Identifying the Key Protection Areas of Alpine Marsh Wetlands in the Qinghai Qilian Mountains, China: An Ecosystem Patterns–Characteristics–Functions Combined Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Identification of Ecological Sources
- (1)
- Evaluation of ecosystem service functions
- (2)
- Significance of integrated ecosystem services
- (3)
- Extraction of ecological sources
2.3.2. Identification of Ecological Corridors
- (1)
- Construction of ecological resistance surface
- (2)
- Extraction of ecological corridors
2.3.3. Identification of Key Areas for Ecological Protection
3. Results
3.1. Evaluation of Ecosystem Service Functions and Ecological Sources of Marsh Wetlands
3.2. Spatial Patterns of Ecological Resistance Surface and Ecological Corridors
3.3. Identification of Key Ecological Protection Areas of Marsh Wetlands
4. Discussion
4.1. Advantages of Constructing Ecological Resistance Surfaces in Marsh Wetlands
4.2. Importance of Identifying Key Ecological Protection Areas of Marsh Wetlands
4.3. Adaptive Strategies
4.4. Limitations
5. Conclusions
- (1)
- The water conservation, soil conservation, and habitat quality functions of the marsh wetlands in the QMQ in 2020 were simulated using the InVEST and RUSLE models. The overall ecosystem service function was good, with nearly 70% of the area at the extremely important level.
- (2)
- The KEPAs of marsh wetlands in the QMQ included 40 ecological sources with a total area of 996.53 km2, 39 ecological corridors, and 40 ecological nodes, which are spatially concentrated in the upper reaches of the DT and the HH. Based on the identification results of the KEPAs, the ecological network system of “two ecological axes, four ecological belts, four ecological cores, and multiple nodes” was proposed.
- (3)
- The internal ecological interference of the KEPAs for wetland ecological protection in the marsh wetlands was highlighted by constructing the ecological resistance evaluation system. In response to the two types (grazing and mineral mining) of interference in the degraded marsh wetlands, it is proposed that natural restoration should be the main approach for marsh wetlands in the source areas of the HH and SL. Grazing strategies should be adjusted to effectively alleviate the conflict between livestock and grass and coordinate the relationship between human activities and biodiversity. In addition, the implementation of mining ecological restoration projects and regulatory measures, such as the delineation of protected areas in the source areas of the DT, have improved the ecological environment and enhanced the quality and function of the regional ecosystem.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Marsh Wetlands | Meteorological/Hydrological | Vegetation | Human activity | Soil | Topographic | Weight |
---|---|---|---|---|---|---|
Meteorological/Hydrological | 1.0000 | 5.0000 | 6.0000 | 8.0000 | 0.5000 | 0.3413 |
Vegetation | 0.2000 | 1.0000 | 3.0000 | 4.0000 | 0.2000 | 0.1139 |
Human Activity | 0.1667 | 0.3333 | 1.0000 | 2.0000 | 0.1667 | 0.0579 |
Soil | 0.1250 | 0.2500 | 0.5000 | 1.0000 | 0.1250 | 0.0371 |
Topographic | 2.0000 | 5.0000 | 6.0000 | 8.0000 | 1.0000 | 0.4498 |
Topographic | TWI | DEM | SLOPE | Weight |
---|---|---|---|---|
TWI | 1.0000 | 0.5000 | 3.0000 | 0.3090 |
DEM | 2.0000 | 1.0000 | 5.0000 | 0.5816 |
SLOPE | 0.3333 | 0.2000 | 1.0000 | 0.1095 |
Meteorological/Hydrological | PRE | AMNT | Weight |
---|---|---|---|
PRE | 1.0000 | 7.0000 | 0.8750 |
AMNT | 0.1429 | 1.0000 | 0.1250 |
Vegetation | GPP | NDVI | Weight |
---|---|---|---|
GPP | 1.0000 | 2.0000 | 0.6667 |
NDVI | 0.5000 | 1.0000 | 0.3333 |
Human Activity | POP | HF | Weight |
---|---|---|---|
POP | 1.0000 | 0.5000 | 0.3333 |
HF | 2.0000 | 1.0000 | 0.6667 |
Soil | ST | SWCI | Weight |
---|---|---|---|
ST | 1.0000 | 0.5000 | 0.3333 |
SWCI | 2.0000 | 1.0000 | 0.6667 |
References
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Aung, T.D.W.; Kyi, S.W.; Suzue, K.; Theint, S.M.; Tsujita, K.; Yu, T.T.; Merriman, J.C.; Peh, K.S.H. Rapid ecosystem service assessment of a protected wetland in Myanmar, and implications for policy development and management. Ecosyst. Serv. 2021, 50, 101336. [Google Scholar] [CrossRef]
- Spieles, D.J. Wetland construction, restoration, and integration: A comparative review. Land 2022, 11, 554. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Mander, Ü. Wetlands and carbon revisited. Ecol. Eng. 2018, 114, 1–6. [Google Scholar] [CrossRef]
- Nie, Y.; Li, A. Assessment of alpine wetland dynamics from 1976–2006 in the vicinity of Mount Everest. Wetlands 2011, 31, 875–884. [Google Scholar] [CrossRef]
- Asselen, S.V.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef]
- Creed, I.F.; Lane, C.R.; Serran, J.N.; Alexander, L.C.; Basu, N.B.; Calhoun, A.J.K.; Christensen, J.R.; Cohen, M.J.; Craft, C.; D’Amico, E.; et al. Enhancing protection for vulnerable waters. Nat. Geosci. 2017, 10, 809–815. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Qin, Y.; Lei, H.; Yang, D.; Gao, B.; Wang, Y.; Cong, Z.; Fan, W. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. J. Hydrol. 2016, 542, 204–221. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, H.; Zhang, P.; Song, Y.; Zhang, Y.; Li, Y.; Rong, T.; Liu, Z.; Yang, D.; Lou, Y. Construction of GI network based on MSPA and PLUS model in the main urban area of Zhengzhou: A case study. Front. Environ. Sci. 2022, 10, 878656. [Google Scholar] [CrossRef]
- Li, H.; Gao, W.; Liu, Y.; Yuan, F.; Wu, M.; Meng, L. Attributing the impacts of ecological engineering and climate change on carbon uptake in Northeastern China. Landsc. Ecol. 2023, 38, 3945–3960. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, H.; Cui, L.; Wickings, K.; Fu, S.; Wang, C. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 2017, 7, 837. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, T.; Glamore, W.; Felder, S. Restoring estuarine ecosystems using nature-based solutions: Towards an integrated eco-engineering design guideline. Sci. Total Environ. 2023, 873, 162362. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Su, K.; Liang, X.; Jiang, X.; Wang, J.; You, Y.; Wang, L.; Chang, S.; Wei, C.; Zhang, Y.; et al. Identification of priority areas to provide insights for ecological protection planning: A case study in Hechi, China. Ecol. Indic. 2023, 154, 110738. [Google Scholar] [CrossRef]
- Luo, J.; Fu, H. Construct the future wetland ecological security pattern with multi-scenario simulation. Ecol. Indic. 2023, 153, 110473. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y. Ecological Risk Identification and Ecological Security Pattern Construction of Productive Wetland Landscape. Water Resour. Manage 2023, 37, 4709–4731. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems reservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, F.; Liu, H.; Li, M.; Sun, Y.; Wang, Q.; Yu, L. Identification of key priority areas under different ecological restoration scenarios on the Qinghai-Tibet Plateau. J. Environ. Manage 2022, 323, 116174. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plann. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Han, W.; Xia, S.; Zhou, W.; Shen, Y.; Su, X.; Liu, G. Constructing ecological security pattern based on ecological corridor identification in Lhasa River Basin. Acta Ecol. Sin. 2023, 43, 8948–8957. [Google Scholar]
- Wang, S.; Song, Q.; Zhao, J.; Lu, Z.; Zhang, H. Identification of key areas and early-warning points for ecological protection and restoration in the yellow river source area based on ecological security pattern. Land 2023, 12, 1643. [Google Scholar] [CrossRef]
- Peng, J.; Li, B.; Dong, J.; Liu, Y.; Lv, D.; Du, Y.; Luo, M.; Wu, J. Basic logic of territorial ecological restoration. China Land Sci. 2020, 34, 18–26. [Google Scholar]
- Li, X.; Yu, X.; Wu, K.; Feng, Z.; Liu, Y.; Li, X. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 143167. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zeng, W.; Xie, Y.; Wang, Z.; Hu, G.; Li, Q.; Gao, R.; Zhou, Y.; Zhang, T. Boundary delineation and grading functional zoning of Sanjiangyuan National Park based on biodiversity importance evaluations. Sci. Total Environ. 2022, 825, 154068. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Xu, Z.; Liu, Y.; Wang, X.; Li, B. Integrating regional and interregional approaches to identify ecological security patterns. Landsc. Ecol. 2021, 36, 2151–2164. [Google Scholar] [CrossRef]
- Du, J.; Gong, Y.; Xi, X.; Liu, C.; Qian, C.; Ye, B. The study on the spatiotemporal changes in tradeoffs and synergies of ecosystem services and response to land use/land cover changes in the region around Taihu Lake. Heliyon 2024, 10, e33375. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; He, Y.; Liu, P.; Xu, J.; Lu, C.; Lei, G.; Wen, L. Evaluating the Effects of Wetland Restoration on Ecosystem Services Using InVEST and Geostatistics: A Case Study of Dongting Lake in China. Remote Sens. 2024, 16, 4062. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.; Chang, S.; Dang, Q.; Wen, R.; Lo, K.; Li, J.; Yan, A. Long-term improvements in water conservation functions at Qilian Mountain National Park, northwest China. J. Mt. Sci. 2023, 20, 2885–2897. [Google Scholar] [CrossRef]
- Yang, R.; Mu, Z.; Gao, R.; Huang, M.; Zhao, S. Interactions between ecosystem services and their causal relationships with driving factors: A case study of the Tarim River Basin, China. Ecol. Indic. 2024, 169, 112810. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Shi, W. Exploring the response of trade-offs and synergies among ecosystem services to future land use changes in the hilly red soil region of Southern China. J. Environ. Manage 2024, 372, 123283. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wu, X.; Wang, D.; Wu, T.; Li, R.; Hu, G.; Zou, D.; Bai, K.; Liu, Y.; Yan, X.; et al. Spatiotemporal changes and management measure to enhance ecosystem services in the Mongolian Plateau. Environ. Dev. 2024, 52, 101103. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Yu, H. Analysis on the ecosystem service protection effect of national nature reserve in Qinghai-Tibetan Plateau from weight perspective. Ecol. Indic. 2022, 142, 109225. [Google Scholar] [CrossRef]
- Xiang, A.; Zhao, X.; Huang, P.; Yi, Q.; Pu, J.; Shi, X.; Chu, B. Diagnosis and restoration of priority area of territorial ecological restoration in Plateau Lake Watershed. Acta Ecol. Sin. 2023, 43, 6143–6153. [Google Scholar]
- Gao, M.; Hu, Y.; Bai, Y. Construction of ecological security pattern in national land space from the perspective of the community of life in mountain, water, forest, field, lake and grass: A case study in Guangxi Hechi, China. Ecol. Indic. 2022, 139, 108867. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Li, X.; Feng, Y. Ecological network construction of county land consolidation and rehabilitation based on least cost distance model. Bull. Soil Water Conserv. 2017, 37, 143–149, 346. [Google Scholar]
- Wei, H.; Zhu, H.; Chen, J.; Jiao, H.; Li, P.; Xiong, L. Construction and optimization of ecological security pattern in the loess plateau of China based on the minimum cumulative resistance (MCR) model. Remote Sens. 2022, 14, 5906. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Wu, K. Can the establishment of ecological security patterns improve ecological protection~ An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, G.; Luo, C.; Zeng, X.; Zhang, H.; Murray, N.J.; Xu, N. Identifying restoration priorities for wetlands based on historical distributions of biodiversity features and restoration suitability. J. Environ. Manage 2019, 231, 1222–1231. [Google Scholar] [CrossRef]
- Domisch, S.; Kakouei, K.; Martínez-López, J.; Bagstad, K.J.; Magrach, A.; Balbi, S.; Villa, F.; Funk, A.; Hein, T.; Borgwardt, F.; et al. Social equity shapes zone-selection: Balancing aquatic biodiversity conservation and ecosystem services delivery in the transboundary Danube River Basin. Sci. Total Environ. 2019, 656, 797–807. [Google Scholar] [CrossRef]
- Langhans, S.D.; Hermoso, V.; Linke, S.; Bunn, S.E.; Possingham, H.P. Cost-effective river rehabilitation planning: Optimizing for morphological benefits at large spatial scales. J. Environ. Manage 2014, 132, 296–303. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, Y.; Liu, Z. Development strategy of ecotourism resources in Qinghai Lake area. Resour. Dev. Mark. 2010, 26, 934–936. [Google Scholar]
- Yang, L.; Song, M.; Wang, Y.; Wang, H.; Zhou, R. Changes of plant community diversity and soil ecological stoichiometry in alpine meadow under the disturbance of plateau pika Ochotona curzoniae and plateau zokor Myospalax baileyi. J. Plan Protect. 2024, 51, 1056–1067. [Google Scholar]
- Nie, H.; Gao, J. Research progress on the ecological impact and spreading mechanism of weeds on degraded grassland. Chin. J. Grassl. 2022, 44, 101–113. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban Plann. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Gonzalez, A.; Thompson, P.; Loreau, M. Spatial ecological networks: Planning for sustainability in the long-term. Curr. Opin. Environ. Sustain. 2017, 29, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Boitani, L.; Falcucci, A.; Maiorano, L.; Rondinini, C. Ecological networks as conceptual frameworks or operational tools in conservation. Conserv. Biol. 2007, 21, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Gippoliti, S.; Battisti, C. More cool than tool: Equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 2017, 68, 686–691. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, H.; Chen, X.; Huang, G.; Ye, Y.; Wu, Q.; Huang, N.; Kuang, Y. The ecological security patterns and construction land expansion simulation in Gaoming. Acta Ecol. Sin. 2013, 33, 1524–1534. [Google Scholar]
- Battisti, C.; Gallitelli, L.; Scalici, M.; Angelici, F.M. Habitat fragmentation, connectivity conservation and related key-concepts: Temporal trends in their recurrences on web of science (1960–2020). Land 2022, 11, 230. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Wei, X.; Yu, H.; Tang, W.; Zhang, L.; Wu, Y.; Zhang, J.; Gou, L. Exploring the driving forces of potential marsh wetlands formation and distribution in the Qilian Mountains of Qinghai, China. Ecol. Indic. 2024, 158, 111516. [Google Scholar] [CrossRef]
- Lin, C.; Li, X.; Zhang, J.; Sun, H.; Zhang, J.; Han, H.; Wang, Q.; Ma, C.; Li, C.; Zhang, Y.; et al. Effects of degradation succession of alpine wetland on soil organic carbon and total nitrogen in the Yellow River source zone, west China. J. Mt. Sci. 2021, 18, 694–705. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Song, X.; Wei, X.; Yu, H.; Xie, S.; Zhang, L.; Tang, W. How Rising Water Levels Altered Ecosystem Provisioning Services of the Area around Qinghai Lake from 2000 to 2020: An InVEST-RF-GTWR Combined Method. Land 2022, 11, 1570. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plann. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Li, Y.; Yang, Z.; Wang, X.; Li, X. Construction and optimization of an urban ecological security pattern based on habitat quality assessment and the minimum cumulative resistance model in Shenzhen City, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Fang, C.; Kuang, H.; Jia, Q.; Chen, X.; Zhu, Z.; Ye, Q. Evaluation of ecological security pattern in Wuhan City based on the importance of ecosystem services and ecological sensitivity. J. Environ. Eng. Technol. 2022, 12, 1446–1454. [Google Scholar]
- Wei, X.; Eboy, O.V.; Cao, G.; Xu, L. Spatio-temporal variation of water conservation and its impact factors on the southern slope of Qilian Mountains. Reg. Sustain. 2023, 4, 54–67. [Google Scholar] [CrossRef]
- Huang, L.; Tang, Y.; Song, Y.; Liu, J.; Shen, H.; Du, Y. Identifying and optimizing the ecological security pattern of the Beijing-Tianjin-Hebei urban agglomeration from 2000 to 2030. Land 2024, 13, 1115. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, X.; Du, G. Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau. Plant Soil. 2011, 346, 19–28. [Google Scholar] [CrossRef]
- Song, T.; Li, D.; Zhang, L.; Wang, G.; Gao, Y.; Yang, C.; Feng, C.; Ma, H. Importance evaluation of ecosystem services and construction of ecological security pattern in Qinba Mountain area. Strateg. Study Chin. Acad. Eng. 2020, 22, 64–72. [Google Scholar] [CrossRef]
- Song, W.; Han, Z.; Liu, L. Systematic diagnosis of ecological problems and comprehensive zoning of ecological conservation and restoration for an integrated ecosystem of mountains-rivers-forests-farmlands-lakes-grasslands in Shaanxi Province. Acta Ecol. Sin. 2019, 39, 8975–8989. [Google Scholar]
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.; Neugarten, R.; Butchart, S.H.M.; Collen, B.; Cox, N.; Master, L.L.; O’connor, S.; et al. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef]
- Bennett, A.F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation (No. 1); Iucn: Gland, Switzerland, 2003. [Google Scholar]
- Lindenmayer, D.; Bowd, E. Critical ecological roles, structural attributes and conservation of old growth forest: Lessons from a case study of Australian mountain ash forests. Front. For. Glob. Chang. 2022, 5, 878570. [Google Scholar] [CrossRef]
Variable Categories | Name (Abbreviation) | Resolution | Data Sources |
---|---|---|---|
Meteorological/Hydrological | Monthly precipitation (PRE) | 1 km | National Meteorological Information Center (http://data.cma.cn, accessed on 5 June 2024) |
Average monthly temperature (TEM) | 1 km | National Meteorological Information Center (http://data.cma.cn, accessed on 5 June 2024) | |
Annual evapotranspiration (EVP) | 1 km | MOD 16A2 (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 5 June 2024) | |
Annual maximum temperature (AMNT) | 1 km | National Earth System Science Data Center (http://www.geodata.cn, accessed on 5 June 2024) | |
Vegetation | Normalized difference vegetation index (NDVI) | 30 m | Landsat 8 OLI (http://lpdaac.usgs.gov, accessed on 5 June 2024) |
Gross primary productivity (GPP) | 500 m | MOD 17A3HGF (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 5 June 2024) | |
Soil | Soil texture (clay/silt/sand) | 1 km | Chinese Academy of Sciences (http://www.issas.ac.cn, accessed on 14 July 2024) |
Soil bulk density (BD) | 1 km | HWSD (Harmonized World Soil Database) | |
Soil organic carbon (SOC) | 1 km | HWSD (Harmonized World Soil Database) | |
Soil water capacity index (SWCI) | 500 m | MOD09A1 V6 (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 14 July 2024) | |
Soil type (ST) | 1 km | Chinese Academy of Sciences (http://www.issas.ac.cn, accessed on 14 July 2024) | |
Topographic | Digital elevation model (DEM) | 30 m | SRTM (Shuttle Radar Topography Mission) |
Slope (SLOPE) | 30 m | SRTM (Shuttle Radar Topography Mission) | |
Topographic wetness index (TWI) | 90 m | SAGA-GIS [50] | |
Human activity | Geomorphic type (POP) | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn, accessed on 14 June 2024) |
Human footprint index (HF) | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn, accessed on 14 July 2024) |
Ecosystem Service Functions | Models | Formulas | Parameters |
---|---|---|---|
Water Yield | The Water Yield module of the InVEST model | Yij is the annual water yield of the study area (mm); AETij is the annual average actual evaporation of each raster i on a land use type j (mm); Pi is the average annual precipitation (mm). | |
Soil Conservation | The Revised Universal Soil Loss Equation (RUSLE) | SCi is the actual soil conservation (t·hm−2); Ri is rainfall erosivity factor (MJ·mm·hm−2·h−1·a−1); Ki is the soil erodibility factor (t·hm2·h·hm−2·MJ−1·mm−1); LSi is the slope length and slope factor; Ci is the vegetation cover management factor; Pi is the factor of water and soil conservation measures. | |
Habitat Quality | The Habitat Quality module of the InVEST model | Qij is the habitat quality of each raster i; Hj is the habitat suitability of a land use type j; Dij is the habitat degradation degree of each raster i; k is the semi-saturation constant 0.5. |
Importance Levels | Cumulative Service Value Ratio | Grading Criteria | Integrated Ecosystem Service Scores |
---|---|---|---|
Generally important | 20% | 2 | 0~6 |
Important | 30% | 3 | 7~9 |
Extremely important | 50% | 5 | 10~15 |
Resistance Categories | Resistance Factors | Weights | Direction |
---|---|---|---|
Meteorological/Hydrological | PRE | 0.299 | − |
AMNT | 0.043 | + | |
Topographic | TWI | 0.139 | − |
DEM | 0.262 | + | |
SLOPE | 0.049 | + | |
Vegetation | GPP | 0.076 | − |
NDVI | 0.038 | − | |
Human Activity | HF | 0.039 | + |
POP | 0.019 | + | |
Soil | ST | 0.012 | + |
SWCI | 0.025 | − |
Level | QMQ | DT | HH | SL | SY |
---|---|---|---|---|---|
Generally important | 0.01 | 0.00 | 0.01 | 0.04 | 0.00 |
Important | 30.50 | 20.02 | 38.13 | 65.30 | 0.00 |
Extremely important | 69.49 | 79.98 | 61.87 | 34.67 | 100.00 |
Areas (km2) | 2778.24 | 1590.91 | 893.11 | 290.74 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Mao, X.; Yu, H.; Zhao, B.; Tang, W.; Li, H.; Wang, X.; Zhou, N. Identifying the Key Protection Areas of Alpine Marsh Wetlands in the Qinghai Qilian Mountains, China: An Ecosystem Patterns–Characteristics–Functions Combined Method. Land 2024, 13, 2115. https://doi.org/10.3390/land13122115
Wang L, Mao X, Yu H, Zhao B, Tang W, Li H, Wang X, Zhou N. Identifying the Key Protection Areas of Alpine Marsh Wetlands in the Qinghai Qilian Mountains, China: An Ecosystem Patterns–Characteristics–Functions Combined Method. Land. 2024; 13(12):2115. https://doi.org/10.3390/land13122115
Chicago/Turabian StyleWang, Lei, Xufeng Mao, Hongyan Yu, Baowei Zhao, Wenjia Tang, Hongyan Li, Xianying Wang, and Nan Zhou. 2024. "Identifying the Key Protection Areas of Alpine Marsh Wetlands in the Qinghai Qilian Mountains, China: An Ecosystem Patterns–Characteristics–Functions Combined Method" Land 13, no. 12: 2115. https://doi.org/10.3390/land13122115
APA StyleWang, L., Mao, X., Yu, H., Zhao, B., Tang, W., Li, H., Wang, X., & Zhou, N. (2024). Identifying the Key Protection Areas of Alpine Marsh Wetlands in the Qinghai Qilian Mountains, China: An Ecosystem Patterns–Characteristics–Functions Combined Method. Land, 13(12), 2115. https://doi.org/10.3390/land13122115