Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China
Abstract
:1. Introduction
2. Methods and Data Sources
2.1. Study Area
2.2. Data Types and Sources
2.3. Methods
2.3.1. InVEST-Habitat Quality Model
2.3.2. Assessment of Biodiversity
2.3.3. (Mis)Matches Between Habitat Quality and Biodiversity
2.3.4. Scenarios for Ecological Redline and Grain for Green Policies
2.4. Data Analysis
3. Results
3.1. Spatiotemporal Dynamics of Habitat Quality from 1980 to 2020
3.2. Spatial Distribution of Biodiversity
3.3. (Mis)Match Between Habitat Quality and Biodiversity
3.4. Determinants of Habitat Quality, Biodiversity and Their Matches
3.5. Effectiveness of ERLs and GG
4. Discussion
4.1. Matches Between Habitat Quality and Biodiversity
4.2. Driving Factors of Habitat Quality, Biodiversity, and Their Matches
4.3. Effectiveness of Ecological Policies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Terrado, M.; Sabater, S.; Acuña, V. Identifying regions vulnerable to habitat degradation under future irrigation scenarios. Environ. Res. Lett. 2016, 11, 114025. [Google Scholar] [CrossRef]
- Villarreal-Rosas, J.; Wells, J.A.; Sonter, L.J.; Possingham, H.P.; Rhodes, J.R. The impacts of land use change on flood protection services among multiple beneficiaries. Sci. Total Environ. 2022, 806, 150577. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, D.; Astiaso Garcia, D.; Gugliermetti, F.; Cumo, F. Characterizing the fragmentation level of Italian’s National Parks due to transportation infrastructures. Transp. Res. Part D Transp. Environ. 2015, 36, 18–28. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Hu, T.; Zhang, M.; Ren, X.; Hou, L. Exploration of roadway factors and habitat quality using InVEST. Transp. Res. Part D Transp. Environ. 2020, 87, 102551. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Stanford University; University of Minnesota; Chinese Academy of Sciences; The Nature Conservancy; World Wildlife Fund; Stockholm Resilience Centre; the Royal Swedish Academy of Sciences. Natural Capital Project. InVEST 0.0; Stanford University: Stanford, CA, USA, 2024. [Google Scholar]
- Ruckelshaus, M.H.; Jackson, S.T.; Mooney, H.A.; Jacobs, K.L.; Kassam, K.-A.S.; Arroyo, M.T.K.; Báldi, A.; Bartuska, A.M.; Boyd, J.; Joppa, L.N.; et al. The IPBES Global Assessment: Pathways to Action. Trends Ecol. Evol. 2020, 35, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Upadhaya, S.; Dwivedi, P. Conversion of of forestlands to blueberries: Assessing implications for habitat quality in Alabaha river watershed in Southeastern Georgia, United States. Land Use Policy 2019, 89, 104229. [Google Scholar] [CrossRef]
- Rahimi, L.; Malekmohammadi, B.; Yavari, A.R. Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Nat. Resour. Res. 2020, 29, 3701–3718. [Google Scholar] [CrossRef]
- Sun, X.; Ye, D.; Shan, R.; Peng, Q.; Zhao, Z.; Sun, J. Effect of physical geographic and socioeconomic processes on interactions among ecosystem services based on machine learning. J. Clean Prod. 2022, 359, 131976. [Google Scholar] [CrossRef]
- Gomes, E.; Inacio, M.; Bogdzevic, K.; Kalinauskas, M.; Karnauskait, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef]
- Soley, F.G.; Perfecto, I. A way forward for biodiversity conservation: High-quality landscapes. Trends Ecol. Evol. 2021, 36, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Possingham, H.P.; Yu, G.; Jin, T.; Wang, J.; Yang, F.; Liu, S.; Ma, J.; Liu, X.; Zhao, H. Strengthening China’s national biodiversity strategy to attain an ecological civilization. Conserv. Lett. 2019, 12, e12660. [Google Scholar] [CrossRef]
- Choi, C.; Shi, X.; Shi, J.; Gan, X.; Wen, C.; Zhang, J.; Jackson, M.V.; Fuller, R.A.; Gibson, L. China’s Ecological Conservation Redline policy is a new opportunity to meet post-2020 protected area targets. Conserv. Lett. 2022, 15, e12853. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Pan, Y.; Jin, X.; Du, H.; Li, M.; Jiang, P. The delineation of ecological redline area for catchment sustainable management from the perspective of ecosystem services and social needs: A case study of the Xiangjiang watershed, China. Ecol. Indic. 2021, 121, 107130. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Y.; Liu, X.; Wen, D.; Long, Y.; Zhao, P.; Liu, P.; Zhong, J. Protection Effect and Vacancy of the Ecological Protection Redline: A Case Study in Guangdong–Hong Kong–Macao Greater Bay Area, China. Remote. Sens. 2021, 13, 5171. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Zou, C.; Xu, D.; Lin, N.; Zhang, K.; Wang, L. Ecological Conservation Redline will promote harmony between humans and nature in the future. Ambio 2021, 50, 726–727. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S.; Kim, D.G.; Peng, C.; Sweeney, S.; Shangguan, Z. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.; Wang, H.; Zhang, X.; Jiang, J. Spatial heterogeneity of ecosystem services in response to landscape patterns under the Grain for Green Program: A case-study in Kaihua County, China. Land Degrad. Dev. 2022, 33, 1901–1916. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, M. National-Scale Meta-Analysis of Soil Carbon and Nitrogen Accumulation Potential in China’s Grain for Green Program. Eurasian Soil Sci. 2020, 53, 892–901. [Google Scholar] [CrossRef]
- Tian, G.; Song, Y.; Liu, Q.; Zong, X.; Zhang, X.; Meng, X.; Geng, D.; Cao, Z. Investigation and evaluation of endangered diversity in Shandong province. Ecol. Environ. Sci. 2012, 21, 27–32. [Google Scholar] [CrossRef]
- Aznarez, C.; Svenning, J.-C.; Taveira, G.; Baró, F.; Pascual, U. Wildness and habitat quality drive spatial patterns of urban biodiversity. Landsc. Urban Plan. 2022, 228, 104570. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B.; et al. Habitat quality dynamics in China?s first group of national parks in recent four decades: Evidence from land use and land cover changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef]
- Zhu, S.; Li, L.; Wu, G.; Liu, J.; Slate, T.J.; Guo, H.; Li, D. Assessing the Impact of Village Development on the Habitat Quality of Yunnan Snub-Nosed Monkeys Using the INVEST Model. Biology 2022, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Wong, C.P.; Xu, X.; Alatalo, J.M. China’s ecological civilization program-Implementing ecological redline policy. Land Use Policy 2019, 81, 111–114. [Google Scholar] [CrossRef]
- Chen, H. The ecosystem service value of maintaining and expanding terrestrial protected areas in China. Sci. Total Environ. 2021, 781, 146768. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Liu, Y.; Wu, J.; Li, W.; Zhou, B. Evidence of green space sparing to ecosystem service improvement in urban regions: A case study of China’s Ecological Red Line policy. J. Clean Prod. 2020, 251, 119678. [Google Scholar] [CrossRef]
HQ Level | 1980 | 1990 | 2000 | 2010 | 2020 | Change from 1980 to 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | |
Poor | 12,236,732.28 | 77.81% | 12,266,630.10 | 78.20% | 12,221,918.01 | 78.01% | 12,769,637.94 | 81.50% | 12,784,761.90 | 81.59% | 548,029.62 | 3.78% |
Low | 517,549.50 | 3.29% | 518,255.73 | 3.30% | 516,263.67 | 3.30% | 291,661.92 | 1.86% | 292,216.68 | 1.86% | −225,332.82 | −1.43% |
Moderate | 1,057,994.73 | 6.73% | 1,067,850.45 | 6.81% | 1,066,630.14 | 6.81% | 753,553.71 | 4.81% | 750,085.47 | 4.79% | −307,909.26 | −1.94% |
Good | 400,248.27 | 2.55% | 407,177.10 | 2.60% | 402,693.48 | 2.57% | 263,699.46 | 1.68% | 263,158.92 | 1.68% | −137,089.35 | −0.87% |
High | 1,513,876.86 | 9.63% | 1,425,491.10 | 9.09% | 1,460,041.83 | 9.32% | 1,590,085.08 | 10.15% | 1,579,661.82 | 10.08% | 65,784.96 | 0.45% |
Habitat Quality | Vertebrate Species | Vascular Plant Species | Vegetation Formations | Biodiversity Composite Index |
---|---|---|---|---|
1980 | 0.589 ** | 0.692 ** | 0.691 ** | 0.713 ** |
1990 | 0.588 ** | 0.695 ** | 0.690 ** | 0.714 ** |
2000 | 0.584 ** | 0.680 ** | 0.680 ** | 0.702 ** |
2010 | 0.496 ** | 0.594 ** | 0.622 ** | 0.628 ** |
2020 | 0.485 ** | 0.588 ** | 0.617 ** | 0.621 ** |
ERLs | 0.487 ** | 0.590 ** | 0.619 ** | 0.623 ** |
GG | 0.486 ** | 0.589 ** | 0.617 ** | 0.621 ** |
Match Type | Vertebrates | Vascular Plants | Vegetation Formations | Biodiversity Composite Index |
---|---|---|---|---|
High HQ–High BI | 22.51% | 37.62% | 38.62% | 37.66% |
Low HQ–High BI | 13.33% | 21.37% | 17.71% | 18.06% |
Low HQ–Low BI | 37.79% | 29.75% | 33.41% | 33.06% |
High HQ–Low BI | 26.37% | 11.26% | 10.26% | 11.22% |
HQ Level | Ecological Redlines | Variation HQ from 2020 | Grain for Green | Variation HQ from 2020 | ||||
---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | |
Poor | 12,757,931.73 | 82.03% | 0 | 0.00% | 12,744,222.48 | 81.33% | −40,539.42 | −0.26% |
Low | 281,728.62 | 1.81% | −10,008.63 | −0.06% | 332,756.1 | 2.12% | 40,539.42 | 0.26% |
Moderate | 671,178.96 | 4.32% | −77,053.05 | −0.49% | 750,085.47 | 4.79% | 0.005 | 0.00% |
Good | 240,434.01 | 1.55% | −22,549.68 | −0.14% | 263,158.92 | 1.68% | 0.00 | 0.00% |
High | 1,601,423.37 | 10.30% | 109,611.36 | 0.70% | 1,579,661.82 | 10.08% | 0.00 | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Shan, R.; Luan, Q.; Zhang, Y.; Chen, Z. Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China. Land 2024, 13, 2215. https://doi.org/10.3390/land13122215
Sun X, Shan R, Luan Q, Zhang Y, Chen Z. Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China. Land. 2024; 13(12):2215. https://doi.org/10.3390/land13122215
Chicago/Turabian StyleSun, Xiaoyin, Ruifeng Shan, Qingxin Luan, Yuee Zhang, and Zhicong Chen. 2024. "Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China" Land 13, no. 12: 2215. https://doi.org/10.3390/land13122215
APA StyleSun, X., Shan, R., Luan, Q., Zhang, Y., & Chen, Z. (2024). Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China. Land, 13(12), 2215. https://doi.org/10.3390/land13122215