Study on the Interaction Effects of Landscape Pattern on the Synergistic Trade-Offs of Ecosystem Services Based on Multi-Model Fusion: A Case Study of Chengdu-Chongqing Economic Circle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. PLUS-Based Land Use Simulation
2.3.2. Multi-Scenario Settings
- (1)
- Under the NDS, land use in 2050 follows a natural development trend, simulated using the Markov chain module in the PLUS model, based on observed land use change trends from 2010 to 2020.
- (2)
- The objective of the EPS is to protect areas with high ecological quality. In this scenario, the conversion of forest land, grassland, and water bodies into arable, construction, and unused lands is restricted to ensure ecological land development.
- (3)
- The goal of the EDS is to ensure economic development by promoting the growth of arable and construction land while limiting the development of ecological land.
2.3.3. Landscape Pattern Analysis
2.3.4. Ecosystem Service Assessment
2.3.5. Trade-Offs/Synergies Between ESs
2.3.6. Influences on Future ESs
3. Results
3.1. Spatial and Temporal Changes in Land Use
3.2. Spatial and Temporal Changes in ESs
3.2.1. Spatial and Temporal Changes in WY
3.2.2. Spatial and Temporal Changes in CS
3.2.3. Spatial and Temporal Changes in SC
3.2.4. Spatial and Temporal Changes in HQ
3.3. Changes in Trade-Offs/Synergies Between ESs
3.4. Impacts of Driving Factors on ES Trade-Offs/Synergies
3.4.1. Single Factor Detection
3.4.2. Interactive Factor Detection
4. Discussion
4.1. Changes in the Synergistic/Trade-Offs Relationships of ESs Under Different Administrative Scales
4.2. Driving Mechanism of ES Synergistic/Trade-Offs Effects and Landscape Pattern Index
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Explanatory Power of Each Driving Factor in Their Relationship to ESs in 2050
Appendix B. The Explanatory Power of Each Driving Factor in Their Relationship to ESs (Interaction Factor Detection) in the Southern Sichuan Urban Agglomeration in 2050
Appendix C. The Explanatory Power of Each Driving Factor in Their Relationship to ESs (Interaction Factor Detection) in the NC-SN-GA Urban Agglomeration in 2050
References
- Yang, W.; Dietz, T.; Kramer, D.B.; Ouyang, Z.; Liu, J. An integrated approach to understanding the linkages between ecosystem services and human well-being. Ecosyst. Health Sustain. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Schroeter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610–611, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.X. Natural and human impacts on ecosystem services in Guanzhong—Tianshui economic region of China. Environ. Sci. Pollut. Res. Int. 2016, 23, 6803–6815. [Google Scholar] [CrossRef]
- Li, J.; Zhou, K.; Xie, B.; Xiao, J. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, D.; Li, L.; Jia, M.; Dong, Z.; Miao, Z.; Ren, C.; Song, C. Quantifying changes in multiple ecosystem services during 1992-2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Gao, Y.; Peng, J. Hotspot and relationship identification in multiple landscape services: A case study on an area with intensive human activities. Ecol. Indic. 2013, 29, 529–537. [Google Scholar] [CrossRef]
- Abdalla, M.; Saunders, M.; Hastings, A.; Williams, M.; Smith, P.; Osborne, B.; Lanigan, G.; Jones, M.B. Simulating the impacts of land use in Northwest Europe on Net Ecosystem Exchange (NEE): The role of arable ecosystems, grasslands and forest plantations in climate change mitigation. Sci. Total Environ. 2013, 465, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Braun, D.; de Jong, R.; Schaepman, M.E.; Furrer, R.; Hein, L.; Kienast, F.; Damm, A. Ecosystem service change caused by climatological and non-climatological drivers: A Swiss case study. Ecol. Appl. 2019, 29, e01901. [Google Scholar] [CrossRef]
- Zhang, K.; Fang, B.; Zhang, Z.; Liu, T.; Liu, K. Exploring future ecosystem service changes and key contributing factors from a “past-future-action” perspective: A case study of the Yellow River Basin. Sci. Total Environ. 2024, 926, 171630. [Google Scholar] [CrossRef]
- Guo, W.; Teng, Y.; Li, J.; Yan, Y.; Zhao, C.; Li, Y.; Li, X. A new assessment framework to forecast land use and carbon storage under different SSP-RCP scenarios in China. Sci. Total Environ. 2024, 912, 169088. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Gou, A. Research on the evolution characteristics, driving mechanisms and multi-scenario simulation of habitat quality in the Guangdong-Hong Kong-Macao Greater Bay based on multi-model coupling. Sci. Total Environ. 2024, 924, 171263. [Google Scholar] [CrossRef]
- Xiong, L.; Li, R. Assessing and decoupling ecosystem services evolution in karst areas: A multi-model approach to support land management decision-making. J. Environ. Manag. 2024, 350, 119632. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale effects on the relationships between land characteristics and ecosystem services- a case study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
- Costanza, R. Social Traps and Environmental Policy. BioScience 1987, 37, 407–412. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, X.; An, J.; Su, Q.; Chen, B. Drivers of ecosystem services and their trade-offs and synergies in different land use policy zones of Shaanxi Province, China. J. Clean. Prod. 2024, 452, 142077. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Ji, J.; Ji, Z.; Kassaye, A.Y.; Lai, S.; Yang, Y. Ecosystem services dynamics and their influencing factors: Synergies/tradeoffs interactions and implications, the case of upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2024, 938, 173524. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.E.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Hongren, S.; Zhigang, C.; Zhigao, F.; Yabin, L. Comprehensive Evaluation of Urbanization Level of Chengdu-Chongqing Urban Agglomeration based on Entropy Method. J. Chengdu Univ. Inf. Technol. 2024, 39, 10. (In Chinese) [Google Scholar] [CrossRef]
- Xing-zhong, Y.; Hong-yan, X.; Wen-tao, Y.; Bo, L. Dynamic analysis of land use and ecosystem services value in Cheng-Yu Economic Zone, Southwest China. Chin. J. Ecol. 2012, 31, 7. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Yuan, M.; Li, H.; Chen, X. Exploring the coupling coordination of urban ecological resilience and new-type urbanization: The case of China’s Chengdu–Chongqing Economic Circle. Environ. Technol. Innov. 2023, 32, 103372. [Google Scholar] [CrossRef]
- Yun-ling, H.; Jun-yi, T.; Jie-yu, Z.; Liang-rui, L.; Ya-hui, Z.; Hong-wen, L. The Decoupling Relationship Between Economic Development and Expansion of Urban Construction Land in Chengdu–Chongqing Economic Circle. J. China West Norm. Univ. Nat. Sci. 2024, 11, 1–10. (In Chinese) [Google Scholar]
- Zhang, Y.; Li, J.; Wang, X. Spatial structure characteristics of Chengdu-Chongqing urban agglomeration from the perspective of multi-dimensional factor flows. J. Hum. Settl. West China 2024, 39, 7. (In Chinese) [Google Scholar] [CrossRef]
- Wu, X.; Fan, X.; Liu, X.; Xiao, L.; Ma, Q.; He, N.; Gao, S.; Qiao, Y. Temporal and spatial variations of ecological quality of Chengdu-Chongqing Urban Agglomeration based on Google Earth Engine cloud platform. Chin. J. Ecol. 2023, 42, 10. (In Chinese) [Google Scholar] [CrossRef]
- Xun, L.; Qingfeng, G.; Clarke, K.C.; Shishi, L.; Bingyu, W.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 205–216. [Google Scholar] [CrossRef]
- Yue, H.; Yanhe, H.; Jinshi, L.; Xiaohui, L.; Xiang, J. Relationship between Benggang erosion and landscape pattern in the southern red soil zone based on path analysis. Chin. J. Appl. Ecol. 2024, 12, 2872–2880. (In Chinese) [Google Scholar] [CrossRef]
- Zhi-hao, S.; Feng-yun, M.; Qi, H.; Qiu-yan, L.; Xiao-zhi, W. Spatial Distribution and Influencing Factors Analysis of Soil Conservation Services in Chongqing. Sci. Technol. Eng. 2023, 23, 9. (In Chinese) [Google Scholar]
- Lu, C.; Sidai, G.; Yangli, L. Discerning changes and drivers of water yield ecosystem service: A case study of Chongqing-Chengdu District, Southwest China. Ecol. Indic. 2024, 160, 111767. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Long, X.; Zhang, Q.; Liu, D.; Wu, H.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Jing, H.; Jinfan, C.; Wei, Y.; Yangjizhe, X.; Donghui, Q.; Fengjie, G. Analysis of Soil Erosion Change and Driving Factors in Low Hilly Areas Based on InVEST Model. Res. Soil Water Conserv. 2022, 29, 5. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Meng, X. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena 2013, 100, 74–82. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Wang, J.-F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Tian-tian, C.; Li, P.; Qiang, W. Scenario decision of ecological security based on the trade-off among ecosystem services. China Environ. Sci. 2021, 41, 13. (In Chinese) [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Wang, Q. Response and multiscenario simulation of trade-offs/synergies among ecosystem services to the Grain to Green Program: A case study of the Chengdu-Chongqing urban agglomeration, China. Environ. Sci. Pollut. Res. 2022, 29, 33572–33586. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Jie, Y.; Wen-liu, Z. Spatiotemporal Variation and Trade-off Synergistic Relationship of Ecosystem Services in Gannan Prefecture. Environ. Sci. 2024, 17, 1–17. (In Chinese) [Google Scholar] [CrossRef]
- Hua, F.; Wang, X.; Zheng, X.; Fisher, B.; Wang, L.; Zhu, J.; Tang, Y.; Yu, D.W.; Wilcove, D.S. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 2016, 7, 12717. [Google Scholar] [CrossRef]
- Chen, L.; Yao, Y.; Xiang, K.; Dai, X.; Li, W.; Dai, H.; Lu, K.; Li, W.; Lu, H.; Zhang, Y.; et al. Spatial-temporal pattern of ecosystem services and sustainable development in representative mountainous cities: A case study of Chengdu-Chongqing Urban Agglomeration. J. Environ. Manag. 2024, 368, 122261. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Feng, X.; Liu, S.; Yin, L.; Chen, Y. Trade-offs and Synergies of Ecosystem Services in Karst Area of China Driven by Grain-for-Green Program. Chin. Geogr. Sci. 2020, 30, 101–114. [Google Scholar] [CrossRef]
- Xin, L.; Deng-shuai, C.; Bing-bing, Z.; Jian-rong, C. Spatio-temporal Evolution and Trade-off/Synergy Analysis of Ecosystem Services in Regions of Rapid Urbanization: A Case Study of the Lower Yellow River Region. Environ. Sci. 2023, 17, 5372–5384. (In Chinese) [Google Scholar] [CrossRef]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Liu, Y.; Wang, X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- MOXingguo; Suxia, L.; Shi, H. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River. Acta Geogr. Sin. 2022, 77, 15. (In Chinese) [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Shuang, Z.; Shaoquan, L.; Li, P. Correlation Effect in the Developing of Landscape Patterns with the Changes in Ecosystem Services in Chengdu City, China. Mt. Res. 2021, 39, 13. (In Chinese) [Google Scholar] [CrossRef]
- Peng, W.F.; Zhou, J.M.; Fan, S.Y.; Yang, C.J. Effects of the Land Use Change on Ecosystem Service Value in Chengdu, Western China from 1978 to 2010. J. Indian Soc. Remote Sens. 2015, 44, 197–206. [Google Scholar] [CrossRef]
- Wanqing, Y.; Peng, Y.; Xiao, S.; Baolong, H. Changes of landscape pattern and its impacts on multiple ecosystem services in Beijing. Acta Ecol. Sin. 2022, 42, 12. (In Chinese) [Google Scholar] [CrossRef]
- Min, X.; Xiao-Ya, J.; Wei, Z.; Lin-Yan, W.; Yi-Ran, Z.; Hui, Z. Correlation Effect Between Landscape Pattern and Ecosystem Services in High—speed Urbanization Areas in New Rural Construction. Resour. Environ. Yangtze Basin 2024, 33, 11. (In Chinese) [Google Scholar]
- Cheng, F.; Liu, S.; Hou, X.; Zhang, Y.; Dong, S. Response of bioenergy landscape patterns and the provision of biodiversity ecosystem services associated with land-use changes in Jinghong County, Southwest China. Landsc. Ecol. 2018, 33, 783–798. [Google Scholar] [CrossRef]
- Huijie, L.; Xiang, N.; Bing, W.; Zhijiang, Z. Coupled coordination of ecosystem services and landscape patterns: Takethe Grain for Green Project in the Wuling Mountain Area as an example. Acta Ecol. Sin. 2020, 40, 11. (In Chinese) [Google Scholar]
- Min, D.; Changhong, S.; Yalu, W. Relationship Between Landscape Fragmentation andEcosystem Services in the Upper Reach of theFenhe River Watershed, China. J. Shanxi Univ. 2019, 43, 10. [Google Scholar]
Data Type | Data Name | Data Source | Resolution |
---|---|---|---|
Environmental Data | Land Use | Chinese Academy of Sciences Resource and Environment Science Data Center (https://www.resdc.cn (accessed on 5 April 2024)) | 1 km |
Soil | Harmonized World Soil Database (HWSD) | 1 km | |
Precipitation | WorldClimv2.1 (https://www.worldclim.org (accessed on 5 April 2024)) | 1 km | |
Temperature | |||
Evapotranspiration | National Tibetan Plateau Data Center | 1 km | |
DEM | Geospatial Data Cloud | 30 m | |
Socioeconomic Data | Population | Resources and Environmental Science Data Center (https://www.resdc.cn (accessed on 17 March 2024)) | 1 km |
GDP | |||
Distance to the Road | National Geomatics Center of China (https://www.ngcc.cn (accessed on 15 March 2024)) | 30 m | |
Distance to the Highway | |||
Distance to Buildings | |||
Distance to the Railroad | |||
Distance to the River |
Type | Landscape Indices |
---|---|
Landscape Fragmentation Index | Landscape Division Index (DIVISION) |
Total Edge (TE) | |
Edge Density (ED) | |
Number of Patches (NP) | |
Patch Density (PD) | |
Splitting Index (SPLIT) | |
Landscape Shape Index (LSI) | |
Landscape Diversity Index | Shannon’s Evenness Index (SHEI) |
Shannon’s Diversity Index (SHDI) | |
Landscape Aggregation Index | Largest Patch Index (LPI) |
Aggregation Index (AI) | |
Contagion Index (CONTAG) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Li, Y.; Shen, W.; Zhu, H. Study on the Interaction Effects of Landscape Pattern on the Synergistic Trade-Offs of Ecosystem Services Based on Multi-Model Fusion: A Case Study of Chengdu-Chongqing Economic Circle. Land 2024, 13, 1982. https://doi.org/10.3390/land13121982
Jin Y, Li Y, Shen W, Zhu H. Study on the Interaction Effects of Landscape Pattern on the Synergistic Trade-Offs of Ecosystem Services Based on Multi-Model Fusion: A Case Study of Chengdu-Chongqing Economic Circle. Land. 2024; 13(12):1982. https://doi.org/10.3390/land13121982
Chicago/Turabian StyleJin, Yuhao, Yuanhang Li, Weiping Shen, and Hengkang Zhu. 2024. "Study on the Interaction Effects of Landscape Pattern on the Synergistic Trade-Offs of Ecosystem Services Based on Multi-Model Fusion: A Case Study of Chengdu-Chongqing Economic Circle" Land 13, no. 12: 1982. https://doi.org/10.3390/land13121982
APA StyleJin, Y., Li, Y., Shen, W., & Zhu, H. (2024). Study on the Interaction Effects of Landscape Pattern on the Synergistic Trade-Offs of Ecosystem Services Based on Multi-Model Fusion: A Case Study of Chengdu-Chongqing Economic Circle. Land, 13(12), 1982. https://doi.org/10.3390/land13121982