 0.0002 | |
6 | Philippines–China | 754,918.6784 | 110 | Laos–Brunei | 0.0002 | |
2013 | 1 | China–Thailand | 143,915,162.0428 | 105 | Brunei–Cambodia | 0.0038 |
2 | Thailand–China | 142,083,508.2517 | 106 | Brunei–Myanmar | 0.0033 | |
3 | Indonesia–China | 3,739,107.4933 | 107 | Cambodia–Brunei | 0.0015 | |
4 | Malaysia–China | 3,502,444.2343 | 108 | Myanmar–Brunei | 0.0013 | |
5 | China–Indonesia | 3,266,522.3392 | 109 | Brunei–Laos | 0.0009 | |
6 | China–Malaysia | 2,271,249.8812 | 110 | Laos–Brunei | 0.0002 | |
2015 | 1 | Thailand–China | 27,011,860.7390 | 105 | Brunei–Myanmar | 0.0141 |
2 | China–Thailand | 24,761,007.4235 | 106 | Brunei–Cambodia | 0.0097 | |
3 | Malaysia–China | 12,954,252.7732 | 107 | Myanmar–Brunei | 0.0055 | |
4 | China–Malaysia | 9,116,115.7138 | 108 | Cambodia–Brunei | 0.0039 | |
5 | Philippines–Indonesia | 2,684,181.7550 | 109 | Brunei–Laos | 0.0025 | |
6 | Indonesia–China | 2,304,992.4755 | 110 | Laos–Brunei | 0.0007 | |
2019 | 1 | Philippines–Vietnam | 159,435,056.1461 | 105 | Brunei–Cambodia | 0.0322 |
2 | Vietnam–Philippines | 97,095,209.8407 | 106 | Brunei–Myanmar | 0.0244 | |
3 | China–Thailand | 52,407,867.2976 | 107 | Cambodia–Brunei | 0.0157 | |
4 | Thailand–China | 50,721,941.7466 | 108 | Myanmar–Brunei | 0.0108 | |
5 | Malaysia–China | 45,631,087.9089 | 109 | Brunei–Laos | 0.0065 | |
6 | China–Malaysia | 35,462,774.6308 | 110 | Laos–Brunei | 0.0021 |
Years | Network Density | Number of Contacts |
---|---|---|
2010 | 0.15 | 17 |
2013 | 0.19 | 21 |
2015 | 0.18 | 20 |
2019 | 0.21 | 23 |
Country | 2010 Degree Centrality | 2013 Degree Centrality | 2015 Degree Centrality | 2019 Degree Centrality | Average Value | ||||
---|---|---|---|---|---|---|---|---|---|
Out-Degree | In-Degree | Out-Degree | In-Degree | Out-Degree | In-Degree | Out-Degree | In-Degree | ||
Philippines | 0 | 1 | 1 | 3 | 2 | 3 | 2 | 1 | 1.63 |
Cambodia | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 5 | 1.75 |
Laos | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 1 |
Malaysia | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1.25 |
Myanmar | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 4 | 1.88 |
Thailand | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1.25 |
Brunei | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0.75 |
Singapore | 1 | 2 | 1 | 2 | 0 | 2 | 0 | 2 | 1.25 |
Indonesia | 0 | 1 | 2 | 1 | 2 | 3 | 1 | 3 | 1.63 |
Vietnam | 2 | 1 | 3 | 3 | 3 | 3 | 5 | 1 | 2.63 |
China | 10 | 1 | 10 | 1 | 8 | 2 | 8 | 2 | 5.25 |
Average value | 1.5 | 1.5 | 1.9 | 1.9 | 1.8 | 1.8 | 2.1 | 2.1 | 1.83 |
Country | 2010 | 2013 | 2015 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RP | RB | RP | RB | RP | RB | RP | RB | |||||
In-Degree | Out-Degree | In-Degree | Out-Degree | In-Degree | Out-Degree | In-Degree | Out-Degree | |||||
Philippine | 11 | 9 | 0 | 14 | 14 | 0 | 16 | 12 | 0 | 10 | 16 | 0 |
Cambodia | 14 | 10 | 0 | 18 | 10 | 0 | 10 | 10 | 0 | 24 | 10 | 1 |
Laos | 12 | 9 | 0 | 16 | 9 | 0 | 19 | 9 | 0 | 16 | 9 | 0 |
Malaysia | 11 | 11 | 0 | 11 | 11 | 0 | 11 | 28 | 0 | 11 | 28 | 0 |
Myanmar | 14 | 10 | 1 | 19 | 10 | 3 | 10 | 10 | 0 | 23 | 10 | 0 |
Thailand | 10 | 53 | 0 | 10 | 53 | 0 | 11 | 27 | 0 | 11 | 29 | 0 |
Brunei | 14 | 9 | 0 | 14 | 9 | 0 | 12 | 9 | 0 | 12 | 9 | 0 |
Singapore | 12 | 10 | 1 | 12 | 10 | 1 | 12 | 9 | 0 | 12 | 9 | 0 |
Indonesia | 11 | 9 | 0 | 11 | 16 | 0 | 16 | 12 | 0 | 16 | 11 | 0.5 |
Vietnam | 11 | 12 | 0 | 14 | 14 | 6 | 16 | 13 | 2 | 10 | 17 | 2.5 |
China | 10 | 100 | 9 | 10 | 100 | 9 | 11 | 33 | 13 | 11 | 33 | 11 |
Aggregate value | 131 | 242 | 11 | 149 | 255 | 19 | 145 | 173 | 15 | 157 | 180 | 15 |
Average value | 12 | 22 | 1 | 14 | 23 | 1.73 | 13 | 16 | 1.36 | 14 | 16 | 1.36 |
Country | 2010 | 2013 | 2015 | 2019 | Overall Avg | Overall Ranking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
In | Out | Avg | In | Out | Avg | In | Out | Avg | In | Out | Avg | |||
Philippine | 4.00 | 3.03 | 3.52 | 5.69 | 4.84 | 5.27 | 6.38 | 4.78 | 5.58 | 3.67 | 5.96 | 4.82 | 4.79 | 8 |
Cambodia | 5.30 | 3.67 | 4.49 | 6.62 | 3.67 | 5.15 | 3.67 | 3.67 | 3.67 | 9.94 | 4.00 | 6.97 | 5.07 | 6 |
Laos | 4.78 | 3.03 | 3.91 | 5.96 | 3.03 | 4.50 | 6.84 | 3.03 | 4.94 | 5.96 | 3.03 | 4.50 | 4.46 | 9 |
Malaysia | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 9.93 | 6.97 | 4.00 | 9.93 | 6.97 | 5.48 | 4 |
Myanmar | 6.03 | 4.00 | 5.02 | 8.29 | 4.67 | 6.48 | 3.67 | 3.67 | 3.67 | 9.09 | 3.67 | 6.38 | 5.39 | 5 |
Thailand | 3.67 | 17.88 | 10.78 | 3.67 | 17.88 | 10.78 | 4.00 | 9.34 | 6.67 | 4.00 | 10.52 | 7.26 | 8.87 | 2 |
Brunei | 5.30 | 3.03 | 4.17 | 5.30 | 3.03 | 4.17 | 4.40 | 3.03 | 3.72 | 4.40 | 3.03 | 3.72 | 3.94 | 11 |
Singapore | 5.12 | 4.00 | 4.56 | 5.12 | 4.00 | 4.56 | 4.78 | 3.03 | 3.91 | 4.78 | 3.03 | 3.91 | 4.23 | 10 |
Indonesia | 4.00 | 3.03 | 3.52 | 4.00 | 5.88 | 4.94 | 6.38 | 4.78 | 5.58 | 6.54 | 4.16 | 5.35 | 4.85 | 7 |
Vietnam | 4.00 | 4.78 | 4.39 | 7.69 | 7.69 | 7.69 | 7.04 | 5.83 | 6.44 | 4.50 | 8.06 | 6.28 | 6.20 | 3 |
China | 6.67 | 39.67 | 23.17 | 6.67 | 39.67 | 23.17 | 8.70 | 18.11 | 13.41 | 8.04 | 17.44 | 12.74 | 18.12 | 1 |
Independent Variable | 2010 | 2013 | 2015 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
Correlation Coefficient | p-Values | Correlation Coefficient | p-Values | Correlation Coefficient | p-Values | Correlation Coefficient | p-Values | |
Institutional distance difference matrix | −0.107 | 0.096 * | −0.096 | 0.169 | −0.146 | 0.015 ** | −0.134 | 0.056 * |
Geographic distance difference matrix | 0.204 | 0.076 * | 0.188 | 0.073 * | 0.323 | 0.040 ** | 0.134 | 0.150 |
Economic distance difference matrix | −0.037 | 0.000 ** | −0.036 | 0.000 *** | −0.060 | 0.000 *** | −0.063 | 0.000 *** |
Tourism resource endowment difference matrix | −0.029 | 0.075 * | 0.000 | 0.568 | −0.035 | 0.052 * | −0.014 | 0.135 |
Tourism policies and regulations difference matrix | 0.021 | 0.063 * | 0.000 | 0.551 | 0.018 | 0.082 * | −0.045 | 0.063 * |
Tourism promotion and cooperation difference matrix | 0.031 | 0.083 * | 0.000 | 0.356 | 0.035 | 0.089 * | −0.032 | 0.149 |
Geopolitical risk difference matrix | −0.001 | 0.404 | −0.001 | 0.214 | −0.020 | 0.102 | 0.016 | 0.275 |
Independent Variable | 2010 | 2013 | 2015 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
Standardized Coefficient | p-Values | Standardized Coefficient | p-Values | Standardized Coefficient | p-Values | Standardized Coefficient | p-Values | |
Institutional distance difference matrix | −0.106 | 0.087 * | −0.094 | 0.134 | −0.138 | 0.023 ** | −0.124 | 0.062 * |
Geographic distance difference matrix | 0.204 | 0.075 * | 0.187 | 0.076* | 0.319 | 0.034 ** | 0.129 | 0.136 |
Economic distance difference matrix | −0.007 | 0.636 | −0.013 | 0.596 | −0.021 | 0.525 | −0.028 | 0.558 |
Tourism resource endowment difference matrix | 0.035 | 0.217 | −0.004 | 0.218 | −0.031 | 0.209 | −0.018 | 0.350 |
Tourism policies and regulations difference matrix | −0.001 | 0.551 | 0.000 | 0.429 | −0.013 | 0.125 | −0.043 | 0.070 * |
Tourism promotion and cooperation difference matrix | 0.068 | 0.090 * | −0.005 | 0.205 | 0.017 | 0.316 | −0.018 | 0.291 |
Geopolitical risk difference matrix | 0.009 | 0.129 | 0.000 | 0.386 | 0.006 | 0.258 | 0.034 | 0.169 |
R-square | 0.054 | 0.045 | 0.126 | 0.039 | ||||
Adjusted R-square | −0.011 | −0.021 | 0.066 | −0.027 | ||||
P (R-square) | 0.044 | 0.054 | 0.026 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Tan, Y.; Huang, G.; Zhang, H.; Li, H. China–ASEAN Tourism Economic Relationship Network: A Geopolitical Risk Perspective. Land 2024, 13, 1922. https://doi.org/10.3390/land13111922
Chen S, Tan Y, Huang G, Zhang H, Li H. China–ASEAN Tourism Economic Relationship Network: A Geopolitical Risk Perspective. Land. 2024; 13(11):1922. https://doi.org/10.3390/land13111922
Chicago/Turabian StyleChen, Siyue, Yang Tan, Gengzhi Huang, Hongou Zhang, and Hang Li. 2024. "China–ASEAN Tourism Economic Relationship Network: A Geopolitical Risk Perspective" Land 13, no. 11: 1922. https://doi.org/10.3390/land13111922
APA StyleChen, S., Tan, Y., Huang, G., Zhang, H., & Li, H. (2024). China–ASEAN Tourism Economic Relationship Network: A Geopolitical Risk Perspective. Land, 13(11), 1922. https://doi.org/10.3390/land13111922