Identification of Agricultural Areas to Restore Through Nature-Based Solutions (NbS)
Abstract
:1. Introduction
- barriers/enablers of NBS;
- public participation/engagement/education;
- monitoring/evaluation of NbS project outcomes;
- policy and governance issues;
- social issues;
- private sector involvement.
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Assessment of Ecosystem Services Provided in the Study Area
2.3.1. Carbon Storage and Sequestration (CSS)
2.3.2. Habitat Quality (HbQ)
2.3.3. Agricultural Production (AP)
2.3.4. Pollination (Pol)
2.4. Land Capability (LCap)
2.5. Normalization of Criteria
2.6. Multi-Criteria Analysis for the Assessment of Ecosystem Services and Identification of Valuable and Degraded Areas
- Equally important (1);
- Moderately more important (3);
- Strongly more important (5);
- Clearly more important (7);
- Extremely more important (9).
2.6.1. Weighted Sum of the Considered Criteria
2.6.2. Clustering of TESV Index: K-Means for Grids
2.7. Analysis of Changes in Terms of Landscape Fragmentation and Ecological Connectivity
2.7.1. Current Forest and Future Scenarios
2.7.2. Landscape Metrics
3. Results
3.1. Processing of the Final Cartography (TESV Index)
3.2. Cartographies of Valuable Areas and Degraded Areas
3.3. Future Scenarios: Potential Forest
3.4. Analysis of Metrics
4. Discussion
4.1. Analysis Model
4.2. Distribution of Clusters
4.3. Connectivity
4.4. Which NbS?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2016; ISBN 9789251094426. [Google Scholar]
- Atelli, M.; Blasi, C.; Boldini, G.; Cignini, B.; Cosenza, G.; Emiliani, V.; Marchetti, M.; Maria Maggiore, A.; Pericoli, T.; Ricciardi, A.; et al. Strategia Nazionale Del Verde Urbano (Comitato Del Verde Pubblico); Ministero dell’Ambiente e della Sicurezza Energetica: Rome, Italy, 2018. [Google Scholar]
- Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring Cultural Ecosystem Service Hotspots: Linking Multiple Urban Forest Features with Public Participation Mapping Data. Urban For. Urban Green. 2020, 48, 126561. [Google Scholar] [CrossRef]
- Churkina, G. Modeling the Carbon Cycle of Urban Systems. Ecol Modell 2008, 216, 107–113. [Google Scholar] [CrossRef]
- World Health Organization—Regional Office for Europe. Urban Green Spaces: A Brief for Action; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Fusaro, L.; Salvatori, E.; Mereu, S.; Marando, F.; Scassellati, E.; Abbate, G.; Manes, F. Urban and Peri-Urban Forests in the Metropolitan Area of Rome: Ecophysiological Response of Quercus ilex L. in Two Green Infrastructures in an Ecosystem Services Perspective. Urban For. Urban Green. 2015, 14, 1147–1156. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Pulighe, G.; Fava, F.; Lupia, F. Insights and Opportunities from Mapping Ecosystem Services of Urban Green Spaces and Potentials in Planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Poe, M.R.; LeCompte, J.; McLain, R.; Hurley, P. Urban Foraging and the Relational Ecologies of Belonging. Soc. Cult. Geogr. 2014, 15, 901–919. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Maheswaran, R. The Health Benefits of Urban Green Spaces: A Review of the Evidence. J. Public. Health 2011, 33, 212–222. [Google Scholar] [CrossRef]
- Campagnaro, T.; Vecchiato, D.; Arnberger, A.; Celegato, R.; Da Re, R.; Rizzetto, R.; Semenzato, P.; Sitzia, T.; Tempesta, T.; Cattaneo, D. General, Stress Relief and Perceived Safety Preferences for Green Spaces in the Historic City of Padua (Italy). Urban For. Urban Green. 2020, 52, 126695. [Google Scholar] [CrossRef]
- Sacker, A.; Cable, N. Do Adolescent Leisure-Time Physical Activities Foster Health and Well-Being in Adulthood? Evidence from Two British Birth Cohorts. Eur. J. Public Health 2006, 16, 331–335. [Google Scholar] [CrossRef]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban Residential Environments and Senior Citizens’ Longevity in Megacity Areas: The Importance of Walkable Green Spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef]
- Cueva, J.; Yakouchenkova, I.A.; Fröhlich, K.; Dermann, A.F.; Dermann, F.; Köhler, M.; Grossmann, J.; Meier, W.; Bauhus, J.; Schröder, D.; et al. Synergies and Trade-Offs in Ecosystem Services from Urban and Peri-urban Forests and Their Implication to Sustainable City Design and Planning. Sustain. Cities Soc. 2022, 82, 103903. [Google Scholar] [CrossRef]
- Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2021; Report SNPA 22/21; SNPA: Rome, Italy, 2021; ISBN 978-88-448-1059-7. [Google Scholar]
- Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2022; Report SNPA 32/22; SNPA: Rome, Italy, 2022; ISBN 978-88-448-1124-2. [Google Scholar]
- Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social Metabolism, Landscape Change and Land-Use Planning in the Barcelona Metropolitan Region. Land Use Policy 2010, 27, 497–510. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Youssef, A.; Sewilam, H.; Khadr, Z. Impact of Urban Sprawl on Agriculture Lands in Greater Cairo. J. Urban Plan. Dev. 2020, 146, 05020027. [Google Scholar] [CrossRef]
- Parece, T.E.; Campbell, J.B. Geospatial Evaluation for Urban Agriculture Land Inventory. Int. J. Appl. Geospat. Res. 2017, 8, 43–63. [Google Scholar] [CrossRef]
- European Union. Building a Green Infrastructure for Europe; Publ. Office of the European Union: Luxembourg, 2013; ISBN 978-92-793-3428-3. [Google Scholar]
- Potschin, M.; Haines-Young, R.H. Nature-Based Solutions ESMERALDA-Enhancing Ecosystem Services Mapping for Policy and Decision Making View Project; European Commission: Luxembourg, 2015. [Google Scholar]
- Eisenberg, B. Nature Based Solutions-Technical Handbook INTERESS-I: Integrierte Strategien Zur Stärkung Urbaner Blau-Grüner Infrastrukturen View Project Space Syntax and Open Space Planning View Project; UnaLab: Eindhoven, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Price, R. Nature-Based Solutions (NbS)-What Are They and What Are the Barriers and Enablers to Their Use? Institute of Development Studies: Brighton, UK, 2021. [Google Scholar]
- Di Pirro, E.; Sallustio, L.; Castellar, J.A.C.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests 2022, 13, 548. [Google Scholar] [CrossRef]
- Science for Environment Policy. FUTURE BRIEF: The Solution is in Nature–Issue 24; Brief Produced for the European Commission DG Environment; Science Communication Unit, UWE Bristol: Bristol, UK, 2021. [Google Scholar]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; van Wyk, E.; Ordóñez, C.; et al. Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. Bioscience 2019, 69, 455–466. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-based Solutions for Climate Change Adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- European Commission. 3 Billion Trees Pledge. Available online: https://knowledge4policy.ec.europa.eu/publication/commission-staff-working-document-swd2021651-3-billion-tree-planting-pledge-2030_en (accessed on 15 June 2024).
- Goffner, D.; Sinare, H.; Gordon, L.J. The Great Green Wall for the Sahara and the Sahel Initiative as an Opportunity to Enhance Resilience in Sahelian Landscapes and Livelihoods. Reg. Environ. Chang. 2019, 19, 1417–1428. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the Message Right on Nature-based Solutions to Climate Change. Glob. Chang. Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Kapos, V.; Wicander, S.; Salvaterra, T.; Dawkins, K.; Hicks, C. The Role of the Natural Environment in Adaptation, Background Paper for the Global Commission on Adaptation; Global Commission on Adaptation: Rotterdam, The Netherlands; Washington, DC, USA, 2019. [Google Scholar]
- Zhu, D.; Zhang, Y.; Kendal, D.; Fraser, L.; Flies, E.J. Nature-Based Solutions in Australia: A Systematic Quantitative Literature Review of Terms, Application and Policy Relevance. Nat.-Based Solut. 2023, 4, 100092. [Google Scholar] [CrossRef]
- Molloy, A.; Collier, M.; Buckley, Y.M. Identification and as Sessment of Best Practice in Nature-Based Solutions for Climate Action and Ecosystem Restoration in Ireland; Working Paper No. 26; Climate Change Advisory Council: Dublin, Ireland, 2024. [Google Scholar]
- Di Pirro, E.; Mendes, R.; Fidélis, T.; Sallustio, L.; Roebeling, P.; Marchetti, M.; Lasserre, B. The Embeddedness of Nature-Based Solutions in the Recovery and Resilience Plans as Multifunctional Approaches to Foster the Climate Transition: The Cases of Italy and Portugal. Land 2022, 11, 1254. [Google Scholar] [CrossRef]
- Mendonça, R.; Roebeling, P.; Fidélis, T.; Saraiva, M. Policy Instruments to Encourage the Adoption of Nature-Based Solutions in Urban Landscapes. Resources 2021, 10, 81. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban Greening through Nature-Based Solutions—Key Characteristics of an Emerging Concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef]
- Urgenson, L.S.; Ryan, C.M.; Halpern, C.B.; Bakker, J.D.; Belote, R.T.; Franklin, J.F.; Haugo, R.D.; Nelson, C.R.; Waltz, A.E.M. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program. Environ. Manag. 2017, 59, 338–353. [Google Scholar] [CrossRef]
- Voskamp, I.M.; de Luca, C.; Polo-Ballinas, M.B.; Hulsman, H.; Brolsma, R. Nature-Based Solutions Tools for Planning Urban Climate Adaptation: State of the Art. Sustainability 2021, 13, 6381. [Google Scholar] [CrossRef]
- Standish, R.J.; Hobbs, R.J.; Mayfield, M.M.; Bestelmeyer, B.T.; Suding, K.N.; Battaglia, L.L.; Eviner, V.; Hawkes, C.V.; Temperton, V.M.; Cramer, V.A.; et al. Resilience in Ecology: Abstraction, Distraction, or Where the Action Is? Biol. Conserv. 2014, 177, 43–51. [Google Scholar] [CrossRef]
- Johnson, B.A.; Kumar, P.; Okano, N.; Dasgupta, R.; Shivakoti, B.R. Nature-Based Solutions for Climate Change Adaptation: A Systematic Review of Systematic Reviews. Nat.-Based Solut. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Battisti, L.; Giacco, G.; Moraca, M.; Pettenati, G.; Dansero, E.; Larcher, F. Spatializing Urban Forests as Nature-Based Solutions: A Methodological Proposal. Cities 2024, 144, 104629. [Google Scholar] [CrossRef]
- Yimer, E.A.; De Trift, L.; Dondeyne, S.; Speijer, L.; Huysmans, M.; Cools, J.; Nossent, J.; van Griensven, A. Framework for Mapping Large-Scale Nature-Based Solutions for Drought Mitigation: Regional Application in Flanders. Water Res. 2024, 261, 122003. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.; Haase, D.; Albert, C. Locating Spatial Opportunities for Nature-Based Solutions: A River Landscape Application. Water 2018, 10, 1869. [Google Scholar] [CrossRef]
- Balzan, M.V.; Zulian, G.; Maes, J.; Borg, M. Assessing Urban Ecosystem Services to Prioritise Nature-Based Solutions in a High-Density Urban Area. Nat.-Based Solut. 2021, 1, 100007. [Google Scholar] [CrossRef]
- European Commission. Mapping Guide Urban Atlas. 2023. Available online: https://insitu.copernicus.eu/library/reports/summary-report-of-the-methodological-improvement-of-urban-atlas-layer-1-2-00-jan-2024 (accessed on 23 September 2024).
- NBFC (National Biodiversity Future Center) Project. Funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4. 2021. Available online: https://www.nbfc.it/progetto (accessed on 29 October 2024).
- Amadei, M.; Bagnaia, R.; Di Bucci, D.; Laureti, L.; Lugeri, F.R.; Nisio, S.; Salvucci, R. Carta Della Natura Alla Scala 1:250.000: Carta Dei Tipi e Delle Unità Fisiografiche Di Paesaggio d’Italia, 2003rd ed. 2000. Available online: https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura/cartografia/carta-della-natura-a-scala-nazionale/la-carta-dei-tipi-e-delle-unita-fisiografiche-di-paesaggio-d2019italia (accessed on 1 June 2024).
- ISPRA. Carta Di Copertura Del Suolo 2018 Basata Su Dati Copernicus e Su Dati ISPRA; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2023; Report SNPA 37/23; SNPA: Rome, Italy, 2023; ISBN 978-88-448-1178-5. [Google Scholar]
- Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2018; Report SNPA 08/19; SNPA: Rome, Italy, 2019; ISBN 978-88-448-0964-5. [Google Scholar]
- Stanford University; University of Minnesota; Chinese Academy of Sciences; The Nature Conservancy; World Wildlife Fund; Stockholm Resilience Centre; Royal Swedish Academy of Sciences. Natural Capital Project, InVEST 0.0. 2024. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 15 July 2024).
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing Land Take by Urban Development and Its Impact on Carbon Storage: Findings from Two Case Studies in Italy. Environ. Impact Assess Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2016; Report SNPA 248/16; SNPA: Rome, Italy, 2016; ISBN 978-88-448-0776-4. [Google Scholar]
- European Environment Agency. High Resolution Layers; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- EEA. CORINE Land Cover 2012 (Vector/Raster 100 m), Europe, 6-Yearly; EEA: Copenhagen, Denmark, 2012. [Google Scholar]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing Habitat Quality in Relation to the Spatial Distribution of Protected Areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Agenzia Entrate Valori Agricoli Medi. Available online: https://www.agenziaentrate.gov.it/portale/web/guest/schede/fabbricatiterreni/omi/banche-dati/valori-agricoli-medi/valori-agricoli-medi-molise (accessed on 12 June 2024).
- Bellucci, V.; Bianco, P.M.; Strollo, A.; Marchetti, M.; Marino, D.; Marucci, A.; Munafò, M.; Palmieri, M.; Sallustio, L.; Soraci, M. Distribuzione Potenziale Degli Impollinatori Nelle Aree Agricole Secondo Il Modello InVest. L’apicoltore Ital. 2016, 7, 9–12. [Google Scholar]
- Araújo Costa, R.C.; Pereira, G.T.; Tarlé Pissarra, T.C.; Silva Siqueira, D.; Sanches Fernandes, L.F.; Vasconcelos, V.; Fernandes, L.A.; Pacheco, F.A.L. Land Capability of Multiple-Landform Watersheds with Environmental Land Use Conflicts. Land Use Policy 2019, 81, 689–704. [Google Scholar] [CrossRef]
- Klingebiel, A.A.; Montgomery, P.H. Land-Capability Classification; Soil Conservation Service, US Department of Agriculture: Washington, DC, USA, 1961; Volume 210. [Google Scholar]
- Dean, M. A Practical Guide to Multi-Criteria Analysis MORE (Multi-Modal Optimisation of Road-Space in Europe) Project View Project Achieving Transitions to Zero Carbon Emissions and Sustainable Urban Mobility View Project. 2022. Available online: https://www.researchgate.net/publication/358131153 (accessed on 2 June 2024). [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Coelho, C.D.; da Silva, D.D.; Amorim, R.S.S.; Vasconcelos, B.N.F.; Possato, E.L.; Filho, E.I.F.; Brandão, P.C.; Ferreira Neto, J.A.; Silva, L.V. Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil. Land 2024, 13, 1475. [Google Scholar] [CrossRef]
- Wedley, W.C. Consistency Prediction for Incomplete AHP Matrices. Math. Comput. Model. 1993, 17, 151–161. [Google Scholar] [CrossRef]
- Vizzarri, M.; Sallustio, L.; Travaglini, D.; Bottalico, F.; Chirici, G.; Garfì, V.; Lafortezza, R.; Veca, D.S.L.M.; Lombardi, F.; Maetzke, F.; et al. The MIMOSE Approach to Support Sustainable Forest Management Planning at Regional Scale in Mediterranean Contexts. Sustainability 2017, 9, 316. [Google Scholar] [CrossRef]
- Wu, J. Landscape Ecology. In Ecological Systems; Springer: New York, NY, USA, 2013; pp. 179–200. [Google Scholar]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- Fahrudin; Sakti, A.D.; Komara, H.Y.; Sumarga, E.; Choiruddin, A.; Hendrawan, V.S.A.; Hati, T.; Anna, Z.; Wikantika, K. Optimizing Afforestation and Reforestation Strategies to Enhance Ecosystem Services in Critically Degraded Regions. Trees For. People 2024, 18, 100700. [Google Scholar] [CrossRef]
- Munafò, M.; Strollo, A.; Tonti, D.; Marchetti, M. Consumo Di Suolo e Dinamiche Territoriali Ed Ecologiche. In Roma Città-Territorio—Abitare Un Contesto Metropolitano; Quodllibet: Macerata, Italy, 2024; ISBN 978-88-229-2251-9. [Google Scholar]
- ETIFOR Oltrepò Pavese: Governance e Finanziamenti. Available online: https://www.etifor.com/it/portfolio/oltrepo-pavese/ (accessed on 19 October 2024).
- De Toni, A.; Casella, L.; Marchetti, M. ISPRA_2016_QualitàHabitatDeToni; ISPRA: Rome, Italy, 2016. [Google Scholar]
- Ottaviano, M.; Marchetti, M. Census and Dynamics of Trees Outside Forests in Central Italy: Changes, Net Balance and Implications on the Landscape. Land 2023, 12, 1013. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing Cities Using a Regionally-Focused Biodiversity-Led Multifunctional Benefits Approach to Urban Green Infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef]
- Standish, R.J.; Parkhurst, T. Interventions for Resilient Nature-based Solutions: An Ecological Perspective. J. Ecol. 2024, 112, 2502–2509. [Google Scholar] [CrossRef]
- Di Cristofaro, M.; Sallustio, L.; Sitzia, T.; Marchetti, M.; Lasserre, B. Landscape Preference for Trees Outside Forests along an Urban–Rural–Natural Gradient. Forests 2020, 11, 728. [Google Scholar] [CrossRef]
- Ernstson, H.; Barthel, S.; Andersson, E.; Borgström, S.T. Scale-Crossing Brokers and Network Governance of Urban Ecosystem Services: The Case of Stockholm. Ecol. Soc. 2010, 15, 28. [Google Scholar] [CrossRef]
- Di Cristofaro, M.; Di Pirro, E.; Ottaviano, M.; Marchetti, M.; Lasserre, B.; Sallustio, L. Greener or Greyer? Exploring the Trends of Sealed and Permeable Spaces Availability in Italian Built-Up Areas during the Last Three Decades. Forests 2022, 13, 1983. [Google Scholar] [CrossRef]
- Quintero-Angel, M.; Cerón-Hernández, V.A.; Ospina-Salazar, D.I. Applications and Perspectives for Land Restoration through Nature-Based Solutions. Curr. Opin. Environ. Sci. Health 2023, 36, 100518. [Google Scholar] [CrossRef]
- European Commission. The Common Agricultural Policy; European Commission: Luxembourg, 2023. [Google Scholar]
- Pantera, A.; Mosquera-Losada, M.R.; Herzog, F.; den Herder, M. Agroforestry and the Environment. Agrofor. Syst. 2021, 95, 767–774. [Google Scholar] [CrossRef]
HbQ | Pol | LCap | CSS | AP | CR | |
---|---|---|---|---|---|---|
Q1 | 0.1687 | 0.1687 | 0.4195 | 0.0743 | 0.1687 | 0.03 |
Q3 | 0.5557 | 0.1193 | 0.0572 | 0.2337 | 0.034 | 0.10 |
Q4 | 0.2896 | 0.1367 | 0.2552 | 0.2724 | 0.0461 | 0.08 |
Q5 | 0.3349 | 0.1195 | 0.2945 | 0.1243 | 0.1268 | 0.2 |
Q7 | 0.3686 | 0.2339 | 0.1335 | 0.0546 | 0.2093 | 0.07 |
Q8 | 0.327 | 0.3643 | 0.1004 | 0.1376 | 0.0707 | 0.08 |
Q9 | 0.5131 | 0.259 | 0.0514 | 0.1481 | 0.0285 | 0.08 |
Q12 | 0.3257 | 0.3799 | 0.1101 | 0.1451 | 0.0393 | 0.08 |
Q13 | 0.4533 | 0.1148 | 0.1353 | 0.0821 | 0.2145 | 0.16 |
Q16 | 0.3188 | 0.2832 | 0.0699 | 0.2969 | 0.0311 | 0.15 |
Criteria | Weight | Standard Dev. |
---|---|---|
HbQ | 0.36554 | 0.11 |
Pol | 0.21793 | 0.10 |
LCap | 0.1627 | 0.12 |
CSS | 0.15691 | 0.08 |
AP | 0.0969 | 0.08 |
Class Metrics | Landscape Metrics |
---|---|
Patch Density (PD) Landscape Similarity Index (LSI) Total Core Area (TCA) Euclidean Nearest Neighbor Distance (ENN_MN) Euclidean Nearest Neighbor Distance (Area–Weighted Mean) (ENN_AM) Percentage of like adjacencies (PLADJ) Normalized Landscape shape index (NLSI) | Average Area (AREA_MN) Mean Radius of Gyration (GYRATE_MN) Number of Disjunct Core Area (NDCA) Disjunct Core Area Density (DCAD) Aggregation Index (AI) |
A | B | ||||
---|---|---|---|---|---|
Cluster | Minimum Value | Maximum Value | Cluster | Area (Ha) | Area % |
1 | 0.046 | 0.268 | 1 | 3470.3 | 3.37 |
2 | 0.268 | 0.348 | 2 | 8139.9 | 7.91 |
3 | 0.348 | 0.403 | 3 | 12,930.2 | 12.57 |
4 | 0.403 | 0.446 | 4 | 18,292.2 | 17.78 |
5 | 0.446 | 0.484 | 5 | 25,334.4 | 24.63 |
6 | 0.484 | 0.529 | 6 | 20,966.9 | 20.38 |
7 | 0.529 | 0.597 | 7 | 9011.6 | 8.76 |
8 | 0.597 | 0.823 | 8 | 4718.2 | 4.59 |
Cluster | Area (Ha) | Area % |
---|---|---|
1 | 740.09 | 1.42 |
2 | 3450.09 | 6.60 |
3 | 5991.32 | 11.46 |
4 | 10,637.76 | 20.35 |
5 | 16,843.73 | 32.22 |
6 | 12,116.36 | 23.18 |
7 | 2012.49 | 3.85 |
8 | 482.88 | 0.92 |
Metrics | Current Forest | Potential Forest |
---|---|---|
PD | 4.8177 | 7.6036 |
LSI | 96.6678 | 109.9036 |
TCA | 26,269.55 | 27,011.85 |
ENN_MN | 50.9801 | 44.3603 |
ENN_AM | 28.2223 | 26.0803 |
PLADJ | 94.0350 | 93.3110 |
NLSI | 0.0591 | 0.0663 |
Metrics | Current Forest | Potential Forest |
---|---|---|
AREA_MN | 2.7146 | 1.7686 |
GYRATE_MN | 28.9786 | 22.7855 |
NDCA | 9677 | 15,273 |
DCAD | 4.8177 | 7.6036 |
AI | 94.0930 | 93.3679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petti, B.; Ottaviano, M. Identification of Agricultural Areas to Restore Through Nature-Based Solutions (NbS). Land 2024, 13, 1954. https://doi.org/10.3390/land13111954
Petti B, Ottaviano M. Identification of Agricultural Areas to Restore Through Nature-Based Solutions (NbS). Land. 2024; 13(11):1954. https://doi.org/10.3390/land13111954
Chicago/Turabian StylePetti, Beatrice, and Marco Ottaviano. 2024. "Identification of Agricultural Areas to Restore Through Nature-Based Solutions (NbS)" Land 13, no. 11: 1954. https://doi.org/10.3390/land13111954
APA StylePetti, B., & Ottaviano, M. (2024). Identification of Agricultural Areas to Restore Through Nature-Based Solutions (NbS). Land, 13(11), 1954. https://doi.org/10.3390/land13111954