Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Soil
2.2. Experimental Equipment
2.2.1. Simulated Rainfall Device
2.2.2. Splash Pan
2.3. Measurements and Calculations
2.3.1. Detachment Rate and Transport Rate
2.3.2. Raindrop Diameter Measurement
2.3.3. Calculation of Raindrop Terminal Velocity
2.3.4. Calculation of Rainfall Kinetic Energy
2.3.5. Calculation of Contribution Rate
2.3.6. Data Analysis
3. Results and Discussion
3.1. Effects of the Rainfall Intensity and Slope on Splash Detachment and Transport
3.1.1. Effects of the Rainfall Intensity and the Slope on Detachment Rate
3.1.2. Effects of the Rainfall Intensity and Slope on the Transport Rate
3.1.3. Contributions of the Rainfall Intensity and Slope to Detachment and Transport
3.2. Rainfall Kinetic Energy
3.3. Key Parameter Selections for Splash Detachment and Transport
3.4. Splash Detachment Equation and Transport Equation
3.4.1. Splash Detachment Equation
3.4.2. Splash Transport Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil erosion impact on agronomic productivity and environment quality. Crit. Rev. Plant Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Raindrop impact induced erosion processes and prediction: A review. Hydrol. Process. 2005, 19, 2815–2844. [Google Scholar] [CrossRef]
- Ali, M.; Sterk, G.; Seeger, M.; Boersema, M.P.; Peters, P. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrol. Earth Syst. Sci. 2012, 16, 591–601. [Google Scholar] [CrossRef]
- Ellison, W.D. Studies of raindrop erosion. Agric. Eng. 1944, 25, 131–136. [Google Scholar]
- Ellison, W.D. Soil erosion studies. Agric. Eng. 1947, 28, 145–146. [Google Scholar]
- Legout, C.; Leguedois, S.; Bissonnais, Y.L.; Issa, O.M. Splash distance and size distributions for various soils. Geoderma 2005, 124, 279–292. [Google Scholar] [CrossRef]
- Foster, G.R.; Meyer, L.D.; Onstad, C.A. An erosion equation derived from basic erosion principles. Trans. ASAE 1977, 20, 678–682. [Google Scholar] [CrossRef]
- Hairsine, P.B.; Rose, C.W. Rainfall detachment and deposition: Sediment transport in the absence of flow-driven processes. Soil Sci. Soc. Am. J. 1991, 55, 320–324. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S.; Navas, A.; Machin, J. Splash erosion under natural rainfall on three soil types in NE Spain. Geomorphology 2012, 175, 38–44. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, L.S.; Wu, Q.; Li, Z.B. The role of surface microreliefs in influencing splash erosion: A laboratory study. Soil Water Res. 2016, 11, 83–89. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, M.X.; Li, G.L.; Wang, D.; Zheng, T.H. Selectivity of aggregate fractions for loess soils under different raindrop diameters. J. Soils Sediments 2021, 21, 189–202. [Google Scholar] [CrossRef]
- Sobol, N.V.; Gabbasova, I.M.; Komissarov, M.A. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment). Eurasian Soil Sci. 2017, 50, 1098–1104. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. A universal soil-loss equation to guide conservation farm planning. Trans. Int. Congr. Soil Sci. 1960, 1, 418–425. [Google Scholar]
- Al-Durrah, M.; Bradford, J.M. New methods of studying soil detachment due to waterdrop impact. Soil Sci. Soc. Am. J. 1981, 45, 949–953. [Google Scholar] [CrossRef]
- Laws, J.O.; Pasron, D.A. The relationship of raindrop size to intensity. Trans. Amer. Geophys. Union 1943, 24, 248–262. [Google Scholar] [CrossRef]
- Martnez-Mena, M.; Castillo, V.; Albaladejo, J. Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain. Geomorphology 2002, 45, 261–275. [Google Scholar] [CrossRef]
- Dunne, T.; Zhang, W.H.; Aubry, B.F. Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour. Res. 1991, 27, 2271–2285. [Google Scholar] [CrossRef]
- Meyer, L.D.; Harmon, W.C. How row-sideslope length and steepness affect sideslope erosion. Trans. ASAE 1989, 32, 639–644. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Agassi, M. Predicting interrill erodibility factor from measured infiltration rate. Water Resour. Res. 1997, 33, 2409–2415. [Google Scholar] [CrossRef]
- Komatsu, H.; Shinohara, Y.; Kume, T.; Otsuki, K. Changes in peak flow with decreased forestry practices: Analysis using watershed runoff data. J. Environ. Manag. 2011, 92, 1528–1536. [Google Scholar] [CrossRef]
- Ries, J.B.; Marzen, M.; Iserloh, T.; Fister, W. Soil erosion in Mediterranean landscapes-experimental investigation on crusted surfaces by means of the portable wind and rainfall simulator. J. Arid. Environ. 2014, 100, 42–51. [Google Scholar] [CrossRef]
- Bubenzer, G.D.; Jones, B.A. Drop size and impact velocity effects on the detachment of soil under simulated rainfall. Trans. ASAE 1971, 14, 625–628. [Google Scholar] [CrossRef]
- Park, S.W.; Mitchell, J.K.; Bubenzern, G.D. Rainfall characteristics and their relation to splash erosion. Trans. ASAE 1983, 26, 795–804. [Google Scholar] [CrossRef]
- Liu, T.; Luo, J.; Zheng, Z.C.; Li, T.X.; He, A.Q. Effects of rainfall intensity on splash erosion and its spatial distribution under maize canopy. Nat. Hazards 2016, 84, 233–247. [Google Scholar] [CrossRef]
- Zumr, D.; Mutzenberg, D.V.; Neumann, M.; Jeřábek, J.; Laburda, T.; Kavka, P.; Johannsen, L.L.; Zambon, N.; Klik, A.; Strauss, P.; et al. Experimental Setup for splash erosion monitoring-study of silty loam splash characteristics. Sustainability 2020, 12, 157. [Google Scholar] [CrossRef]
- Wu, P.T.; Zhou, P.H. The impact of surface slope on raindrop splash erosion. Bull Soil Water Conserv. 1991, 11, 8–13, 28. (In Chinese) [Google Scholar]
- Wan, Y.; EI-Swaify, S.A.; Sutherland, R.A. Partitioning interrill splash and wash dynamics: A novel laboratory approach. Soil Technology 1996, 9, 55–69. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Liu, H.; Xu, L. The effect of slope on interrill erosion at short slopes. Catena 2011, 84, 29–34. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Zhang, Q.; Shen, N.; Liu, J. Evaluating and modelling splash detachment capacity based on laboratory experiments. Catena 2019, 176, 189–196. [Google Scholar] [CrossRef]
- Quansah, C. The effect of soil type, slope, rain intensity and their interactions on splash detachment and transport. Eur. J. Soil. Sci. 1981, 32, 215–224. [Google Scholar] [CrossRef]
- Scholten, T.; Geibler, C.; Goc, J.; Kühn, P.; Wiegand, C. A new splash cup to measure the kinetic energy of rainfalls. J. Plant Nutr. Soil Sci. 2011, 174, 596–601. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, F.L.; Bian, F. The directional components of splash erosion at different raindrop kinetic energy in the Chinese Mollisol Region. Soil Sci. Soc. Am. J. 2016, 80, 1329–1340. [Google Scholar] [CrossRef]
- Furbish, D.J.; Childs, E.M.; Haff, P.K.; Schmeeckle, M.W. Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution. J. Geophys. Res. 2009, 114, F00A03. [Google Scholar] [CrossRef]
- Furbish, D.J.; Hamner, K.K.; Schmeeckle, M.; Borosund, M.N.; Mudd, S.M. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J. Geophys. Res. 2007, 112, F01001. [Google Scholar] [CrossRef]
- Walker, P.H.; Kinnell, P.; Green, P. Transport of a noncohesive sandy mixture in rainfall and runoff experiments. Soil Sci. Soc. Am. J. 1978, 42, 793–801. [Google Scholar] [CrossRef]
- Guy, B.T.; Dickinson, W.T.; Rudra, R.P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow. Trans. ASAE 1987, 30, 1378–1386. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Wu, B.; Shen, N.; Liu, J. Identifying sediment transport capacity of raindrop impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China. Soil Tillage Res. 2018, 187, 109–117. [Google Scholar] [CrossRef]
- Liu, J.E.; Wang, Z.L.; Yang, X.M.; Jiao, N.; Shen, N.; Ji, P.F. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope. Soil Tillage Res. 2014, 139, 23–27. [Google Scholar] [CrossRef]
- Wu, Q.X.; Zhao, H.Y. Soil and water conservation objectives and countermeasures in the Loess Plateau. Soil Water Conserv. Res. 1996, 6, 76–80. [Google Scholar]
- Dou, B.Z.; Zhou, P.H. Method of measure and mathematics to raindrop. Bull Soil Water Conserv. 1982, 2, 44–47. (In Chinese) [Google Scholar] [CrossRef]
- Morgan, R.P.C. Field Studies of Rainsplash Erosion. Earth SurFace Process. 1978, 3, 295–298. [Google Scholar] [CrossRef]
- Laws, J.O. Measurements of the fall-velocity of water-drops and raindrops. Eos. Trans. Amer. Geophys. Union 1941, 22, 709–721. [Google Scholar] [CrossRef]
- Holrott, H.N. Agricultural Production Effect Forecast; Tan, J.W.; Liu, T.F., Translators; Agriculture Press: Beijing, China, 1983. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models 1: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Fraile, R.; Keizer, J.J. The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmos. Res. 2010, 96, 225–240. [Google Scholar] [CrossRef]
- Boroghani, M.; Hayavi, F.; Noor, H. Affectability of splash erosion by polyacrylamide application and rainfall intensity. Soil Water Res. 2012, 7, 159–165. [Google Scholar] [CrossRef]
- Geißler, C.; Kühn, P.; Böhnke, M.; Bruelheide, H.; Shi, X.; Scholten, T. Splash erosion potential under tree canopies in sub-tropical SE China. Catena 2012, 91, 85–93. [Google Scholar] [CrossRef]
- Begueria, S.; Angulo-Martinez, M.; Gaspar, L.; Navas, A. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain. Geoderma 2015, 245, 21–30. [Google Scholar] [CrossRef]
- Saedi, T.; Shorafa, M.; Gorji, M.; Moghadam, B.K. Indirect and direct effects of soil properties on soil splash erosion rate in calcareous soils of the central Zagross, Iran: A laboratory study. Geoderma 2016, 271, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wang, Z.L. Interrill soil erosion processes on steep slopes. J. Hydrol. 2017, 548, 652–664. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Zhang, Q.; Shen, N. Distinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese loessial region. Soil Tillage Res. 2018, 177, 88–96. [Google Scholar] [CrossRef]
- Yao, J.J.; Cheng, J.H.; Zhou, Z.D.; Sun, L.; Zhang, H.J. Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. Catena 2018, 167, 411–421. [Google Scholar] [CrossRef]
- Ghahramani, A.; Ishikawa, Y.; Gomi, T.; Miyata, S. Downslope soil detachment-transport on steep slopes via rain splash. Hydrol. Process 2011, 25, 2471–2480. [Google Scholar] [CrossRef]
- Liu, W.J.; Luo, Q.P.; Li, J.T.; Wang, P.Y.; Lu, H.J.; Liu, W.Y.; Li, H.M. The effects of conversion of tropical rainforest to rubber plantation on splash erosion in Xishuangbanna, SW China. Hydrol. Res. 2015, 46, 168–174. [Google Scholar] [CrossRef]
- Ma, B.; Yu, X.D.; Ma, F.; Li, Z.; Wu, F. Effects of crop canopies on rain splash detachment. PLoS ONE 2014, 9, e99717. [Google Scholar] [CrossRef]
- Janeau, J.L.; Bricquet, J.P.; Planchon, O.; Valentin, C. Soil crusting and infiltration on steep slopes in northern Thailand. Eur. J. Soil Sci. 2003, 54, 543–553. [Google Scholar] [CrossRef]
- Mouzai, L.; Bouhadef, M. Shear strength of compacted soil: Effects on splash erosion by single water drops. Earth Surf. Process Landf. 2011, 36, 7–96. [Google Scholar] [CrossRef]
- Liu, W.J.; Liu, W.Y.; Lu, H.J.; Duan, W.P.; Li, H.M. Runoff generation in small catchments under a native rainforest and a rubber plantation in Xishuangbanna, SW China. Water Environ. J. 2011, 25, 138–147. [Google Scholar] [CrossRef]
- Yuan, Z.; Chu, Y.; Shen, Y. Simulation of surface runoff and sediment yield under different land-use in a Taihang Mountains watershed, North China. Soil Tillage Res. 2015, 153, 7–19. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Sajjadi, S.A. Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion. Geomorphology 2016, 253, 159–167. [Google Scholar] [CrossRef]
- Nazir, R.; Ghareh, S.; Mosallanezhad, M.; Moayedi, H. The influence of rainfall intensity on soil loss mass from cellular confined slopes. Measurement 2016, 81, 13–25. [Google Scholar] [CrossRef]
- Mizugaki, S.; Nanko, K.; Onda, Y. The effect of slope angle on splash detachment in an unmanaged Japanese cypress plantation forest. Hydrol. Process 2010, 24, 576–587. [Google Scholar] [CrossRef]
- Defersha, M.B.; Quraishi, S.; Melesse, A. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 2367–2375. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Cerdà, A.; Echeverría, M.T.; Fister, W.; Geißler, C.; Kuhn, N.J.; Leon, F.J.; Peters, P.; Schindewolf, M.; et al. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z. Geomorphol 2012, 57, 11–26. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. The effect of flow depth on sediment transport induced by raindrops impacting shallow flows. Trans. ASAE 1991, 34, 161–168. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Soil Res. 1993, 31, 319–332. [Google Scholar] [CrossRef]
- Parsons, A.J.; Gadian, A.M. Uncertainty in modeling the detachment of soil by rainfall. Earth Sur. Process. Landf. 2000, 25, 723–728. [Google Scholar] [CrossRef]
- Salles, C.; Poesen, J.; Govers, G. Statistical and physical analysis of soil detachment by rainfall impact: Rain erosivity indices and threshold energy. Water Resour. Res. 2000, 36, 2721–2729. [Google Scholar] [CrossRef]
- Jayawardena, A.W.; Rezaur, R.B. Measuring drop size distribution and kinetic energy of rainfall using a force transducer. Hydrol. Process. 2000, 14, 37–49. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, J.K.; Kim, J.W.; Park, B.I.; Kim, M.S. Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea. Quat. Int. 2015, 384, 107–117. [Google Scholar] [CrossRef]
- Van, D.; Bruijnzeel, L.; Eisma, E.H. A methodology to study rain splash and wash processes under natural rainfall. Hydrol. Process. 2003, 17, 153–167. [Google Scholar] [CrossRef]
- Wu, X.L.; Wei, Y.J.; Wang, J.G.; Xia, J.W.; Cai, C.F.; Wu, L.L.; Fu, Z.Y.; Wei, Z.Y. Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay. Agric. Ecosyst. Environ. 2017, 249, 226–236. [Google Scholar] [CrossRef]
- Grismer, M. Standards vary in studies using rainfall simulators to evaluate erosion. Calif. Agric. 2012, 66, 102–107. [Google Scholar] [CrossRef]
- Prosser, I.P.; Rustomji, P. Sediment transport capacity relations for overland flow. Prog. Phys. Geog. 2000, 24, 179–193. [Google Scholar] [CrossRef]
- Cheng, J.H.; Qin, Y.; Zhang, H.J.; Cong, Y.; Yang, F.; Yan, Y.Q. Splash erosion under artificial rainfall in rocky mountain area of northern China. T. Chin. Soc. Agric. Mach. 2015, 46, 153–161. [Google Scholar]
- Bako, A.N.; Cottenot, L.; Courtemanche, P.; Lucas, C.; James, F.; Darboux, F. Impacts of raindrops increase particle sedimentation in a sheet flow. Earth Surf. Process. Landf. 2022, 47, 1322–1332. [Google Scholar] [CrossRef]
- Watson, D.A.; Laflen, J.M. Soil strength, slope, and rainfall intensity effects on interrill erosion. Trans. ASAE 1986, 29, 98–102. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Li, D.Q.; Zhuo, M.N.; Guo, T.L.; Liao, Y.S.; Xie, Z.Y. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch. Env. Res. Risk A 2015, 29, 609–621. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.H.; Wang, J.; Fang, N.F.; Wu, G.L.; Zhang, H.Y. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau, China. J. Hydrol. 2014, 512, 168–176. [Google Scholar] [CrossRef]
- Stocking, M.A.; Elwell, H.A. Rainfall erosivity over Rhodesia. Trans. Inst. Br. Geogr. 1976, 1, 231–245. [Google Scholar] [CrossRef]
- Hudson, N.W. Raindrop size distribution in high intensity storms. Rhod. J. Agric. Res 1963, 1, 6–11. [Google Scholar]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.; Rosewell, C. Rainfall intensity–kinetic energy relationships: A critical literature appraisal. J. Hydrol. 2002, 261, 1–23. [Google Scholar] [CrossRef]
- Goebes, P.; Seitz, S.; Geißler, C.; Lassu, T.; Peters, P.; Seeger, M.; Nadrowski, K.; Scholten, T. Momentum or kinetic energy–how do substrate properties influence the calculation of rainfall erosivity? J. Hydrol. 2014, 517, 310–316. [Google Scholar] [CrossRef]
- Hamed, Y.; Albergel, J.; Pepin, Y.; Asseline, J.; Nasri, S.; Zante, P.; Berndtsson, R.; El-Niazy, M.; Balah, M. Comparison between rainfall simulator erosion and observed reservoir sedimentation in an erosion-sensitive semiarid catchment. Catena 2002, 50, 1–16. [Google Scholar] [CrossRef]
- Cerdà, A.; Ibáñez, S.; Calvo, A. Design and operation of small and portable rainfall simulator for rugged terrain. Soil Tech. 1997, 11, 161–168. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Yasuda, H.; Salmi, A.; Anyoji, H. Characterization of rainfall generated by dripper-type rainfall simulator using piezoelectric transducers and its impact on splash soil erosion. Earth Surf. Process Landf. 2010, 35, 466–475. [Google Scholar] [CrossRef]
- Petrů, J.; Kalibová, J. Measurement and computation of kinetic energy of simulated rainfall in comparison with natural rainfall. Soil Water Res. 2018, 13, 226–233. [Google Scholar] [CrossRef]
- Free, G.R. Soil movement by raindrops. Agric. Eng. 1952, 33, 491–494, 496. [Google Scholar]
- Free, G.R. Erosion characteristics of rainfall. Agric. Eng. 1960, 41, 447–449, 455. [Google Scholar]
- Kirkby, M.J. Hillslope process-response models based on the continuity equation. Slopes Form Process 1971, 3, 15–30. [Google Scholar]
- Moeyersons, J.; DePloey, J. Quantitative data on splash erosion simulated on unvegetated slopes. Z. Geomorphol. 1976, 25, 120–131. [Google Scholar]
- Gabriels, D.; Pauwels, J.M.; Deboodt, M. The slope gradient as it affects the amount and size distribution of soil loss material from runoff on silt loam aggregates. Mededelingen Fakulteit Landbouwwetenschappen. State Univ. Ghent. 1975, 40, 1333–1338. [Google Scholar]
- Rudra, R.P.; Guy, B.T.; Dickinson, W.T.; Sohrabi, T.M. Evaluating shallow overland flow sediment transport capacity mode. In Proceedings of the ASAE Annual Meeting. American Society of Agricultural and Biological Engineers 2007, Minneapolis, MI, USA, 17–20 June 2007; p. 1. [Google Scholar] [CrossRef]
Slope (°) | Relationships between Dr and I | R2 |
---|---|---|
0 | Dr = 0.2074 I + 6.534 | 0.94 |
5 | Dr = 0.2446 I + 2.7014 | 0.93 |
10 | Dr = 0.2686 I + 0.6791 | 0.97 |
15 | Dr = 0.2942 I − 1.6732 | 0.99 |
20 | Dr = 0.2824 I + 0.113 | 0.99 |
Rainfall Intensity (mm h−1) | Relationships between Dr and S | R2 |
---|---|---|
60 | Dr = 0.0335 S + 15.154 | 0.08 |
84 | Dr = −0.1961 S + 26.426 | 0.87 |
108 | Dr = 0.0517 S + 30.663 | 0.59 |
132 | Dr = 0.2588 S + 34.358 | 0.96 |
156 | Dr = 0.2848 S + 37.535 | 0.94 |
Slope (°) | Relationships between Tr and I | R2 |
---|---|---|
0 | Tr = 0.0208 I − 1.3535 | 0.76 |
5 | Tr = 0.0391 I − 0.6287 | 0.93 |
10 | Tr = 0.0508 I + 0.0593 | 0.96 |
15 | Tr = 0.0982 I − 2.0908 | 0.99 |
20 | Tr = 0.1087 I − 0.6044 | 0.99 |
Rainfall Intensity (mm h−1) | Relationships between Tr and S | R2 |
---|---|---|
60 | Tr = 0.3113 S − 0.3819 | 0.99 |
84 | Tr = 0.3813 S + 0.7962 | 0.98 |
108 | Tr = 0.4566 S + 1.4564 | 0.99 |
132 | Tr = 0.6532 S + 0.7817 | 0.99 |
156 | Tr = 0.7395 S + 1.606 | 0.99 |
I (mm/h) | D50 (mm) | V (m/s) | KE (J) |
---|---|---|---|
60 | 1.83 | 6.65 | 7.09 × 10−6 |
84 | 1.89 | 6.83 | 8.24 × 10−6 |
108 | 1.96 | 6.88 | 9.34 × 10−6 |
132 | 1.7 | 6.25 | 5.02 × 10−6 |
156 | 1.68 | 6.19 | 4.75 × 10−6 |
Parameter | Dr | Tr | ||
---|---|---|---|---|
r | p | r | p | |
I | 0.973 | <0.01 | 0.489 | <0.05 |
S | 0.068 | >0.05 | 0.822 | <0.01 |
D50 | −0.546 | <0.01 | −0.302 | >0.05 |
V | −0.642 | <0.01 | −0.346 | >0.05 |
KE | −0.529 | <0.01 | −0.293 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Du, F.; Cheng, X.; Qi, X.; Wang, N.; Shen, N.; Ma, C.; Wang, Z. Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil. Land 2024, 13, 189. https://doi.org/10.3390/land13020189
Liu J, Du F, Cheng X, Qi X, Wang N, Shen N, Ma C, Wang Z. Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil. Land. 2024; 13(2):189. https://doi.org/10.3390/land13020189
Chicago/Turabian StyleLiu, June, Fangyue Du, Xike Cheng, Xiaoqian Qi, Ning Wang, Nan Shen, Chunyan Ma, and Zhanli Wang. 2024. "Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil" Land 13, no. 2: 189. https://doi.org/10.3390/land13020189
APA StyleLiu, J., Du, F., Cheng, X., Qi, X., Wang, N., Shen, N., Ma, C., & Wang, Z. (2024). Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil. Land, 13(2), 189. https://doi.org/10.3390/land13020189