Impact of Urbanization on the Sustainable Production of Regional Specialty Food: Evidence from China’s Potato Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Urbanization Indicators
2.2. Calculation of Carbon Emission
2.3. The Impact Mechanism of Urbanization on Carbon Emissions from Potato Production
2.4. Spatial Econometric Model
2.4.1. Moran Index
2.4.2. Spatial Panel Model
2.5. Selection of Control Variables and Data Sources
2.5.1. Selection of Control Variables
2.5.2. Data Sources
3. Results and Analysis
3.1. Spatial Evolution Characteristics of Urbanization in China
3.2. Spatial Evolution Characteristics of Carbon Emissions from Potato Production
3.3. Analysis of the Impact of Urbanization
3.3.1. Analysis of the Impact of Urbanization on CEIPP
3.3.2. Effect Decomposition of Urbanization on CEIPP
4. Discussion
5. Conclusions and Limitations
5.1. Conclusions
5.2. Contributions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Symbol | Units | Mean | Max | Min | Std. Dev. |
---|---|---|---|---|---|---|
Total carbon emissions from potato production | TCEPP | kt | 74.2601 | 830.0787 | 0 | 109.5726 |
Carbon emission intensity of potato production | CEIPP | kg/t | 151.1928 | 430.9275 | 46.7676 | 66.4279 |
Total carbon emissions of staple grain | TCESG | kt | 227.0389 | 659.1663 | 4.8246 | 170.9339 |
Carbon emission intensity of staple grain | CEISG | kg/t | 141.7795 | 288.8373 | 41.4387 | 44.3048 |
Per capita agricultural output value | PCAO | 104 CNY/Person | 1.5656 | 7.5170 | 0.1642 | 1.2313 |
Comprehensive urbanization | CU | — | 0.4062 | 1.0000 | 0.0912 | 0.1998 |
Economy urbanization | EU | — | 0.5033 | 0.9415 | 0.1308 | 0.1710 |
Population urbanization | PU | — | 0.0174 | 0.1952 | 0.0001 | 0.0305 |
Land urbanization | LU | — | 0.8851 | 0.9973 | 0.6533 | 0.0615 |
Production technical efficiency | PTE | — | 0.8553 | 1.5090 | 0.0000 | 0.3068 |
Proportion of disaster areas | PDA | — | 0.2601 | 0.6918 | 0.0212 | 0.1511 |
Potato industrial structure | PIS | — | 0.5606 | 0.7400 | 0.3390 | 0.0906 |
Agricultural openness | AO | — | 0.0742 | 0.5270 | 0.0000 | 0.1038 |
Production agglomeration levels | PAL | — | 1.3922 | 4.2328 | 0.6070 | 0.6033 |
Proportion of agricultural fiscal expenditures | AFE | — | 0.1154 | 0.2038 | 0.0295 | 0.0333 |
— | ||||||
Proportion of environmental protection fiscal expenditure | EPFE | — | 0.0253 | 0.0673 | 0.0000 | 0.0176 |
Year | Adjacency Matrix | Distance Matrix | Economic Matrix | Emission Matrix |
---|---|---|---|---|
2002 | 0.175 (0.174) * | 0.932 (0.331) *** | 0.909 (0.325) *** | 0.821 (0.324) *** |
2003 | 0.070 (0.175) | 0.945 (0.334)*** | 0.905 (0.328) *** | 0.845 (0.326) *** |
2004 | 0.160 (0.159) * | 0.893 (0.300) *** | 0.831 (0.295) *** | 0.796 (0.293) *** |
2005 | 0.241 (0.169) ** | 0.968 (0.321) *** | 0.951 (0.315) *** | 0.935 (0.314) *** |
2006 | 0.364 (0.182) *** | 0.956 (0.348) *** | 0.935 (0.342) *** | 0.935 (0.341) *** |
2007 | 0.121 (0.176) | 0.969 (0.336) *** | 0.964 (0.330) *** | 0.934 (0.328) *** |
2008 | 0.036 (0.157) | 0.979 (0.296) *** | 0.969 (0.291) *** | 0.961 (0.289) *** |
2009 | 0.016 (0.172) | 0.967 (0.326) *** | 0.942 (0.321) *** | 0.941 (0.319) *** |
2010 | −0.004 (0.160) | 0.903 (0.302) *** | 0.848 (0.297) *** | 0.875 (0.296) *** |
2011 | −0.149 (0.148) | 0.980 (0.278) *** | 0.965 (0.273) *** | 0.963 (0.272) *** |
2012 | 0.207 (0.167) ** | 0.969 (0.317) *** | 0.954 (0.312) *** | 0.947 (0.311) *** |
2013 | 0.233 (0.176) ** | 0.969 (0.336) *** | 0.946 (0.330) *** | 0.947 (0.329) *** |
2014 | −0.102 (0.134) | 0.989 (0.247) *** | 0.983 (0.243) *** | 0.980 (0.242) *** |
2015 | −0.164 (0.169) | 0.959 (0.321) *** | 0.945 (0.316) *** | 0.932 (0.315) *** |
2016 | −0.070 (0.166) | 0.947 (0.315) *** | 0.940 (0.310) *** | 0.921 (0.309) *** |
2017 | 0.042 (0.169) | 0.942 (0.321) *** | 0.956 (0.315) *** | 0.950 (0.314) *** |
2018 | 0.150 (0.154) * | 0.978 (0.290) *** | 0.988 (0.285) *** | 0.983 (0.284) *** |
2019 | 0.149 (0.162) * | 0.972 (0.306) *** | 0.972 (0.301) *** | 0.969 (0.299) *** |
2020 | 0.099 (0.175) | 0.953 (0.333) *** | 0.961 (0.328) *** | 0.966 (0.326) *** |
Adjacency Matrix | Distance Matrix | Economic Matrix | Emission Matrix | |||||
---|---|---|---|---|---|---|---|---|
Statistic | p | Statistic | p | Statistic | p | Statistic | p | |
Wald-SDM-SLM | 252.224 | 0.000 | 240.983 | 0.000 | 322.596 | 0.000 | 368.452 | 0.000 |
Wald-SDM-SEM | 293.709 | 0.000 | 280.079 | 0.000 | 390.363 | 0.000 | 435.649 | 0.000 |
LR-SDM-SLM | 95.079 | 0.000 | 98.446 | 0.000 | 118.646 | 0.000 | 164.095 | 0.000 |
LR-SDM-SEM | 122.284 | 0.000 | 125.162 | 0.000 | 150.031 | 0.000 | 200.041 | 0.000 |
Hausman | 53.226 | 0.000 | 59.315 | 0.000 | 86.337 | 0.000 | 97.121 | 0.000 |
Variable | Adjacency Matrix | Distance Matrix | ||||||
---|---|---|---|---|---|---|---|---|
CU | −0.3290 | — | — | — | −11.3582 * | — | — | — |
(0.8262) | (6.1638) | |||||||
PU | — | −1.1750 ** | — | — | — | −7.2467 | — | — |
(0.4739) | (8.6210) | |||||||
LU | — | — | −4.9682 | — | — | — | 14.0057 | — |
(4.7371) | (12.7668) | |||||||
EU | — | — | — | 0.8243 | — | — | — | 15.3329 |
(1.0016) | (45.6396) | |||||||
PTE | −1.4298 *** | −1.3608 *** | −1.5201 *** | −1.4745 *** | −1.0710 | −1.0851 *** | −1.1611 ** | −1.5269 *** |
(0.1920) | (0.2036) | (0.1705) | (0.1881) | (0.7859) | (0.4119) | (0.6683) | (0.4159) | |
PCAO | 0.0178 | −0.0867 * | −0.0680 * | −0.1200 ** | 0.0325 | 0.0502 | 0.0172 | 0.1158 ** |
(0.0577) | (0.0481) | (0.0398) | (0.0595) | (0.0513) | (0.0612) | (0.0475) | (0.0576) | |
PDA | 0.0561 | −0.1333 | 0.1416 | 0.0795 | −0.1445 | −0.1622 | −0.1477 | 0.3960 |
(0.2788) | (0.2104) | (0.2554) | (0.2501) | (0.2271) | (0.2389) | (1.2721) | (1.1855) | |
PIS | 0.4631 | 0.7441 | 0.2547 | 0.1366 | 0.8267 | 0.7826 ** | 0.8984 ** | −8.0887 |
(0.7384) | (0.6364) | (0.5476) | (0.7431) | (0.9920) | (0.3922) | (0.4282) | (5.1992) | |
AO | −0.0523 | 0.0868 | −0.2470 | −0.1578 | −0.0811 | −0.0502 | −4.1114 | −1.8751 * |
(0.3766) | (0.3337) | (0.3929) | (0.2717) | (0.3116) | (0.2792) | (5.2539) | (1.0826) | |
PAL | 0.0458 | 0.1316 | 0.2070 * | 0.2631 ** | −0.0287 | 0.9335 | 0.0179 | 3.6272 |
(0.1261) | (0.1041) | (0.1176) | (0.1239) | (0.1120) | (0.8417) | (0.0746) | (4.6921) | |
AFE | −0.3456 | 0.2441 | 0.8377 | 0.0625 | 0.5004 | 0.5016 | 0.6734 | −2.6097 |
(1.5895) | (1.2199) | (1.5512) | (1.3506) | (1.4122) | (1.4370) | (1.5680) | (9.5515) | |
EPFE | −1.5566 | −1.0224 | 2.3035 | 2.5033 | −1.6838 | −1.3391 | −1.7402 | 3.0220 |
(2.1128) | (2.2679) | (3.2289) | (2.7901) | (2.2124) | (2.2168) | (2.5643) | (5.0685) | |
W·CU | — | — | — | — | 11.6368 * | |||
(6.2993) | ||||||||
W·PU | — | — | — | — | — | 7.1821 | — | — |
(6.4663) | ||||||||
W·LU | — | — | 2.4569 *** | — | — | — | — | — |
(0.3821) | ||||||||
W·EU | — | — | — | — | — | — | — | −11.3238 |
(7.8992) | ||||||||
W·PCAO | — | 0.2654 ** | — | — | — | — | — | — |
(0.1220) | ||||||||
W·PDA | −0.9169 ** | — | −0.7677 | −0.7739 * | — | — | −0.3063 **** | — |
(0.3908) | (0.4064) | (0.4283) | (0.1392) | |||||
W·PIS | 3.0743 ** | 3.9243 * | — | 3.2303 * | — | — | — | 9.7015 *** |
(1.5041) | (2.1423) | (1.9399) | (4.2911) | |||||
W·AO | −0.4033 ** | 3.7553 ** | — | 3.4167 ** | — | — | 4.1666 | — |
(0.1969) | (1.8099) | (1.7217) | (5.3817) | |||||
W·PAL | — | −0.4549 * | −0.3569 * | −0.5893 ** | — | −1.0038 | — | −3.6665 * |
(0.2992) | (0.2083) | (0.2997) | (0.8649) | (2.2663) | ||||
W·EPFE | — | — | −5.9141 * | −6.0740 ** | — | — | — | — |
(3.2737) | (2.6441) | |||||||
Spatial | −0.0270 | −0.0223 | −0.0261 | −0.0213 | 0.2526 | 0.2407 | 0.2111 | 0.2037 |
R2 | 0.4772 | 0.6162 | 0.7682 | 0.7008 | 0.3308 | 0.4081 | 0.4370 | 0.3883 |
Log-likelihood | −147.3083 | −141.9783 | −142.6348 | −141.2104 | −152.3276 | −152.6529 | −152.9239 | −153.6696 |
References
- FAO. The State of Food and Agriculture 2021: Making Agri-Food Systems More Resilient to Shocks and Stresses. Available online: https://www.fao.org/3/CB4476EN/online/CB4476EN.html (accessed on 11 January 2023).
- Malik, A.; Li, M.; Lenzen, M.; Fry, J.; Liyanapathirana, N.; Beyer, K.; Boylan, S.; Lee, A.; Raubenheimer, D.; Geschke, A.; et al. Impacts of climate change and extreme weather on food supply chains cascade across sectors and regions in Australia. Nat. Food 2022, 3, 631–643. [Google Scholar] [CrossRef]
- Okolie, C.C.; Ogundeji, A.A. Effect of COVID-19 on agricultural production and food security: A scientometric analysis. Humanit. Soc. Sci. Commun. 2022, 9, 64. [Google Scholar] [CrossRef]
- Li, J.; Song, Z. Dynamic Impacts of External Uncertainties on the Stability of the Food Supply Chain: Evidence from China. Foods 2022, 11, 2552. [Google Scholar] [CrossRef]
- FSIn platform. Food Security Information Network. Global Report on Food Crises 2020. Available online: https://wwww.fsinplatform.org/global-report-food-crises-2020 (accessed on 20 August 2020).
- FAO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1298217/ (accessed on 7 January 2023).
- De Onis, M.; Borghi, E.; Arimond, M.; Webb, P.; Croft, T.; Saha, K.; De-Regil, L.M.; Thuita, F.; Heidkamp, R.; Krasevec, J.; et al. Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutr. 2018, 22, 175–179. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Selod, H.; Shilpi, F. Rural-urban migration in developing countries: Lessons from the literature. Reg. Sci. Urban Econ. 2021, 91, 103713. [Google Scholar] [CrossRef]
- He, C.; Chen, T.; Mao, X.; Zhou, Y. Economic transition, urbanization and population redistribution in China. Habitat Int. 2016, 51, 39–47. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- Liu, L. Urbanization is reshaping food production in China. Nature 2023, 621, 42. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data. Socio-Econ. Plan. Sci. 2019, 67, 69–77. [Google Scholar] [CrossRef]
- Tselios, V. Urbanization and Socioeconomic Status in the European Regions: The Role of Population Ageing and Capital City Regions. Eur. Plan. Stud. 2014, 22, 1879–1901. [Google Scholar] [CrossRef]
- Beckers, V.; Poelmans, L.; Van Rompaey, A.; Dendoncker, N. The impact of urbanization on agricultural dynamics: A case study in Belgium. J. Land Use Sci. 2020, 15, 626–643. [Google Scholar] [CrossRef]
- Skog, K.L.; Steinnes, M. How do centrality, population growth and urban sprawl impact farmland conversion in Norway? Land Use Policy 2016, 59, 185–196. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Szabo, S. Urbanisation and Food Insecurity Risks: Assessing the Role of Human Development. Oxf. Dev. Stud. 2015, 44, 28–48. [Google Scholar] [CrossRef]
- De Bruin, S.; Dengerink, J.; van Vliet, J. Urbanisation as driver of food system transformation and opportunities for rural livelihoods. Food Secur. 2021, 13, 781–798. [Google Scholar] [CrossRef]
- Zhuang, L.; Ye, C. Changing imbalance: Spatial production of national high-tech industrial development zones in China (1988–2018). Land Use Policy 2020, 94, 104512. [Google Scholar] [CrossRef]
- Wang, P. What are the changes in population size? Econ. Dly. 2023. [Google Scholar] [CrossRef]
- GOV. Expectations for China’s Reform of the World: Reducing “Tuition Fees” for Urbanization in China. Available online: https://www.gov.cn/zhuanti/2014-02/20/content_2624290.htm (accessed on 20 February 2014).
- Ge, D.; Long, H.; Qiao, W.; Wang, Z.; Sun, D.; Yang, R. Effects of rural–urban migration on agricultural transformation: A case of Yucheng City, China. J. Rural Stud. 2020, 76, 85–95. [Google Scholar] [CrossRef]
- Molina, C.A.; Dudenhoefer, D.; Polar, V.; Scurrah, M.; Ccanto, R.C.; Heider, B. Gender Roles and Native Potato Diversity Management in Highland Communities of Peru. Sustainability 2022, 14, 3455. [Google Scholar] [CrossRef]
- FAO. Production of Potatoes: Top Ten Producers 2019. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 15 November 2022).
- Mudege, N.N.; Sarapura Escobar, S.; Polar, V. Gender Topics on Potato Research and Development. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 475–506. [Google Scholar]
- GOV. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARAPRC). Available online: https://www.gov.cn/xinwen/2015-01/07/content_2801539.htm (accessed on 7 January 2015).
- Scott, G.J.; Suarez, V. From Mao to McDonald’s: Emerging Markets for Potatoes and Potato Products in China 1961–2007. Am. J. Potato Res. 2012, 89, 216–231. [Google Scholar] [CrossRef]
- Lv, C.; Sun, G. Study on the characteristics and driving factors of production regional distribution for potato in China—Based on the panel data of the main production areas. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 34–41. [Google Scholar] [CrossRef]
- Subedi, K.; Chhetri, N.B.; Karki, T. Land Use Practices, Cropping Systems and Climate Change Vulnerability to Mountain Agro-Ecosystems of Nepal; Nova Science Publishers, Inc.: New York, NY, USA, 2016; pp. 103–132. [Google Scholar]
- Tobgay, S.; Mischler, F.; Covarrubias, K.; Zezza, A. Fighting Hunger: The Right to Food Way; FAO: Rome, Italy, 2015. [Google Scholar]
- Liu, X.; Xu, Y.; Engel, B.A.; Sun, S.; Zhao, X.; Wu, P.; Wang, Y. The impact of urbanization and aging on food security in developing countries: The view from Northwest China. J. Clean. Prod. 2021, 292, 126067. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Li, B. An empirical study on the effectiveness of China’s monetary policy. J. Financ. Res. 2001, 7, 10–17. [Google Scholar]
- Liu, F.; Xu, H.; Wang, S. Analysis on spatial-temporal coupling coordinate degree among population, land and economy urbanization: Based on China provincial panel data. Urban Dev. Stud. 2014, 21, 7–11. [Google Scholar]
- Tian, Y.; Zhang, J.; Li, B. Agricultural Carbon Emissions in China: Calculation, Spatial-Temporal Comparison and Decoupling Effects. Resour. Sci. 2012, 34, 2097–2105. [Google Scholar]
- Zhang, G.; Wang, S. China’s Agricultural Carbon Emission: Structure, Efficiency and Its Determinants. Issues Agric. Econ. 2014, 35, 18–26+110. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Pu, C.; Zhao, X.; Wang, Y.; Zhang, H. Trends and influencing factors of agricultural carbon emissions in the Southwest China. China Popul. Resour. Environ. 2017, 27, 231–234. [Google Scholar]
- Wojewodzki, M.; Wei, Y.; Cheong, T.S.; Shi, X. Urbanization, agriculture and convergence of carbon emissions nexus: Global distribution dynamics analysis. J. Clean. Prod. 2023, 385, 135697. [Google Scholar] [CrossRef]
- Shi, R.; Shen, Y.; Du, R.; Yao, L.; Zhao, M. The impact of agricultural productive service on agricultural carbon efficiency—From urbanization development heterogeneity. Sci. Total Environ. 2024, 906, 167604. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Y.; Wang, G.; Liu, B.; Wang, R. The aging of farmers and its challenges for labor-intensive agriculture in China: A perspective on farmland transfer plans for farmers’ retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, R. Impact of farm size on intensity of pesticide use: Evidence from China. Sci. Total Environ. 2021, 753, 141696. [Google Scholar] [CrossRef]
- Rahman, G.; Chandio, N.H.; Moazzam, M.F.U.; Al Ansari, N. Urban expansion impacts on agricultural land and thermal environment in Larkana, Pakistan. Front. Environ. Sci. 2023, 11, 1115553. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Yue, L.; Xue, D. Study on the Impact of New-type Urbanization on Urban Land Use Efficiency in China. Inq. Into Econ. Issues 2020, 110–120. [Google Scholar]
- Ma, M.; Tang, J. Nonlinear impact and spatial effect of tourism urbanization on human settlement environment: Evidence from the Yellow River Basin, China. J. Clean. Prod. 2023, 428, 139432. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Guo, Y. A research on the coordination of land urbanization and economic urbanization in China. East China Econ. Manag. 2016, 30, 111–117. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, M. Review on external risks of global supply chain and Its Countermeasures. Study Explor. 2019, 6, 134–143. [Google Scholar] [CrossRef]
- MOA. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARAPRC). Available online: http://www.moa.gov.cn/nybgb/2016/disanqi/201711/t20171126_5919565.htm (accessed on 26 November 2017).
- GOV. The Central People’s Government of the People’s Republic of China. Available online: http://bzdt.ch.mnr.gov.cn (accessed on 23 September 2023).
- Elhorst, J. MATLAB software for spatial panels. Int. Reg. Sci. Rev. 2012, 37, 389–405. [Google Scholar] [CrossRef]
- Chen, D.; Hu, W.; Li, Y.; Zhang, C.; Lu, X.; Cheng, H. Exploring the temporal and spatial effects of city size on regional economic integration: Evidence from the Yangtze River Economic Belt in China. Land Use Policy 2023, 132, 106770. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q. Threshold effects of green technology application on sustainable grain production: Evidence from China. Front. Plant Sci. 2023, 14, 1107970. [Google Scholar] [CrossRef] [PubMed]
- Ohlan, R. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Nat. Hazards 2015, 79, 1409–1428. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Zhang, X. Urbanization with the pursuit of efficiency and ecology: Theory and evidence from China. Environ. Impact Assess. Rev. 2023, 103, 107274. [Google Scholar] [CrossRef]
- YN. Release of Main Data from the Seventh National Population Census of Yunnan Province. Available online: https://www.yn.gov.cn/sjfb/sjyw/202105/t20210515_222144.html (accessed on 15 April 2021).
- GOV. The Central People’s Government of the People’s Republic of China (CPGPRC). The Whole Country Is Working Together to Overcome Difficulties: From Guizhou’s Victory in the Poverty Alleviation Battle to See the Advantages of the Socialist System with Chinese Characteristics. Available online: https://www.gov.cn/xinwen/2022-09/10/content_5709332.htm (accessed on 10 September 2022).
- Martellozzo, F.; Ramankutty, N.; Hall, R.J.; Price, D.T.; Purdy, B.; Friedl, M.A. Urbanization and the loss of prime farmland: A case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Chang. 2014, 15, 881–893. [Google Scholar] [CrossRef]
- Peña-Rodríguez, F.-J.; Entrena-Durán, F.; Ivorra-Cano, A.; Llorca-Linde, A. Changes in Land Use and Food Security: The Case of the De La Vega Agrarian Shire in the Southern Spanish Province of Granada. Land 2023, 12, 747. [Google Scholar] [CrossRef]
- Kousar, S.; Ahmed, F.; Pervaiz, A.; Bojnec, Š. Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability. Sustainability 2021, 13, 12336. [Google Scholar] [CrossRef]
- Li, S.; Ji, Q.; Liang, W.; Fu, B.; Lü, Y.; Yan, J.; Jin, Z.; Wang, Z.; Li, Y. Urbanization does not endanger food security: Evidence from China’s Loess Plateau. Sci. Total Environ. 2023, 871, 162053. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bai, X.; Zhang, X.; Reis, S.; Chen, D.; Xu, J.; Gu, B. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2021, 2, 183–191. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, L.; Yang, Y. From Fragmentation to Intensification: Land Reform in China’s “New Era”. Int. J. Environ. Res. Public Health 2022, 19, 11223. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhao, W. Searching for a new dynamic of industrialization and urbanization: Anatomy of China’s characteristic town program. Urban Geogr. 2018, 39, 1060–1069. [Google Scholar] [CrossRef]
- Yanfeng, G.; Qinfeng, X.; Ziwei, Y. Matching degree evaluation between new urbanization and carbon emission system in China: A case study of Anhui Province in China. Sci. Rep. 2023, 13, 11724. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, Y.; Zhang, Q.; Dong, W.; Huang, J. Boosting rural labor off-farm employment through urban expansion in China. World Dev. 2022, 151, 105727. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Rozelle, S. Off-farm employment and agricultural specialization in China. China Econ. Rev. 2017, 42, 155–165. [Google Scholar] [CrossRef]
- Koroso, N.H.; Lengoiboni, M.; Zevenbergen, J.A. Urbanization and urban land use efficiency: Evidence from regional and Addis Ababa satellite cities, Ethiopia. Habitat Int. 2021, 117, 102437. [Google Scholar] [CrossRef]
- Koroso, N.H.; Zevenbergen, J.A.; Lengoiboni, M. Urban land use efficiency in Ethiopia: An assessment of urban land use sustainability in Addis Ababa. Land Use Policy 2020, 99, 105081. [Google Scholar] [CrossRef]
- Ji, Y.; Guo, X.; Zhong, S.; Wu, L. Land Financialization, Uncoordinated Development of Population Urbanization and Land Urbanization, and Economic Growth: Evidence from China. Land 2020, 9, 481. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Q. Comparative cost-benefit study of potato and the three major staple foods—On the feasibility of replacing maize with potatoes in the “sickle bend” region? J. Chengdu Univ. (Soc. Sci.) 2019, 1, 42–47. [Google Scholar]
- Chen, M.; Chen, L.; Cheng, J.; Yu, J. Identifying interlinkages between urbanization and Sustainable Development Goals. Geogr. Sustain. 2022, 3, 339–346. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
Variable | Economic Matrix | Emission Matrix | ||||||
---|---|---|---|---|---|---|---|---|
CU | −8.1560 ** | — | — | — | −6.6033 *** | — | — | — |
(3.8198) | (1.8330) | |||||||
PU | — | −5.6442 | — | — | — | −5.8359 *** | — | — |
(5.8748) | (2.1286) | |||||||
LU | — | — | 13.1694 | — | — | — | 15.1825 * | — |
(13.1261) | (8.0461) | |||||||
EU | — | — | — | −0.8002 * (0.4657) | — | — | — | −3.6589 ** |
(1.8157) | ||||||||
PTE | −1.1470 * | −1.1453 * | −1.1674 * | −1.1718 * | −0.9207 *** | −0.9169 *** | −0.9693 *** | −0.9505 *** |
(0.6980) | (0.6967) | (0.6792) | (0.7239) | (0.2837) | (0.2802) | (0.2872) | (0.3177) | |
PCAO | 0.0371 | 0.0537 | 0.0218 | 0.0361 | 0.0234 | 0.0295 | 0.3812 | 0.0227 |
(0.0568) | (0.0679) | (0.0494) | (0.0395) | (0.0378) | (0.0260) | (0.3675) | (0.0277) | |
PDA | −0.1484 | −0.1716 | −0.1468 | −0.1721 | 0.1033 | 0.5184 ** | 0.3564 * | 0.2211 ** |
(0.2278) | (0.2351) | (0.2287) | (0.2310) | (0.1559) | (0.2411) | (0.2062) | (0.1057) | |
PIS | 0.8605 | 0.7874 | 0.6376 | 0.6154 | −0.0466 | 0.7075 | 0.7505 | 0.6835 |
(1.1080) | (1.0586) | (0.9317) | (0.9441) | (0.8951) | (0.5947) | (0.6101) | (0.6614) | |
AO | −0.1275 | −0.0973 | −0.1792 | −0.1243 | −2.0896 * | −1.9327 * | −1.9928 * | −1.7308 * |
(0.3506) | (0.3102) | (0.3717) | (0.3380) | (1.2094) | (1.1169) | (1.2893) | (1.0252) | |
PAL | −0.0414 | 0.6896 * | 0.9199 * | 1.0771 * | 0.5125 ** | 0.8757 * | 0.5780 * | 0.0354 |
(0.1233) | (0.3435) | (0.5178) | (0.6292) | (0.2498) | (0.5011) | (0.3320) | (0.0748) | |
AFE | 0.5585 | 0.6093 | 0.7969 | 0.4660 | 0.4578 | 2.7671 | 1.3540 | 1.7748 |
(1.5064) | (1.5414) | (1.5349) | (1.5594) | (1.1996) | (1.4519) | (1.0021) | (2.1858) | |
EPFE | −2.0634 | −1.4826 | −1.5932 | −1.7387 | −1.5771 * | −1.9311 * | −0.8969 ** | −1.7860 * |
(2.3053) | (2.2909) | (2.3653) | (2.4121) | (0.9043) | (1.1304) | (0.4425) | (1.1219) | |
W·CU | 8.3907 ** | — | — | — | 6.8300 *** | — | — | — |
(3.8226) | (1.9291) | |||||||
W·PU | — | 5.5337 ** | — | — | — | 5.8700 *** | — | — |
(2.7024) | (2.1262) | |||||||
W·LU | — | — | — | — | — | — | −17.2351 ** | — |
(8.5926) | ||||||||
W·EU | — | — | — | — | — | — | — | 7.6009 * |
(4.0343) | ||||||||
W·PDA | — | — | — | — | — | 0.4993 * | 0.4216 * | — |
(0.3023) | (0.2389) | |||||||
W·PIS | — | — | — | — | 0.7935 ** | — | — | — |
(0.3908) | ||||||||
W·AO | — | — | — | — | 2.1416 * | 2.0368 * | 1.9961 | 1.5131 ** |
(1.2808) | (1.1902) | (1.4888) | (0.7196) | |||||
W·PAL | −0.7445 * | −0.7709 * | −0.9419 * | −1.092 * | — | — | — | — |
(0.4145) | (0.5161) | (0.5362) | (0.6333) | |||||
Spatial | 0.1887 | 0.3914 ** | 0.2001 | 0.1751 | 0.3822 ** | 0.3849 ** | 0.3683 ** | 0.3634 ** |
R2 | 0.4174 | 0.4245 | 0.5055 | 0.4411 | 0.6393 | 0.6884 | 0.7108 | 0.6432 |
Log-likelihood | −152.4583 | −152.4356 | −152.6347 | −152.8957 | −141.0648 | −139.8980 | −136.8646 | −140.6961 |
Variable | Direct Effect | Indirect Effect | ||||||
---|---|---|---|---|---|---|---|---|
CU | −2.5818 *** | — | — | — | 1.9283 *** | — | — | — |
(0.8126) | (0.3949) | |||||||
PU | — | −2.9479 ** | — | — | — | 1.0661 *** | — | — |
(1.3979) | (0.2444) | |||||||
LU | — | — | 11.8540 | — | — | — | 6.2697 | — |
(14.596) | (1.6931) | |||||||
EU | — | — | — | −1.0210 * | — | — | — | 1.9355 *** |
(0.5693) | (0.4396) | |||||||
PTE | −1.4241 *** | −1.3767 * | −1.5022 *** | −1.3159 ** | −0.1831 *** | −0.10066 ** | −0.1093 * | −0.1391 * |
(0.2446) | (0.8057) | (0.3391) | (0.5916) | (0.0617) | (0.0493) | (0.0601) | (0.0789) | |
PCAO | 0.0416 | 0.3329 | 0.0148 | −0.0202 | −0.5026 | −0.4472 | −0.9271 * | −1.0613 * |
(0.0622) | (0.2940) | (0.3764) | (1.0466) | (0.4065) | (0.3056) | (0.4396) | (0.5648) | |
PDA | 0.6428 ** | 0.8406 * | 1.1784 | 1.0901 | −0.5059 | 0.5060 | 0.5833 | 0.6810 |
(0.2964) | (0.4830) | (0.8165) | (0.8064) | (0.3608) | (0.3270) | (0.6650) | (0.9707) | |
PIS | 0.9436 * | 0.9043 * | 1.0157 ** | 0.5865 * | −0.8151 ** | −0.6136 ** | −0.8382 * | −0.3237 *** |
(0.5173) | (0.5248) | (0.4898) | (0.3372) | (0.4019) | (0.2875) | (0.4846) | (0.1031) | |
AO | −0.5109 * | 0.1387 | −0.2427 | −0.0819 | 0.4952 ** | 0.2250 | 0.1208 | 0.1926 |
(0.3471) | (0.7181) | (1.1515) | (1.3026) | (0.2434) | (0.5786) | (2.0381) | (0.3761) | |
PAL | −0.3066 ** | −0.2403 *** | −0.1716 ** | −0.1422 | 0.2034 ** | 0.2284 | 0.1513 | 0.1074 |
(0.1482) | (0.0815) | (0.0796) | (0.1306) | (0.1091) | (0.2691) | (0.1603) | (0.1311) | |
AFE | 0.4392 | 0.4487 | 1.1734 | 1.1450 | −0.4076 * | −0.4266 ** | −1.0927 *** | −1.072 *** |
(0.9169) | (0.6793) | (1.4399) | (1.6786) | (0.2343) | (0.1924) | (0.2813) | (0.2267) | |
EPFE | −2.3667 | −1.6259 | −1.1818 | −2.0335 | −0.9513 *** | −0.7314 *** | −1.8510 *** | −1.6598 *** |
(2.4673) | (2.2444) | (1.5935) | (2.1941) | (0.2887) | (0.2376) | (0.1984) | (0.1250) |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
CU | −0.1221 (1.5377) | 0.1169 (1.3704) | −0.0051 (0.6802) |
PTE | −0.1102 (0.0585) * | 0.0239 (0.4806) | −0.0863 (0.0464) * |
PCAO | 0.0264 (0.5814) | −0.0410 (0.5286) | −0.0146 (0.4648) |
PDA | 0.0244 (0.0103) *** | −0.0152 (0.1449) | 0.0111 (0.2332) |
PIS | −0.1935 (0.8113) | 0.1236 (0.9328) | −0.0699 (1.0954) |
AO | −0.1250 (0.0294) *** | 0.0560 (0.0417) | −0.0690 (0.0310) *** |
PAL | 0.0130 (0.7409) | 0.0125 (0.6805) | 0.0255 (0.4413) |
AFE | −0.2414 (1.6306) | 0.1367 (1.5129) | −0.1046 (0.8954) |
EPFE | 0.1103 (2.6425) | −0.2973 (2.5579) | −0.1869 (2.3567) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Li, Z.; Li, J.; Jian, Y. Impact of Urbanization on the Sustainable Production of Regional Specialty Food: Evidence from China’s Potato Production. Land 2024, 13, 147. https://doi.org/10.3390/land13020147
Ni Y, Li Z, Li J, Jian Y. Impact of Urbanization on the Sustainable Production of Regional Specialty Food: Evidence from China’s Potato Production. Land. 2024; 13(2):147. https://doi.org/10.3390/land13020147
Chicago/Turabian StyleNi, Yinfeng, Zhi Li, Jingdong Li, and Yuqing Jian. 2024. "Impact of Urbanization on the Sustainable Production of Regional Specialty Food: Evidence from China’s Potato Production" Land 13, no. 2: 147. https://doi.org/10.3390/land13020147
APA StyleNi, Y., Li, Z., Li, J., & Jian, Y. (2024). Impact of Urbanization on the Sustainable Production of Regional Specialty Food: Evidence from China’s Potato Production. Land, 13(2), 147. https://doi.org/10.3390/land13020147