Projections of Land Use Change and Water Supply–Demand Assessment Based on Climate Change and Socioeconomic Scenarios: A Case Study of Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
- (1)
- The data used for the SSP-RCP scenarios include future climate, population, and GDP data. The latest version of the NASA Global Daily Downscaled Projections (NEX-GDDP-CMIP6) dataset is the data source for future climate change in this study. The downscaled products are generated using the Bias Correction and Spatial Disaggregation (BCSD) method at a spatial resolution of 0.25° × 0.25° [38]. The data required for calculating future potential evapotranspiration in water yield predictions include precipitation (pr), average temperature (tas), maximum temperature (tasmax), minimum temperature (tasmin), wind speed (sfcWind), shortwave solar radiation (rsds), and surface relative humidity (hurs). The consistency of the first variable level “r1i1p1f1” is ensured, and a total of 16 models are available, as detailed in Table 2. At the same time, in order to reduce the uncertainty from individual models, the equal-weighted average of the 16 models is used [25,39].
- (2)
- The data used in the SD model include land use data, socioeconomic data, and climate data.
- (3)
- The data used in the PLUS model include land use data and driving factor data. This study utilized 16 land use change driving factors, including elevation, slope, average annual temperature, average annual precipitation, population density, GDP, soil type, distance to arterial roads, distance to railways, distance to train stations, distance to governments, distance to highways, distance to primary roads, distance to secondary roads, distance to tertiary roads, and distance to water.
- (4)
- The data used for water yield simulation and water demand calculation in the InVEST model include soil types, potential evapotranspiration, population, GDP, and water resource data. The soil type, population, and GDP data used are the same as those used in the PLUS model.
Category | Data | Period | Rources |
---|---|---|---|
Physical geographic data | Land use | 2000, 2010, 2020 | National Catalogue Service For Geographic Information (https://www.webmap.cn/mapDataAction.do?method=globalLandCover, accessed on 2 March 2023) |
Digital elevation model (DEM) | – | Geospatial Data Cloud (https://www.gscloud.cn/sources/index?pid=302, accessed on 2 March 2023) | |
Soil | 2013 | Food and Agriculture Organization of the United Nations Harmonized World Soil Database v 1.2 (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 8 June 2022) | |
Distance to arterial roads | 2020 | OpenStreetMap (https://www.openstreetmap.org, accessed on 8 June 2022) (https://download.geofabrik.de/, accessed on 15 October 2022) | |
Distance to railways | 2020 | ||
Distance to train stations | 2020 | ||
Distance to governments | 2020 | ||
Distance to highways | 2020 | ||
Distance to primary roads | 2020 | ||
Distance to secondary roads | 2020 | ||
Distance to tertiary roads | 2020 | ||
Distance to water | 2020 | ||
Meteorological factors | 2000~2020 | National Meteorological Science Data Center (http://data.cma.cn/, accessed on 5 January 2021) | |
Monthly potential evapotranspiration | 2000~2020 | National Earth System Science Data Center (http://www.geodata.cn, accessed on 5 January 2021) | |
NEX-GDDP-CMIP6 database | 2020~2050 | NASA Center for Climate Simulation (https://portal.nccs.nasa.gov/datashare/nexgddp_cmip6/, accessed on 17 December 2022) | |
Socioeconomic data | Statistical data (GDP&Population) | 2000~2020 | Guizhou Statistical Yearbook (https://www.guizhou.gov.cn/zwgk/zfsj/tjnj/, accessed on 7 July 2023) |
Population projection | 2020~2050 | Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100 [40] | |
GDP Projections | 2020~2050 | Gridded GDP Projections Compatible with the Five SSPs (Shared Socioeconomic Pathways) [41] | |
Population raster data | 2020 | WORLDPOP (https://www.worldpop.org/, accessed on 5 November 2023) | |
GDP raster data | 2019 | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 5 November 2023) | |
Per capita household water consumption | 2000~2020 | Guizhou Provincial Water Resources Bulletin (http://mwr.guizhou.gov.cn/, accessed on 7 July 2023) | |
Water consumption per 10,000 yuan GDP | 2000~2020 | ||
Per mu farmland irrigation consumption | 2000~2020 |
Model | Institution/Country | Variant |
---|---|---|
ACCESS-CM2 | CSIRO-ARCCSS/Australia | r1i1p1f1 |
ACCESS-ESM1-5 | CSIRO/Australia | r1i1p1f1 |
CanESM5 | CCCma/Canada | r1i1p1f1 |
CMCC-ESM2 | CMCC/Italy | r1i1p1f1 |
EC-Earth3 | EC-Earth-Consortium/European countries | r1i1p1f1 |
EC-Earth3-Veg-LR | EC-Earth-Consortium/European countries | r1i1p1f1 |
GFDL-ESM4 | NOAA-GFDL/USA | r1i1p1f1 |
INM-CM4-8 | INM/Russia | r1i1p1f1 |
INM-CM5-0 | INM/Russia | r1i1p1f1 |
KACE-1-0-G | NIMS-KMA/South Korea | r1i1p1f1 |
MPI-ESM1-2-HR | MPI-M/Germany | r1i1p1f1 |
MPI-ESM1-2-LR | MPI-M/Germany | r1i1p1f1 |
MRI-ESM2-0 | MRI/Japan | r1i1p1f1 |
NorESM2-LM | NCC/Norway | r1i1p1f1 |
NorESM2-MM | NCC/Norway | r1i1p1f1 |
TaiESM1 | AS-RCEC/Taiwan, China | r1i1p1f1 |
2.3. Methods
2.3.1. Research Framework
2.3.2. SSP-RCP Scenarios
2.3.3. SD Model
2.3.4. PLUS Model
2.3.5. InVEST Water Yield Model
2.3.6. Water Demand Calculation
2.3.7. Matching Relationship between Water Supply and Demand
3. Results
3.1. Land Use Change in the Study Area
3.2. Simulation of the Future Land Use Change
3.2.1. Accuracy Validation of SD-PLUS Model
3.2.2. Prediction of Land Use Demand and Simulation of the Future Distribution of Land Use
3.3. Assessment of Water Supply–Demand under Future Scenarios
3.3.1. Water Supply and Spatiotemporal Changes
3.3.2. Water Demand and Spatiotemporal Changes
3.4. Matching Relationship between Supply and Demand
4. Discussion
4.1. Changes in the Land Use and Water Supply–Demand under Different Future Scenarios
4.2. Water Supply–Demand Mismatch under Different Scenarios
4.3. Suggestions of Water Resource Utilization and Management
4.4. Strengths and Limitations
5. Conclusions
- (1)
- Over the past 20 years, the area of both artificial surfaces and water bodies in Guizhou Province has increased significantly; wetlands and grasslands have decreased significantly; and cultivated land, forest, and shrubland have decreased slightly. Due to the significant spatial heterogeneity in Guizhou Province, socioeconomic development and climate change are both influencing land use changes. Under the SSP126 scenario, the overall artificial surfaces in the study area expands towards cultivated land and shrubland, while the rapid expansion of forest towards grassland is mainly concentrated in the southwestern region. The trend of land use change in the SSP245 scenario is similar to that in the SSP126 scenario, but there is a significant increase in forest, especially in the northeastern region. Under the SSP585 scenario, the artificial surfaces in the central region rapidly expands towards cultivated land and grassland, while cultivated land in the southeastern region expands rapidly towards forest, and the water bodies also increases significantly compared to the current situation.
- (2)
- From 2020 to 2050, under the three scenarios, the water yield in Guizhou Province is expected to slightly increase by about 5.22–11.88%, while the water demand will significantly increase by about 29.45–58.84%. The water shortage area is projected to increase by approximately 2708.94–9084.40 km2, and the extent of the shortage will expand by about 23.71–79.50%. The impact of socioeconomic development on the growth of water demand is significant, and climate and land use changes may exacerbate the spatiotemporal heterogeneity of water supply–demand. Under different SSP scenarios, Guizhou Province exhibits complex spatiotemporal patterns in terms of water supply–demand, with a spatial mismatch between water supply and demand.
- (3)
- According to the predictions based on the SSP-RCP scenarios, future climate change, socioeconomic development, and land use changes collectively exacerbate the imbalance between water supply and demand. Even in the water-rich areas of Guizhou, there is still a risk of localized water scarcity. Based on the framework proposed in this study, future research should continue to refine methods and models for assessing supply and demand, as well as strengthen research in the area of climate change and socioeconomic development on land use and water supply–demand. In addition, in the context of rapid socioeconomic development, reasonable control of urban expansion and population growth, adjusting land use types, appropriately controlling the expansion of artificial surfaces, strengthening the intensive use of artificial surfaces in built-up areas, maintaining the area of cultivated land, and optimizing the spatial allocation of water resources are essential to effectively alleviate the shortage of water supply–demand in the province.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.W.; Yang, Y.T.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Miralles-Wilhelm, F. Water is the middle child in global climate policy. Nat. Clim. Chang. 2021, 12, 110–112. [Google Scholar] [CrossRef]
- Yoon, J.; Klassert, C.; Selby, P.; Lachaut, T.; Knox, S.; Avisse, N.; Harou, J.; Tilmant, A.; Klauer, B.; Mustafa, D.; et al. A coupled human–natural system analysis of freshwater security under climate and population change. Proc. Natl. Acad. Sci. USA 2021, 118, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Li, L.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.X.; Li, T.; Ren, F.; Li, M.Y. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Wu, J.Y.; Luo, J.G.; Zhang, H.; Qin, S.; Yu, M.J. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Chen, D.S.; Li, J.; Yang, X.N.; Zhou, Z.X.; Pan, Y.Q.; Li, M.C. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed. Ecosyst. Serv. 2020, 43, 101117. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Lin, J.Y.; Huang, J.L.; Prell, C.; Bryan, B.A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 2021, 763, 143012. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.L.; Deng, L.L.; Yin, J.B.; Pan, Z.K.; He, S.K.; Li, Q.X. Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China. Sci. Rep. 2021, 11, 7879. [Google Scholar] [CrossRef]
- Abungba, J.A.; Adjei, K.A.; Gyamfi, C.; Odai, S.N.; Pingale, S.M.; Khare, D. Implications of Land Use/Land Cover Changes and Climate Change on Black Volta Basin Future Water Resources in Ghana. Sustainability 2022, 14, 12383. [Google Scholar] [CrossRef]
- Li, L.; He, C.Y.; Li, J.W.; Zhang, J.X.; Li, J. The supply and demand of water-related ecosystem services in the Asian water tower and its downstream area. Sci. Total Environ. 2023, 887, 164205. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Luo, Y.; Zhao, C.J. Effects of Climate and Land-Use Change on the Supply and Demand Relationship of Water Provision Services in the Yellow River Basin. Land 2023, 12, 2089. [Google Scholar] [CrossRef]
- Shammout, M.a.W. Calculation and Management of Water Supply and Demand under Land Use/Cover Changes in the Yarmouk River Basin Governorates in Jordan. Land 2023, 12, 1518. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Inam, A. Integrated assessment of localized SSP–RCP narratives for climate change adaptation in coupled human-water systems. Sci. Total Environ. 2022, 823, 153660. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Liu, Z.F.; Wu, J.G.; Pan, X.H.; Fang, Z.H.; Li, J.W.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, R. Climate versus demographic controls on water availability across India at 1.5 °C, 2.0 °C and 3.0 °C global warming levels. Glob. Planet. Chang. 2019, 177, 1–9. [Google Scholar] [CrossRef]
- Nicolaidis Lindqvist, A.; Fornell, R.; Prade, T.; Khalil, S.; Tufvesson, L.; Kopainsky, B. Impacts of future climate on local water supply and demand—A socio-hydrological case study in the Nordic region. J. Hydrol-Reg. Stud. 2022, 41, 101066. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Carter, T.R.; Ebi, K.; Harrison, P.A.; Kemp-Benedict, E.; Kok, K.; Kriegler, E.; Preston, B.L.; Riahi, K.; Sillmann, J.; et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Chang. 2020, 10, 1074–1084. [Google Scholar] [CrossRef]
- Chen, L.; Chang, J.X.; Wang, Y.M.; Guo, A.J.; Liu, Y.Y.; Wang, Q.Q.; Zhu, Y.L.; Zhang, Y.; Xie, Z.Y. Disclosing the future food security risk of China based on crop production and water scarcity under diverse socioeconomic and climate scenarios. Sci. Total Environ. 2021, 790, 148110. [Google Scholar] [CrossRef]
- Liu, X.Q.; Liu, Y.S.; Wang, Y.S.; Liu, Z.J. Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Xu, Z.P.; Li, Y.P.; Huang, G.H.; Wang, S.G.; Liu, Y.R. A multi-scenario ensemble streamflow forecast method for Amu Darya River Basin under considering climate and land-use changes. J. Hydrol. 2021, 598, 126276. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Yang, L.W.; Zhao, J.; Li, Y.Y.; Qi, Y.T.; Ma, X.N.; Cao, L. Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi’an, China. Ecol. Indic. 2023, 147, 110009. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban 2021, 85, 101569. [Google Scholar] [CrossRef]
- Li, D.L.; Wu, S.Y.; Liu, L.B.; Liang, Z.; Li, S.C. Evaluating regional water security through a freshwater ecosystem service flow model: A case study in Beijing-Tianjian-Hebei region, China. Ecol. Indic. 2017, 81, 159–170. [Google Scholar] [CrossRef]
- Pei, H.W.; Liu, M.Z.; Shen, Y.J.; Xu, K.; Zhang, H.J.; Li, Y.L.; Luo, J.M. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Sci. Total Environ. 2022, 809, 151153. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.J.; Peng, J.; Dong, J.Q.; Wang, X.Y.; Ding, Z.H.; Zhang, H.B.; Mao, Q.; Liu, H.Y.; Quine, T.A.; Meersmans, J. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China. Prog. Phys. Geog. 2020, 45, 98–114. [Google Scholar] [CrossRef]
- Chen, H.S.; Fu, Z.Y.; Zhang, W.; Nie, Y.P. Soil water processes and vegetation restoration in karst regions of southwest China. Chin. J. Nat. 2018, 40, 41–46. (In Chinese) [Google Scholar]
- Liu, Z.J.; Li, B.; Chen, M.Y.; Li, T. Evaluation on sustainability of water resource in karst area based on the emergy ecological footprint model and analysis of its driving factors: A case study of Guiyang city, China. Environ. Sci. Pollut. R. 2021, 28, 49232–49243. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Su, W.C.; Zheng, Q.W. Evolution characteristics of water resource ecological footprint of Guizhou province from 2007 to 2016. Bull. Soil Water Conserve. 2019, 39, 227–233. (In Chinese) [Google Scholar]
- Wang, Y.M.; Zhang, Z.X.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Cai, H.Y.; Yang, X.H.; Wang, K.J.; Xiao, L.L. Is Forest Restoration in the Southwest China Karst Promoted Mainly by Climate Change or Human-Induced Factors? Remote Sens. 2014, 6, 9895–9910. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Zhang, Z.M.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.Y.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 1011199. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.L.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.M.; Dong, N.P.; Li, Z.S.; Zhang, W.; Yang, M.X.; Wang, H. Future precipitation, hydrology and hydropower generation in the Yalong River Basin: Projections and analysis. J. Hydrol. 2021, 602, 126738. [Google Scholar] [CrossRef]
- Chen, Y.D.; Guo, F.; Wang, J.C.; Cai, W.J.; Wang, C.; Wang, K.C. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Murakami, D.; Yoshida, T.; Yamagata, Y. Gridded GDP Projections Compatible with the Five SSPs (Shared Socioeconomic Pathways). Front. Built Environ. 2021, 7, 760306. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 Scientific Gaps and Recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Shi, M.J.; Wu, H.Q.; Jiang, P.A.; Zheng, K.; Liu, Z.; Dong, T.; He, P.X.; Fan, X. Food-water-land-ecosystem nexus in typical Chinese dryland under different future scenarios. Sci. Total Environ. 2023, 880, 163183. [Google Scholar] [CrossRef]
- Deng, C.X.; Zhu, D.M.; Nie, X.D.; Liu, C.C.; Zhang, G.Y.; Liu, Y.J.; Li, Z.W.; Wang, S.Y.; Ma, Y.C. Precipitation and urban expansion caused jointly the spatiotemporal dislocation between supply and demand of water provision service. J. Environ. Manag. 2021, 299, 113660. [Google Scholar] [CrossRef] [PubMed]
- Stanford University; University of Minnesota; Chinese Academy of Sciences; The Nature Conservancy; World Wildlife Fund; Stockholm Resilience Centre; the Royal Swedish Academy of Sciences. InVEST 3.14.1. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 14 December 2023).
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Gao, X.R.; Zhao, Q.; Zhao, X.N.; Wu, P.T.; Pan, W.X.; Gao, X.D.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2010; p. 2. [Google Scholar]
- Xiang, H.X.; Zhang, J.; Mao, D.H.; Wang, Z.M.; Qiu, Z.Q.; Yan, H. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Wu, J.S.; Fan, X.N.; Li, K.Y.; Wu, Y.W. Assessment of ecosystem service flow and optimization of spatial pattern of supply and demand matching in Pearl River Delta, China. Ecol. Indic. 2023, 153, 110452. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.S.; Long, X.; Zhang, Q.; Liu, D.S.; Wu, H.J.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F.L.; Chen, Y.; Dai, H.C.; Liu, Z.W.; Fu, B.J. Future water security in the major basins of China under the 1.5 °C and 2.0 °C global warming scenarios. Sci. Total Environ. 2022, 849, 157928. [Google Scholar] [CrossRef] [PubMed]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470–471, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.Y.; Bai, X.Y.; Wang, S.J.; Zhou, D.Q.; Li, Y.; Peng, T.; Tian, Y.C.; Luo, G.J. Major problems and solutions on surface water resource utilisation in karst mountainous areas. Agric. Water Manag. 2015, 159, 55–65. [Google Scholar] [CrossRef]
Type | Area (hm2) | Dynamic Degree (%) | ||||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | |
Cultivated land | 5,948,706.78 | 5,905,757.16 | 5,942,897.28 | −0.0722 | 0.0629 | −0.0049 |
Forest | 8,014,740.12 | 8,127,763.38 | 7,910,406.09 | 0.1410 | −0.2674 | −0.0651 |
Grassland | 3,324,575.34 | 3,247,354.98 | 3,164,876.19 | −0.2323 | −0.2540 | −0.2402 |
Shrubland | 184,335.12 | 189,743.49 | 181,699.65 | 0.2934 | −0.4239 | −0.0715 |
Wetland | 1804.05 | 2256.57 | 785.7 | 2.5084 | −6.5182 | −2.8224 |
Water bodies | 75,463.83 | 65,949.57 | 124,507.08 | −1.2608 | 8.8791 | 3.2495 |
Artificial surfaces | 68,425.47 | 79,225.56 | 292,878.72 | 1.5784 | 26.9677 | 16.4013 |
Land Use Types | Actual Value in 2020 (hm2) | Predicted Value in 2020 (hm2) | Relative Error (%) |
---|---|---|---|
Cultivated land | 5,942,897.28 | 5,821,780.00 | −2.04% |
Forest | 7,910,406.09 | 8,001,714.93 | 1.15% |
Grassland | 3,164,876.19 | 3,188,630.00 | 0.75% |
Shrubland | 181,699.65 | 182,694.00 | 0.55% |
Wetland | 785.70 | 787.78 | 0.26% |
Water bodies | 124,507.08 | 127,541.00 | 2.44% |
Artifial surfaces | 292,878.72 | 294,903.00 | 0.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Weng, Y.; Xiong, K.; Rong, L. Projections of Land Use Change and Water Supply–Demand Assessment Based on Climate Change and Socioeconomic Scenarios: A Case Study of Guizhou Province, China. Land 2024, 13, 194. https://doi.org/10.3390/land13020194
Yuan C, Weng Y, Xiong K, Rong L. Projections of Land Use Change and Water Supply–Demand Assessment Based on Climate Change and Socioeconomic Scenarios: A Case Study of Guizhou Province, China. Land. 2024; 13(2):194. https://doi.org/10.3390/land13020194
Chicago/Turabian StyleYuan, Chengjun, Yingfang Weng, Kangning Xiong, and Li Rong. 2024. "Projections of Land Use Change and Water Supply–Demand Assessment Based on Climate Change and Socioeconomic Scenarios: A Case Study of Guizhou Province, China" Land 13, no. 2: 194. https://doi.org/10.3390/land13020194
APA StyleYuan, C., Weng, Y., Xiong, K., & Rong, L. (2024). Projections of Land Use Change and Water Supply–Demand Assessment Based on Climate Change and Socioeconomic Scenarios: A Case Study of Guizhou Province, China. Land, 13(2), 194. https://doi.org/10.3390/land13020194