Spatial–Temporal Evolution Pattern of Soil Erosion and Its Dominant Factors on the Loess Plateau from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. RUSLE Monthly Model
- (1)
- Rainfall erosivity factor R
- (2)
- Soil erodibility factor K
- (3)
- Slope length–slope steepness factor LS
- (4)
- Vegetation cover and management factor (C)
- (5)
- Conservation practice factor P
2.3.2. Gravity Center
2.3.3. Geodetector
3. Results
3.1. Spatiotemporal Variation Distribution of Model Factors
3.2. Analysis of Soil Erosion Patterns in the Loess Plateau
3.2.1. Spatial Distribution Pattern of Soil Erosion in the Loess Plateau
3.2.2. Distribution of Levels of Soil Erosion Intensity in Different Land-Use Types
3.2.3. Distribution of Soil Erosion Intensity Under Different Vegetation Coverages
3.2.4. Distribution of Soil Erosion Intensity on Different Slopes
3.2.5. Mitigation of Soil Erosion Gravity Center
3.2.6. Transfer Among Different Levels of Soil Erosion
3.3. Soil Erosion in the Loess Plateau During Different Historical Periods
3.3.1. Single-Factor Analysis
3.3.2. Interactive Factors
4. Discussion
4.1. Changes in Soil Erosion Patterns in the Loess Plateau
4.2. Reasons for Soil Erosion Changes in the Loess Plateau over the Past 20 Years
4.3. Impact of Vegetation Types on Soil Erosion in the Loess Plateau
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.S. On Delimitation of Soil and Water Loss, Erosion as well as Relevant Concepts. Mt. Res. 2001, 5, 436–445. [Google Scholar]
- Liu, Y.X.; Zheng, M.T.; Li, J.Y.; Liu, Y.X.; Hu, Y.; Xie, G.; Shen, W.B. Soil erosion situation of Baiyu Mountain in northern Shaanxi province based on CSLE. Sci. Soil Water Conserv. 2024, 22, 1–12. [Google Scholar]
- Shi, D.M. Effects of Soil Erosion on Ecological Environment and lts Countermeasures. J. Soil Water Conserv. 1991, 3, 26–34. [Google Scholar]
- Chen, Y.M.; Liu, G.B.; Zheng, F.L.; Zhang, W. Proceeding and Application on Soil Erosion Model of RUSLE. Res. Soil Water Conserv. 2004, 4, 80–83. [Google Scholar]
- Liu, Y.J.; Cheng, J.H.; Zhang, Y.J. Nonlinear Response of Soil Erosion in the Tibetan Plateau to Cliamte Change and Ecological Policies. Res. Soil Water Conserv. 2024, 31, 126–134. [Google Scholar]
- Chen, M.; Wang, X.Q.; Lin, J.L.; Yue, H.; Zhou, W.D.; Jiang, H. Quantitative Effects of Land Use and Vegetation Cover Changes on Soil Erosion in Changting County in Recent 30 Years. J. Soil Water Conserv. 2023, 37, 168–177+188. [Google Scholar]
- Chen, S.X.; Yang, X.H.; Xiao, L.L.; Cai, H.Y. Study of Soil Erosion in the Southern Hillside Area of China Based on RUSLE Model. Resour. Sci. 2014, 36, 1288–1297. [Google Scholar]
- Li, T.H.; Zheng, L.N. Soil Erosion Changes in the Yanhe Watershed from 2001 to 2010 Based on RUSLE Model. J. Nat. Resour. 2012, 27, 1164–1175. [Google Scholar]
- Zhao, M.S.; Li, D.C.; Zhang, G.L.; Cheng, X.F. Evaluation of Soil Erosion and Soil Nutrient Loss in Anhui Province Based on RUSLE Model. Acta Pedol. Sin. 2016, 53, 28–38. [Google Scholar]
- Zhao, Q.; Qin, F.C.; Zhang, H.; Dong, X.Y.; Li, Y.; Zhou, Q. Characterization of Spatial and Temporal Distribution of Soil Erosion on the Loess Plateau of Inner Mongolia and Analysis of its Influencing Factors. J. Southwest For. Univ. (Nat. Sci.) 2024, 44, 82–92. [Google Scholar]
- Li, P.F.; Huang, L.L.; Zang, Y.Z.; Hu, J.F.; Zhang, X.C.; Bai, X.; Yao, W.Q. Spatiotemporal patterns of soil erosion and its relationship with environmental changes in the Binchang mining areas on the Loess Plateau of China. Trans. Chin. Soc. Agric. Eng. 2024, 40, 158–167. [Google Scholar]
- Liao, J.; Jiao, J.Y.; Yan, Z.; Li, J.J.; Zhang, S.J. SimulationEffect Analysis of RUSLE Model on Slope Soil Erosion Restored by Reclaimed Vegetation in Loess Plateau. J. Soil Water Conserv. 2024, 38, 97–108. [Google Scholar]
- Gao, J.B.; Wang, H. Spatio-temporal Tradeoff of Karst Water Yield and Soil Erosion Based on GWR Model: A Case Study in Sancha River Basin of Guizhou Province, China. Mt. Res. 2019, 37, 518–527. [Google Scholar]
- Islam, M.R.; Jaafar, W.Z.W.; Hin, L.S.; Osman, N.; Karim, M.R. Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE. Appl. Water Sci. 2020, 10, 165. [Google Scholar] [CrossRef]
- Islam, M.R.; Imran, H.M.; Islam, M.R.; Saha, G.C. A RUSLE-based comprehensive strategy to assess soil erosion in a riverine country, Bangladesh. Environ. Earth Sci. 2024, 83, 1866–6280. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Y.; Zhang, L.; Li, L.H. Distribution assessment of soil erosion with revised RUSLE model in Tianshan Mountains. J. Mt. Sci. 2024, 21, 850–866. [Google Scholar] [CrossRef]
- Mejía-Parada, C.; Mora-Ruiz, V.; Vallejo-Borda, J.A.; Arrieta-Baldovino, J. Influence of LS Factor Overestimation Soil Loss on RUSLE Model for Complex Topographies. J. Indian Soc. Remote Sens. 2024, 52, 1661–1674. [Google Scholar] [CrossRef]
- Djoukbala, O.; Mazour, M.; Hasbaia, M.; Benseiama, O. Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environ. Earth Sci. 2018, 77, 345. [Google Scholar] [CrossRef]
- Abdo, H.; Salloum, J. Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environ. Earth Sci. 2017, 76, 114. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Kim, G. Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds. Remote Sens. 2024, 16, 932. [Google Scholar] [CrossRef]
- Renard, K.G. Predicting Soil Erosion by Walter: A Guideto Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); National Technical Information Service: Springfield, VA, USA, 1997. [Google Scholar]
- Liu, B.T.; Tao, H.P.; Song, C.F.; Guo, B.; Shi, Z.; Zhang, C.; Kong, B.; He, B. Temporal and spatial variations of rainfall erosivity in China during 1960 to 2009. Geogr. Res. 2013, 32, 245–256. [Google Scholar]
- Liu, B.T.; Song, C.F.; Shi, Z.; Tao, H.P. Soil Loss Equation of Lushan Earthquake Area. J. Chang. River Sci. Res. Inst. 2016, 33, 15–19. [Google Scholar]
- Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of Applying USLE and Geographical Information System IlDRISl to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 2000, 2, 19–24. [Google Scholar]
- Ru, H.; Zhang, J.J.; Li, Y.T.; Yang, Z.R.; Feng, H.C. Fractal Features of Soil Particle Size Distributions and lts Effect on Soil Erosion of Loess Plateau. Trans. Chin. Soc. Agric. Mach. 2015, 46, 176–182. [Google Scholar]
- Liu, L.; Xue, L.P.; Cui, F.; Liu, Y.; Wang, X.P. Influence of gully type and slope composition on the gravity erosion of typical small basins in the hilly and gully areas of the Loess Plateau. Sci. Soil Water Conserv. 2024, 22, 63–71. [Google Scholar]
- Tian, P.; Ren, Y.L.; Chen, Y. Research Progress on Identification and Extraction Methods of Soil and Water Conservation Measures. J. Soil Water Conserv. 2024, 12, 25–34. [Google Scholar]
- Zhang, Y.; Shi, F.H.; Zhang, Y.; Li, M.; Cui, G.Y.; Liu, Z.Z. Temporal and Spatial Changes and Driving Factors of Soil Erosion in the Middle Reaches of the Yellow River. Res. Soil Water Conserv. 2023, 30, 1–12. [Google Scholar]
- Bai, L.L.; Shi, P.; Li, Z.B.; Li, P.; Wang, W.; Zhao, Z.; Dong, J.B. Synergistic effects of terraces and check dams on runoff and sediment yields in a slope-gully system in Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2023, 39, 96–104. [Google Scholar]
- Gao, P.; Mu, X.M.; Liu, P.L.; Xin, X.G. Effects of Different Types of Land-uses and Rainfall Intensities on Soil Infiltration in Loess Plateau of China. Bull. Soil Water Conserv. 2006, 26, 1–5. [Google Scholar]
- Li, T.; Luo, Y.; Lv, Y.H. Conservation and restoration patterns and their ecological effects of the different scale ecosystems in the loess plateau. Environ. Ecol. 2019, 1, 80–83+90. [Google Scholar]
- Zhu, N.; Liu, H.; Wang, J.N.; Su, X.; Shi, N.; Luo, D.L.; Gai, A.H. Research Progress on Ecological Restoration of Landslide Damaged Land in Typical Loess Hilly Region of Loess Plateau. Pratacultural Sci. 2024, 4, 12–20. [Google Scholar]
- Chu, C.S.; Liu, B.X. Study on the Ecological and Environmental Problems and Countermeasures of Ecological Conservation and Restoration in Shanxi Provincial Loess Plateau. Res. Dev. 2019, 5, 125–131. [Google Scholar]
- Wang, J.N.; Sun, G.; Shi, F.S.; Xu, J.C.; Wu, Y.; Wu, N. Runoff and Soil Loss of a Typical Subtropical Forest Stricken by Wenchuan Earthquake. Chin. J. Appl. Environ. Biol. 2013, 19, 766–773. [Google Scholar] [CrossRef]
- Wang, R.J.; Zhang, J.F. Roles of Vegetation Buffer Zones on Non-point Source Pollution Control in Water Source Areas. Chin. J. Soil Sci. 2022, 53, 981–988. [Google Scholar]
- Li, Y.X.; Zhu, Q.K.; Shi, R.Y.; Gou, Q.P. Spatial and temporal changes of vegetation cover and its influencing factors in the Loess Plateau from 2000 to 2018. Sci. Soil Water Conserv. 2021, 19, 60–68. [Google Scholar]
- Cheng, L.; Hou, F.C. Study on impact of vegetation and climate on soil erosion changes in the Loess Plateau. Tech. Superv. Water Resour. 2024, 4, 177–181. [Google Scholar]
- Zhang, Q.; Liu, R.; Zhang, J.; Zheng, D.Y.; Zhang, L.L.; Zheng, C.G. Effects of land use on river water quality at multiple spatial and temporal scales in the Three Gorges Reservoir area under extreme weather conditions. J. Lake Sci. 2024, 36, 1096–1114. [Google Scholar]
- Wei, T.X.; Zhu, J.Z. Effects of slope length and grade on soil erosion in the gully regions in Loess Plateau. J. Beijing For. Univ. 2002, 1, 59–62. [Google Scholar]
- Zhao, Y.; Zhang, Y.E.; Wang, Z.Y.; Zhang, G.J.; Xin, Y.; Liu, B.; Wei, X.Y. Response of water and sediment to ecological construction of soil and water conservation in the typical watersheds of the Loess Plateau. Sci. Soil Water Conserv. 2024, 22, 21–26. [Google Scholar]
- Liu, Y.; Song, J.X.; Xing, L.T.; Huang, Y.L.; Gao, J.Q.; Li, X.X.; Cao, C.J.; Shi, A.Y. The impact of vegetation changes on soil erosion in the Loess Plateau. J. Northwest Univ. (Nat. Sci. Ed.) 2024, 54, 398–412. [Google Scholar]
- Gao, Y.F.; Zhang, Z.Z.; Zhang, Z.G. Slope farmland converted to terraces is effective to reduce non-point source pollution in Loess Plateau. Soil Water Conserv. Sci. Technol. Shanxi 2022, 4, 27–28+41. [Google Scholar]
- Wu, C.X.; Weng, X.X.; Xu, R.R.; Gao, P.; Mu, X.M.; Zhao, G.J. Changes in soil conservation function before and after the Grain for Green project in the Weihe River Basin. Sci. Soil Water Conserv. 2024, 22, 102–108. [Google Scholar]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19 (Suppl. S1), 3–264. [Google Scholar] [CrossRef]
- Chen, H.; Wang, D.D.; Cui, Q.K.; Wang, B.; Liu, J.E.; Li, Z.B. Effects of canopy and root of grassland vegetation on erosion processes of the Loess Plateau. Acta Ecol. Sin. 2024, 44, 6841–6853. [Google Scholar]
- Yang, Y.; Zhou, D.C.; Gong, Z.N.; Liu, Z.Y.; Zhang, L.X. Ecological Vulnerability and Its Drivers of the Loess Plateau Based on Vegetation Productivity. Ecol. Environ. Sci. 2022, 31, 1951–1958. [Google Scholar]
Land-use type | Forest land, shrubland, or sparse forest land | Other forest land | Construction land | Unused land | Water body |
p-value | 1 | 0.85 | 1 | 1 | 0 |
Land-use type | High-cover grassland | Medium- and low-cover grassland | Paddy field | Dry land | |
p-value | 1 | 0.85 | 1 | 1 |
Soil Erosion Grades | Soil Erosion Modulus/t· (km2·a)−1 |
---|---|
Micro-scale erosion | <1000 |
Mild erosion | 1000~2500 |
Moderate erosion | 2500~5000 |
Severe erosion | 5000~8000 |
Intense erosion | 8000~15,000 |
Severe erosion | >15,000 |
Erosion Grade | Area (km2) | Average Erosion Modulus (t·(km2·a)⁻1) | Total Erosion Amount (10,000 t·a⁻1) | Area Proportion (%) | Erosion Amount Proportion (%) |
---|---|---|---|---|---|
Slight erosion | 289,283 | 100.94 | 2919.90 | 44.67 | 0.72 |
Mild erosion | 56,019 | 1681.86 | 9421.63 | 8.65 | 2.33 |
Moderate erosion | 64,515 | 3688.78 | 23,798.19 | 9.96 | 5.87 |
Intensive erosion | 59,088 | 6421.63 | 37,944.13 | 9.12 | 9.36 |
Extreme erosion | 85,770 | 11,129.25 | 95,455.60 | 13.24 | 23.56 |
Severe erosion | 92,992 | 25,340.63 | 235,647.54 | 14.36 | 58.16 |
Slope | Mean Erosion Modulus (t·(km2·a)⁻1) | Erosion Total Amount (10,000 t·a⁻1) | Area Proportion (%) | Erosion Amount Proportion (%) |
---|---|---|---|---|
0–5° | 3636.96 | 203,759.40 | 86.54 | 83.78 |
5–10° | 4673.66 | 33,149.79 | 10.96 | 13.63 |
10–15° | 3866.21 | 5291.69 | 2.11 | 2.18 |
15–20° | 4031.88 | 921.69 | 0.35 | 0.38 |
>20° | 3962.95 | 88.77 | 0.03 | 0.04 |
Erosion Level | Area (km2) | ||
---|---|---|---|
2000 | 2005 | Change Amount | |
Slight erosion | 320,943 | 318,460 | −2483 |
Mild erosion | 49,759 | 45,409 | −4350 |
Moderate erosion | 58,632 | 54,489 | −4143 |
Intensive erosion | 48,723 | 49,194 | 471 |
Extreme erosion | 66,644 | 68,360 | 1716 |
Severe erosion | 102,966 | 111,755 | 8789 |
Erosion Level | Area (km2) | ||
---|---|---|---|
2005 | 2010 | Change Amount | |
Slight erosion | 318,460 | 351,905 | 33,445 |
Mild erosion | 45,409 | 44,320 | −1089 |
Moderate erosion | 54,489 | 53,029 | −1460 |
Intensive erosion | 49,194 | 46,889 | −2305 |
Extreme erosion | 68,360 | 60,895 | −7465 |
Severe erosion | 111,755 | 90,629 | −21,126 |
Erosion Level | Area (km2) | ||
---|---|---|---|
2010 | 2015 | Change Amount | |
Slight erosion | 351,905 | 403,278 | 51,373 |
Mild erosion | 44,320 | 45,821 | 1501 |
Moderate erosion | 53,029 | 54,121 | 1092 |
Intensive erosion | 46,889 | 42,805 | −4084 |
Extreme erosion | 60,895 | 49,444 | −11,451 |
Severe erosion | 90,629 | 52,199 | −38,430 |
Erosion Levels | Area (km2) | ||
---|---|---|---|
2010 | 2015 | Change Amount | |
Slight erosion | 403,278 | 340,841 | −62,437 |
Mild erosion | 45,821 | 43,045 | −2776 |
Moderate erosion | 54,121 | 48,131 | −5990 |
Intensive erosion | 42,805 | 43,383 | 578 |
Extreme erosion | 49,444 | 61,960 | 12,516 |
Severe erosion | 52,199 | 111,313 | 59,114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Guo, B.; Zhang, R.; Wang, L. Spatial–Temporal Evolution Pattern of Soil Erosion and Its Dominant Factors on the Loess Plateau from 2000 to 2020. Land 2024, 13, 1944. https://doi.org/10.3390/land13111944
Liu P, Guo B, Zhang R, Wang L. Spatial–Temporal Evolution Pattern of Soil Erosion and Its Dominant Factors on the Loess Plateau from 2000 to 2020. Land. 2024; 13(11):1944. https://doi.org/10.3390/land13111944
Chicago/Turabian StyleLiu, Panpan, Bing Guo, Rui Zhang, and Longhao Wang. 2024. "Spatial–Temporal Evolution Pattern of Soil Erosion and Its Dominant Factors on the Loess Plateau from 2000 to 2020" Land 13, no. 11: 1944. https://doi.org/10.3390/land13111944
APA StyleLiu, P., Guo, B., Zhang, R., & Wang, L. (2024). Spatial–Temporal Evolution Pattern of Soil Erosion and Its Dominant Factors on the Loess Plateau from 2000 to 2020. Land, 13(11), 1944. https://doi.org/10.3390/land13111944