Research on the Mechanism and Identification of Key Influencing Elements for Releasing the Value of Data Elements in Smart Cities
Abstract
:1. Introduction
- Q1: What is the mechanism for releasing the value of data elements in smart cities?
- Q2: What are the factors influencing the release of data element value in smart cities based on the mechanism?
- Q3: Which factors are the most critical among all those influencing the release of data element value in smart cities?
2. Materials and Methods
2.1. Literature Review
2.2. The Mechanism for Releasing the Value of Data Elements in Smart Cities
2.2.1. Defining the Release of Data Element Value in Smart Cities
2.2.2. The Mechanism Based on DPSIR Theory
2.3. Analysis of the Influencing Factors for Releasing the Value of Data Elements in Smart Cities
2.3.1. Dimensional Analysis
2.3.2. Influencing Factor Under Each Dimension
2.4. Identification of Key Influencing Factors for Data Element Value Release in Smart Cities Based on Fuzzy-Dematel Method
3. Results
3.1. Data Source
3.2. Determine the Direct Impact Matrix
- (1)
- The triangular fuzzy number matrix is normalized and calculated as shown in Equations (1)–(3).
- (2)
- Reduce the fuzzy number and calculate the left and right standard values. The formula for calculating the left standard value is shown in Equation (4).
- (3)
- Calculate the total standard value with the formulas shown in Equations (6) and (7).
- (4)
- Calculate the overall standardized impact degree value for each expert, and the formula is shown in Equation (8).
3.3. Standardized Processing
- (1)
- Calculate the standardized impact matrix S. The formula is shown in Equation (9).
- (2)
- Calculate the total relationship matrix T with the formula shown in Equation (10), and the results are shown in Table 4.
4. Discussion
4.1. Discussion of the Interrelationships Among the Influencing Factors for Releasing the Value of Data Elements in Smart Cities
4.2. Discussion of Identifying Key Influencing Factors for Releasing the Value of Data Elements in Smart Cities
5. Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Dong, S.; Wu, S.H. Research on intellisense information service oriented to value network model in smart city. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 324–327. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.Y.; Wei, J. Digital innovation management: Theoretical framework and future research. Manag. World 2020, 36, 198–217+219. [Google Scholar] [CrossRef]
- Li, Z.; Ni, Y.; Gao, X.; Cai, G.S. Value Evaluation of Data Assets: Progress and Enlightenment. In Proceedings of the 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), Suzhou, China, 15–18 March 2019; pp. 88–93. [Google Scholar] [CrossRef]
- Cisco. Cisco Annual Internet Report (2018–2023) White Paper. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 23 May 2023).
- Abella, A.; Ortiz-de-Urbina-Criado, M.; De-Pablos-Heredero, C. A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems. Cities 2017, 64, 47–53. [Google Scholar] [CrossRef]
- Kühne, B.; Heidel, K. How could smart cities use data?–Towards a taxonomy of data-driven smart city projects. In Proceedings of the International Conference on Wirtschaftsinformatik, Westphalia, Germany, 9–11 March 2021; pp. 351–366. [Google Scholar] [CrossRef]
- Bencsik, B.; Palmié, M.; Parida, V.; Wincent, J.; Gassmann, O. Business models for digital sustainability: Framework, microfoundations of value capture, and empirical evidence from 130 smart city services. J. Bus. Res. 2023, 160, 113757. [Google Scholar] [CrossRef]
- Lim, C.; Maglio, P.P. Data-driven understanding of smart service systems through text mining. Serv. Sci. 2018, 10, 154–180. [Google Scholar] [CrossRef]
- Kim, J.H. Smart city trends: A focus on 5 countries and 15 companies. Cities 2022, 123, 103551. [Google Scholar] [CrossRef]
- Sadowski, J. Cyberspace and cityscapes: On the emergence of platform urbanism. Urban Geogr. 2020, 41, 448–452. [Google Scholar] [CrossRef]
- Sadowski, J. When data is capital: Datafication, accumulation, and extraction. Big Data Soc. 2019, 6, 2053951718820549. [Google Scholar] [CrossRef]
- Rose, G.; Raghuram, P.; Watson, S.; Wigley, E. Platform urbanism, smartphone applications and valuing data in a smart city. Trans. Inst. Br. Geogr. 2021, 46, 59–72. [Google Scholar] [CrossRef]
- Wang, W.; He, F.; Li, Y.; Tang, S.; Li, X.; Xia, J.; Lv, Z. Data information processing of traffic digital twins in smart cities using edge intelligent federation learning. Inf. Process. Manag. 2022, 60, 103171. [Google Scholar] [CrossRef]
- Ianuale, N.; Schiavon, D.; Capobianco, E. Smart cities, big data, and communities: Reasoning from the viewpoint of attractors. IEEE Access 2015, 4, 41–47. [Google Scholar] [CrossRef]
- Karimi, Y.; Haghi Kashani, M.; Akbari, M.; Mahdipour, E. Leveraging big data in smart cities: A systematic review. Concurr. Comput. Pract. Exp. 2021, 33, e6379. [Google Scholar] [CrossRef]
- Park, K. A Study on the Smart City Selection through the Evaluation of 7 Layers of Smart City. Asia Pac. J. Multimed. Serv. Converg. Art Humanit. Sociol. 2019, 9, 691–699. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X.X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Tufis, M. Data Valuation and Its Applications for Smart Cities. In Personal Data-Smart Cities: How Cities Can Utilise Their Citizen’s Personal Data to Help Them Become Climate Neutral; Taylor & Francis Group: Abingdon, UK, 2023; pp. 217–243. [Google Scholar] [CrossRef]
- Liu, X.; Heller, A.; Nielsen, P.S. CITIESData: A smart city data management framework. Knowl. Inf. Syst. 2017, 53, 699–722. [Google Scholar] [CrossRef]
- Kaluarachchi, Y. Implementing Data-Driven Smart City Applications for Future Cities. Smart Cities 2022, 5, 455–474. [Google Scholar] [CrossRef]
- Sekovski, I.; Newton, A.; Dennison, W.C. Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems. Estuar. Coast. Shelf Sci. 2012, 96, 48–59. [Google Scholar] [CrossRef]
- Agramont, A.; Van Cauwenbergh, N.; Van Griesven, A.; Craps, M. Integrating spatial and social characteristics in the DPSIR framework for the sustainable management of river basins: Case study of the Katari River Basin, Bolivia. Water Int. 2022, 47, 8–29. [Google Scholar] [CrossRef]
- Lewison, R.L.; Rudd, M.A.; Al-Hayek, W.; Baldwind, C.; Begere, M. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016, 56, 110–119. [Google Scholar] [CrossRef]
- Baldwin, C.; Lewison, R.L.; Lieske, S.N.; Beger, M.; Hines, E.; Dearden, P.; Rudd, M.A.; Jones, C.; Satumanatpan, S.; Junchompoo, C. Using the DPSIR framework for transdisciplinary training and knowledge elicitation in the Gulf of Thailand. Ocean. Coast. Manag. 2016, 134, 163–172. [Google Scholar] [CrossRef]
- Bell, S. DPSIR = A problem structuring method? An exploration from the “Imagine” approach. Eur. J. Oper. Res. 2012, 222, 350–360. [Google Scholar] [CrossRef]
- Wang, Z.; Su, X.; Diao, Y.; Wang, P.; Ge, S.I. Study of data security risk relevance about cloud computing for small and medium-sized enterprises. Appl. Res. Comput. 2015, 32, 1782–1786. [Google Scholar]
- Zuo, C.S.; Liu, X.S.; Chen, X.H. DPSLR+: A distributed and parallel spatial index Lree based on dynamic spatial splot. Comput. Sci. 2006, 33, 121–125. [Google Scholar] [CrossRef]
- Carnohan, S.A.; Trier, X.; Liu, S.; Clausen, L.P.W.; Clifford-Holmes, J.K.; Hansen, S.F.; Benini, L.; McKnight, U.S. Next generation application of DPSIR for sustainable policy implementation. Curr. Res. Environ. Sustain. 2023, 5, 100201. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Quan, L.; Xue, B. Pursuing Urban Sustainability in Dynamic Balance Based on the DPSIR Framework: Evidence from Six Chinese Cities. Land 2024, 13, 1334. [Google Scholar] [CrossRef]
- Maxim, L.; Spangenberg, J.H.; O’Connor, M. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 2009, 69, 12–23. [Google Scholar] [CrossRef]
- Agency, E.E. Halting the Loss of Biodiversity by 2010: Proposal for a First Set of Indicators to Monitor Progress in Europe. 2007. Available online: https://www.cabdirect.org/cabdirect/welcome/?target=%2fcabdirect%2fabstract%2f20083050784 (accessed on 23 May 2023).
- Yin, X.M.; Lin, Z.Y.; Chen, J.; Lin, Y.J. Research on the Dynamic Value Creation Process of Data Element. Stud. Sci. Sci. 2022, 40, 220. [Google Scholar] [CrossRef]
- Joshi, S.; Saxena, S.; Godbole, T.; Shreyab. Developing smart cities: An integrated framework. Procedia Comput. Sci. 2016, 93, 902–909. [Google Scholar] [CrossRef]
- Winters, J.V. Why are smart cities growing? Who moves and who stays. J. Reg. Sci. 2011, 51, 253–270. [Google Scholar] [CrossRef]
- Hansen, R. E-Economic and Social Council-Special Edition: Progress Towards the Sustainable. 2019. Available online: https://policycommons.net/artifacts/3334095/e-economic-and-social-council-special-edition/4132944/ (accessed on 28 December 2022).
- Lee, A.; Mackenzie, A.; Smith, G.J.D.; Box, P. Mapping platform urbanism: Charting the nuance of the platform pivot. Urban Plan. 2020, 5, 116–128. [Google Scholar] [CrossRef]
- Demchenko, Y.; De Laat, C.; Membrey, P. Defining architecture components of the Big Data Ecosystem. In Proceedings of the 2014 International conference on collaboration technologies and systems (CTS), Minneapolis, MN, USA, 19–23 May 2014; pp. 104–112. [Google Scholar] [CrossRef]
- Commission Électrotechnique Internationale. Orchestrating Infrastructure for Sustainable Smart Cities; Registered trademark of the International Electrotechnical Commission; IEC: Geneva, Switzerland, 2014. [Google Scholar]
- Rodríguez-Labajos, B.; Binimelis, R.; Monterroso, I. Multi-level driving forces of biological invasions. Ecol. Econ. 2009, 69, 63–75. [Google Scholar] [CrossRef]
- Alexopoulos, C.; Pereira, G.V.; Charalabidis, Y.; Madrid, L. A taxonomy of smart cities initiatives. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance, Melbourne, VIC, Australia, 3–5 April 2019; pp. 281–290. [Google Scholar] [CrossRef]
- Gil-Garcia, J.R.; Zhang, J.; Puron-Cid, G. Conceptualizing smartness in government: An integrative and multi-dimensional view. Gov. Inf. Q. 2016, 33, 524–534. [Google Scholar] [CrossRef]
- Caporuscio, A.; Pietronudo, M.C.; Schiavone, F.; Leone, D. Unlocking value with a crowdsourcing configuration of smart city: A system dynamic simulation. TQM J. 2022. [Google Scholar] [CrossRef]
- Mashau, N.L.; Kroeze, J.H.; Howard, G.R. Key Factors for Assessing Small and Rural Municipalities’ Readiness for Smart City Implementation. Smart Cities 2022, 5, 1742–1751. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Degirmenci, K.; Butler, L.; Desouza, K.C. What are the key factors affecting smart city transformation readiness? Evidence from Australian cities. Cities 2022, 120, 103434. [Google Scholar] [CrossRef]
- Chen, L.; Hendalianpour, A.; Feylizadeh, M.R.; Xu, H. Factors Affecting the Use of Blockchain Technology in Humanitarian Supply Chain: A Novel Fuzzy Large-Scale Group-DEMATEL. Group Decis. Negot. 2023, 32, 359–394. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, W. A hybrid STAMP-fuzzy DEMATEL-ISM approach for analyzing the factors influencing building collapse accidents in China. Sci. Rep. 2023, 13, 19745. [Google Scholar] [CrossRef]
- Suresh, K.; Dillibabu, R. An integrated approach using IF-TOPSIS, fuzzy DEMATEL, and enhanced CSA optimized ANFIS for software risk prediction. Knowl. Inf. Syst. 2021, 63, 1909–1934. [Google Scholar] [CrossRef]
- Abdullah, F.M.; Al-Ahmari, A.M.; Anwar, S. An Integrated Fuzzy DEMATEL and Fuzzy TOPSIS Method for Analyzing Smart Manufacturing Technologies. Processes 2023, 11, 906. [Google Scholar] [CrossRef]
- López-Ospina, H.; Pardo, D.; Rojas, A.; Barros-Castro, R.; Palaci, K.; Quezada, L. A revisited fuzzy DEMATEL and optimization method for strategy map design under the BSC framework: Selection of objectives and relationships. Soft Comput. 2022, 26, 6619–6644. [Google Scholar] [CrossRef]
Dimension | Influencing Factor | Source |
---|---|---|
The driver of data element value release in smart cities (D) | Socio-economic level (D1) | Joshi et al. [33] |
Legal and policy formulation (D2) | ||
Natural environmental condition (D3) | ||
Socio-cultural level (D4) | Winters [34] | |
Demographic change (D5) | Hansen [35] | |
Infrastructure condition (D6) | Kim [9] | |
Sustainable development (D7) | Joshi et al. [33] | |
The pressure of data element value release in smart cities (P) | Data acquisition technique (P1) | Lim et al. [8] |
Data storage technology (P2) | ||
Data cleansing technology (P3) | ||
Data computing technology (P4) | ||
Data exchange technology (P5) | Joshi et al. [33] | |
Data element identification (P6) | Yin et al. [32] | |
Data transaction system (P7) | ||
Data sharing system (P8) | Lee et al. [36] | |
Data privacy protection (P9) | ||
Data security technology (P10) | ||
The state of data element value release in smart cities (S) | Data element number (S1) | Demchenko et al. [37] |
Data element currentness (S2) | ||
Data element type (S3) | ||
Data element value potential (S4) | ||
Data element authenticity (S5) | ||
Smart city top-level design (S6) | IEC [38] | |
Government sector regulatory structure (S7) | ||
Financial budget (S8) | ||
Corporate income system (S9) | ||
Economic or policy support (S10) | ||
Corporate finance model (S11) | ||
End-user participation (S12) | Rodríguez-Labajos et al.; IEC [38,39] | |
End-user burden cost (S13) | ||
Expert engagement (S14) | IEC [38] | |
Smart service platform availability (S15) | Alexopoulos et al. [40] | |
Smart service platform ease-of-use (S16) | ||
Collaborative stakeholder relationships (S17) | ||
The influence of data element value release in smart cities (I) | Design and provision of smart city data products and services (I1) | Lim et al.; Alexopoulos et al.; Gil-Garcia et al. [8,40,41] |
End-user satisfaction (I2) | ||
Level of government governance (I3) | ||
Smart city operating cost (I4) | Gil-Garcia et al.; Li et al. [1,41] | |
Smart city operational efficiency (I5) | ||
Smart city risk resilience (I6) | ||
The response of data element value release in smart cities (R) | Application of innovation results (R1) | IEC [38] |
Improvement of citizens’ quality of life (R2) | ||
Optimization of solutions for smart city problems (R3) | ||
Uniform standard setting (R4) | IEC; Caporuscio [38,42] | |
Development of cross-regional and cross-subject cooperation (R5) | ||
Self-transformation of smart cities (R6) | ||
Long-term maintenance of smart city infrastructure (R7) |
Item | Classification | Proportion | Item | Classification | Proportion |
---|---|---|---|---|---|
The gender | Male | 40% | The education | Junior college student | 20% |
Female | 60% | Bachelor | 33% | ||
The region | North China | 60% | Master and above | 47% | |
East China | 20% | The field of expertise | Smart city end-user | 27% | |
Northwest China | 6% | Solution provider | 30% | ||
Southwest China | 10% | Enterprise personnel | 23% | ||
South China | 3% | Government staff | 20% |
D1 | D2 | D3 | D4 | D5 | D6 | D7 | P1 | P2 | P3 | P4 | P5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 0 | 0.3333 | 0.4333 | 0.3833 | 0.4333 | 0.3333 | 0.3250 | 0.3083 | 0.3500 | 0.3750 | 0.2833 | 0.3250 | |
D2 | 0.1667 | 0 | 0.3583 | 0.3083 | 0.3583 | 0.2417 | 0.2583 | 0.2417 | 0.2750 | 0.3167 | 0.2083 | 0.2500 | |
D3 | 0.0667 | 0.1417 | 0 | 0.2333 | 0.2750 | 0.1583 | 0.1417 | 0.1417 | 0.1750 | 0.2000 | 0.1167 | 0.1500 | |
D4 | 0.1167 | 0.1917 | 0.2667 | 0 | 0.2833 | 0.1750 | 0.1833 | 0.1833 | 0.1917 | 0.2333 | 0.1417 | 0.1917 | |
D5 | 0.2724 | 0.3454 | 0.2250 | 0.2167 | 0 | 0.1417 | 0.3374 | 0.3214 | 0.3454 | 0.2000 | 0.3073 | 0.1333 | |
D6 | 0.1667 | 0.2583 | 0.3417 | 0.3250 | 0.3583 | 0 | 0.2500 | 0.2333 | 0.2667 | 0.3083 | 0.2083 | 0.2583 | |
D7 | 0.1750 | 0.2417 | 0.3583 | 0.3167 | 0.3667 | 0.2500 | 0 | 0.2333 | 0.2750 | 0.3083 | 0.2083 | 0.2333 | |
P1 | 0.1917 | 0.2583 | 0.3583 | 0.3167 | 0.3833 | 0.2667 | 0.2667 | 0 | 0.2917 | 0.3333 | 0.2250 | 0.2667 | |
P2 | 0.1500 | 0.2250 | 0.3250 | 0.3083 | 0.3583 | 0.2333 | 0.2250 | 0.2083 | 0 | 0.2917 | 0.1833 | 0.2333 | |
P3 | 0.1250 | 0.1833 | 0.3000 | 0.2667 | 0.3000 | 0.1917 | 0.1917 | 0.1667 | 0.2083 | 0 | 0.1333 | 0.1917 | |
P4 | 0.2167 | 0.2917 | 0.3833 | 0.3583 | 0.4000 | 0.2917 | 0.2917 | 0.2750 | 0.3167 | 0.3667 | 0 | 0.2917 | |
P5 | 0.1750 | 0.2500 | 0.3500 | 0.3083 | 0.3667 | 0.2417 | 0.2667 | 0.2333 | 0.2667 | 0.3083 | 0.2083 | 0 |
D1 | D2 | D3 | D4 | D5 | D6 | D7 | P1 | P2 | P3 | P4 | P5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 0.0433 | 0.0817 | 0.1024 | 0.0949 | 0.1056 | 0.0750 | 0.0783 | 0.0757 | 0.0818 | 0.0955 | 0.0686 | 0.0791 | |
D2 | 0.0433 | 0.0471 | 0.0799 | 0.0735 | 0.0823 | 0.0566 | 0.0605 | 0.0583 | 0.0630 | 0.0748 | 0.0520 | 0.0606 | |
D3 | 0.0250 | 0.0383 | 0.0367 | 0.0486 | 0.0548 | 0.0360 | 0.0369 | 0.0361 | 0.0398 | 0.0472 | 0.0319 | 0.0377 | |
D4 | 0.0324 | 0.0475 | 0.0606 | 0.0418 | 0.0634 | 0.0426 | 0.0454 | 0.0444 | 0.0470 | 0.0566 | 0.0387 | 0.0463 | |
D5 | 0.0454 | 0.0621 | 0.0649 | 0.0613 | 0.0535 | 0.0456 | 0.0596 | 0.0576 | 0.0615 | 0.0612 | 0.0530 | 0.0482 | |
D6 | 0.0434 | 0.0629 | 0.0791 | 0.0746 | 0.0826 | 0.0421 | 0.0602 | 0.0580 | 0.0626 | 0.0745 | 0.0521 | 0.0612 | |
D7 | 0.0436 | 0.0616 | 0.0797 | 0.0737 | 0.0827 | 0.0569 | 0.0448 | 0.0576 | 0.0628 | 0.0742 | 0.0519 | 0.0595 | |
P1 | 0.0501 | 0.0703 | 0.0892 | 0.0828 | 0.0936 | 0.0648 | 0.0681 | 0.0507 | 0.0713 | 0.0848 | 0.0593 | 0.0689 | |
P2 | 0.0404 | 0.0581 | 0.0747 | 0.0704 | 0.0789 | 0.0537 | 0.0560 | 0.0539 | 0.0438 | 0.0702 | 0.0483 | 0.0570 | |
P3 | 0.0333 | 0.0477 | 0.0633 | 0.0586 | 0.0652 | 0.0442 | 0.0465 | 0.0441 | 0.0486 | 0.0432 | 0.0387 | 0.0469 | |
P4 | 0.0524 | 0.0735 | 0.0923 | 0.0867 | 0.0962 | 0.0674 | 0.0709 | 0.0685 | 0.0741 | 0.0882 | 0.0467 | 0.0716 | |
P5 | 0.0437 | 0.0620 | 0.0792 | 0.0732 | 0.0826 | 0.0564 | 0.0609 | 0.0577 | 0.0623 | 0.0741 | 0.0519 | 0.0453 |
Influencing Factor | Influence Degree | Influenced Degree | Center Degree | Cause Degree | ||||
---|---|---|---|---|---|---|---|---|
D | Rank | R | Rank | D + R | Rank | D − R | Rank | |
D1 | 3.8325 | 3 | 2.1053 | 47 | 5.9379 | 19 | 1.7272 | 1 |
D2 | 2.9310 | 30 | 2.9959 | 20 | 5.9269 | 22 | −0.0649 | 30 |
D3 | 1.8472 | 46 | 3.7187 | 4 | 5.5659 | 44 | −1.8715 | 46 |
D4 | 2.2340 | 44 | 3.4941 | 8 | 5.7280 | 34 | −1.2601 | 42 |
D5 | 2.5640 | 38 | 3.8753 | 2 | 6.4393 | 6 | −1.3113 | 44 |
D6 | 2.9404 | 29 | 2.6773 | 35 | 5.6177 | 39 | 0.2631 | 23 |
D7 | 2.9216 | 31 | 2.8573 | 25 | 5.7789 | 27 | 0.0643 | 26 |
P1 | 3.3966 | 9 | 2.7790 | 28 | 6.1756 | 9 | 0.6176 | 11 |
P2 | 2.7687 | 33 | 2.9539 | 22 | 5.7227 | 37 | −0.1852 | 32 |
P3 | 2.2740 | 42 | 3.5493 | 7 | 5.8233 | 24 | −1.2753 | 43 |
P4 | 3.4775 | 6 | 2.5024 | 41 | 5.9799 | 15 | 0.9751 | 3 |
P5 | 2.9210 | 32 | 2.8968 | 24 | 5.8178 | 25 | 0.0241 | 27 |
P6 | 2.9638 | 27 | 2.6031 | 38 | 5.5669 | 43 | 0.3608 | 19 |
P7 | 3.0524 | 21 | 3.6109 | 5 | 6.6633 | 5 | −0.5586 | 36 |
P8 | 3.0788 | 19 | 2.4933 | 43 | 5.5721 | 40 | 0.5855 | 13 |
P9 | 3.9514 | 1 | 2.7203 | 31 | 6.6717 | 3 | 1.2312 | 2 |
P10 | 3.2931 | 13 | 2.4721 | 45 | 5.7652 | 30 | 0.8211 | 7 |
S1 | 2.0398 | 45 | 3.4728 | 9 | 5.5126 | 46 | −1.4330 | 45 |
S2 | 2.7610 | 34 | 2.7392 | 30 | 5.5003 | 47 | 0.0218 | 28 |
S3 | 2.5404 | 39 | 3.2024 | 13 | 5.7428 | 32 | −0.6620 | 38 |
S4 | 2.6920 | 37 | 3.0199 | 19 | 5.7119 | 38 | −0.3279 | 33 |
S5 | 3.4304 | 7 | 2.4992 | 42 | 5.9295 | 21 | 0.9312 | 4 |
S6 | 3.4161 | 8 | 2.9840 | 21 | 6.4001 | 7 | 0.4322 | 18 |
S7 | 3.5289 | 5 | 2.6976 | 33 | 6.2265 | 8 | 0.8312 | 6 |
S8 | 3.3226 | 10 | 2.7538 | 29 | 6.0763 | 11 | 0.5688 | 14 |
S9 | 2.4354 | 41 | 3.3688 | 10 | 5.8042 | 26 | −0.9334 | 40 |
S10 | 3.3103 | 11 | 2.6504 | 37 | 5.9608 | 18 | 0.6599 | 9 |
S11 | 1.7541 | 47 | 3.9719 | 1 | 5.7259 | 35 | −2.2178 | 47 |
S12 | 3.2834 | 15 | 2.6507 | 36 | 5.9341 | 20 | 0.6327 | 10 |
S13 | 2.4731 | 40 | 3.0807 | 16 | 5.5538 | 45 | −0.6076 | 37 |
S14 | 3.8580 | 2 | 3.5911 | 6 | 7.4492 | 1 | 0.2669 | 22 |
S15 | 3.0171 | 23 | 2.7082 | 32 | 5.7252 | 36 | 0.3089 | 20 |
S16 | 3.1317 | 17 | 2.5998 | 39 | 5.7315 | 33 | 0.5319 | 15 |
S17 | 3.5636 | 4 | 3.1004 | 15 | 6.6640 | 4 | 0.4631 | 16 |
I1 | 3.0357 | 22 | 3.0652 | 17 | 6.1008 | 10 | −0.0295 | 29 |
I2 | 3.3098 | 12 | 2.4672 | 46 | 5.7770 | 28 | 0.8426 | 5 |
I3 | 2.7144 | 36 | 3.1472 | 14 | 5.8616 | 23 | −0.4328 | 34 |
I4 | 2.7491 | 35 | 3.2720 | 12 | 6.0211 | 12 | −0.5229 | 35 |
I5 | 3.0691 | 20 | 2.9436 | 23 | 6.0127 | 13 | 0.1254 | 25 |
I6 | 2.9527 | 28 | 2.8115 | 27 | 5.7641 | 31 | 0.1412 | 24 |
R1 | 3.0123 | 24 | 2.5548 | 40 | 5.5671 | 42 | 0.4574 | 17 |
R2 | 3.2768 | 16 | 2.4893 | 44 | 5.7661 | 29 | 0.7875 | 8 |
R3 | 2.9659 | 26 | 3.0320 | 18 | 5.9979 | 14 | −0.0661 | 31 |
R4 | 3.1213 | 18 | 2.8458 | 26 | 5.9671 | 17 | 0.2754 | 21 |
R5 | 2.2551 | 43 | 3.3157 | 11 | 5.5708 | 41 | −1.0606 | 41 |
R6 | 2.9977 | 25 | 3.7311 | 3 | 6.7288 | 2 | −0.7334 | 39 |
R7 | 3.2891 | 14 | 2.6835 | 34 | 5.9726 | 16 | 0.6056 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Zhang, Y.; Sheng, F. Research on the Mechanism and Identification of Key Influencing Elements for Releasing the Value of Data Elements in Smart Cities. Land 2024, 13, 2011. https://doi.org/10.3390/land13122011
Hu M, Zhang Y, Sheng F. Research on the Mechanism and Identification of Key Influencing Elements for Releasing the Value of Data Elements in Smart Cities. Land. 2024; 13(12):2011. https://doi.org/10.3390/land13122011
Chicago/Turabian StyleHu, Mo, Yunchao Zhang, and Fan Sheng. 2024. "Research on the Mechanism and Identification of Key Influencing Elements for Releasing the Value of Data Elements in Smart Cities" Land 13, no. 12: 2011. https://doi.org/10.3390/land13122011
APA StyleHu, M., Zhang, Y., & Sheng, F. (2024). Research on the Mechanism and Identification of Key Influencing Elements for Releasing the Value of Data Elements in Smart Cities. Land, 13(12), 2011. https://doi.org/10.3390/land13122011