Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Syrphid Sampling
2.3. Vegetation Survey
2.4. Statistical Analysis
3. Results
4. Discussion
- Scale and timing of management: The scale and timing of the grassland management practices may have aligned with the life cycle and movement patterns of syrphids. Syrphids have different activity periods [57], migration patterns [58], and breeding requirements [59]. If the grassland management practices consider these factors, it could have limited their extent in influencing syrphid male and female abundance.
- Habitat connectivity: Syrphids often require suitable habitats in close proximity to each other to support their abundance [60,61]. If the grassland management practices create or maintain sufficient linear connectivity between different patches of suitable habitat, then it could have limited the movement and dispersal of syrphid males and females, ultimately equalizing their abundance.
- Resource availability: Grassland management practices can directly influence the availability of resources that syrphids rely on, such as nectar, pollen, and suitable breeding sites [62]. For example, the maintenance of diverse plant communities in extensive grassland could enhance the availability of nectar and pollen resources, benefiting both male and female syrphids and potentially increasing their abundance in nearby intensive grassland.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Syrphid (Male) | ||||
---|---|---|---|---|
Species | Abandoned | Extensive | Intensive | |
1 | Baccha elongata | 1 | ||
2 | Cheilosia bergenstammi | 1 | ||
3 | Cheilosia chrysocoma | 1 | ||
4 | Cheilosia grossa | 1 | ||
5 | Cheilosia impressa | 1 | 1 | |
6 | Cheilosia lasiopa | 1 | ||
7 | Cheilosia latifrons | 1 | ||
8 | Cheilosia nasutula | 1 | ||
9 | Cheilosia soror | 1 | ||
10 | Cheilosia sp. | 2 | 1 | 1 |
11 | Cheilosia variabilis | 1 | ||
12 | Cheilosia vernalis | 5 | 1 | |
13 | Chrysogaster solstitialis | 1 | ||
14 | Chrysotoxum bicinctum | 1 | 2 | |
15 | Chrysotoxum elegans | 1 | ||
16 | Chrysotoxum festivum | 1 | 3 | |
17 | Dasysyrphus albostriatus | 1 | ||
18 | Episyrphus balteatus | 11 | 30 | 9 |
19 | Eristalinus aeneus | 2 | ||
20 | Eristalis arbustorum | 1 | 8 | |
21 | Eristalis nemorum | 1 | ||
22 | Eristalis pertinax | 1 | ||
23 | Eristalis tenax | 19 | 28 | 31 |
24 | Eumerus ornatus | 1 | ||
25 | Eumerus sp. | 1 | ||
26 | Eumerus strigatus | 1 | ||
27 | Eupeodes bucculatus | 2 | ||
28 | Eupeodes corollae | 2 | 7 | 8 |
29 | Eupeodes lapponicus | 3 | 2 | 9 |
30 | Eupeodes latifasciatus | 1 | 1 | |
31 | Eupeodes luniger | 1 | 3 | |
32 | Eupeodes lapponicus | 2 | 3 | 2 |
33 | Leucozona laternaria | 1 | ||
34 | Melanostoma mellinum | 15 | 35 | 39 |
35 | Merodon aberrans | 1 | ||
36 | Myathropa florea | 71 | 80 | 48 |
37 | Neoascia podagrica | 1 | 3 | |
38 | Orthonevra nobilis | 1 | ||
39 | Paragus haemorrhous | 1 | 1 | |
40 | Parasyrphus lineolus | 1 | ||
41 | Pipizella sp. | 8 | ||
42 | Pipizella viduata | 19 | 43 | 29 |
43 | Pipizella viduata | 1 | 2 | 3 |
44 | Pipizella virens | 15 | 42 | 23 |
45 | Platycheirus albimanus | 1 | 1 | 2 |
46 | Platycheirus podagratus | 1 | ||
47 | Platycheirus sp. | 1 | ||
48 | Rhingia campestris | 3 | 1 | |
49 | Scaeva pyrastri | 2 | 2 | |
50 | Scaeva selenitica | 5 | 1 | 6 |
51 | Sphaerophoria batava | 2 | 2 | |
52 | Sphaerophoria interrupta | 6 | 6 | 16 |
53 | Sphaerophoria scripta | 13 | 60 | 34 |
54 | Sphaerophoria taeniata | 6 | 41 | 58 |
55 | Sphegina clunipes | 1 | ||
56 | Syritta pipiens | 13 | 8 | 2 |
57 | Syritta pipiens | 1 | ||
58 | Syrphus ribesii | 2 | 3 | 2 |
59 | Syrphus torvus | 7 | 21 | 17 |
60 | Syrphus vitripennis | 2 | 2 | 4 |
61 | Xanthandrus comtus | 1 | ||
62 | Xanthogramma pedissequum | 1 | ||
63 | Xylota segnis | 3 | 2 | 3 |
Syrphid (Female) | ||||
1 | Baccha elongata | 5 | ||
2 | Brachyopa scutellaris | 1 | ||
3 | Cheilosia albitarsis | 3 | 4 | 1 |
4 | Cheilosia antiqua | 1 | 1 | |
5 | Cheilosia fraterna | 3 | ||
6 | Cheilosia latifrons | 1 | ||
7 | Cheilosia pagana | 2 | ||
8 | Cheilosia sp. | 1 | 2 | 2 |
9 | Chrysogaster solstitialis | 9 | 4 | |
10 | Chrysogaster virescens | 1 | 2 | |
11 | Chrysotoxum bicinctum | 2 | 2 | 3 |
12 | Chrysotoxum cautum | 2 | ||
13 | Chrysotoxum elegans | 1 | ||
14 | Chrysotoxum festivum | 2 | 2 | 2 |
15 | Chrysotoxum octomaculatum | 1 | ||
16 | Didea alneti | 1 | ||
17 | Epistrophe eligans | 1 | ||
18 | Episyrphus balteatus | 29 | 37 | 32 |
19 | Eristalinus aeneus | 3 | ||
20 | Eristalinus sepulchralis | 1 | ||
21 | Eristalis arbustorum | 5 | 6 | 1 |
22 | Eristalis nemorum | 1 | ||
23 | Eristalis pertinax | 1 | ||
24 | Eristalis tenax | 29 | 33 | 27 |
25 | Eumerus tuberculatus | 1 | ||
26 | Eupeodes bucculatus | 1 | 1 | 1 |
27 | Eupeodes corollae | 2 | 2 | 3 |
28 | Eupeodes lapponicus | 4 | 3 | 4 |
29 | Eupeodes latifasciatus | 2 | 1 | |
30 | Eupeodes luniger | 2 | 2 | 2 |
31 | Eupeodes nitens | 1 | ||
32 | Eupeodes lapponicus | 1 | ||
33 | Helophilus hybridus | 1 | ||
34 | Helophilus pendulus | 1 | ||
35 | Helophilus trivittatus | 2 | 2 | |
36 | Melanostoma mellinum | 44 | 107 | 151 |
37 | Melanostoma scalare | 4 | 4 | 8 |
38 | Meligramma cincta | 1 | 1 | |
39 | Myathropa florea | 39 | 23 | 18 |
40 | Neoascia obliqua | 1 | 2 | |
41 | Neoascia podagrica | 1 | 1 | 5 |
42 | Paragus sp. | 6 | 2 | |
43 | Parasyrphus annulatus | 1 | ||
44 | Parasyrphus lineolus | 1 | ||
45 | Philhelius pedissequus | 1 | ||
46 | Pipiza noctiluca | 4 | 1 | 2 |
47 | Pipizella sp. | 1 | ||
48 | Pipizella viduata | 16 | 34 | 22 |
49 | Pipizella viduata | 1 | 1 | 3 |
50 | Pipizella virens | 15 | 19 | 18 |
51 | Platycheirus albimanus | 9 | 9 | 16 |
52 | Platycheirus angustatus | 4 | ||
53 | Platycheirus clypeatus | 1 | 1 | |
54 | Platycheirus scutatus | 1 | ||
55 | Rhingia campestris | 9 | 1 | 2 |
56 | Scaeva pyrastri | 1 | 1 | 2 |
57 | Scaeva selenitica | 3 | 1 | |
58 | Sphaerophoria scripta | 29 | 99 | 94 |
59 | Sphaerophoria taeniata | 2 | ||
60 | Syritta pipiens | 5 | 4 | 5 |
61 | Syrphus ribesii | 2 | 6 | |
62 | Syrphus torvus | 4 | 14 | 23 |
63 | Syrphus vitripennis | 4 | 6 | 6 |
64 | Volucella inanis | 1 | ||
65 | Volucella pellucens | 2 | ||
66 | Xanthogramma laetum | 1 | ||
67 | Xanthogramma pedissequum | 2 | 1 | |
68 | Xylota segnis | 3 | 2 | 1 |
69 | Xylota tarda | 2 | ||
70 | Xylota xanthocnema | 2 | ||
71 | Xylota sylvarum | 1 |
Syrphid (Male) | Df | Sum Sq | R2 | F | p | |
---|---|---|---|---|---|---|
Adonis | Management regimes | 2 | 0.357 | 0.082 | 1.213 | 0.215 |
Residual | 27 | 3.976 | 0.917 | |||
Total | 29 | 4.333 | 1 | |||
Pairwise Adonis | F. Model | R2 | p | Adjusted p | ||
abandoned × extensive | 1.016 | 0.053 | 0.449 | 1 | ||
abandoned × intensive | 1.431 | 0.073 | 0.127 | 0.381 | ||
extensive × intensive | 1.162 | 0.06 | 0.318 | 0.954 | ||
Syrphid (Female) | ||||||
Adonis | Management regimes | 2 | 0.445 | 0.102 | 1.533 | 0.033 |
Residual | 27 | 3.919 | 0.897 | |||
Total | 29 | 4.364 | 1 | |||
Pairwise Adonis | F. Model | R2 | p | Adjusted p | ||
abandoned × extensive | 1.906 | 0.095 | 0.008 | 0.024 | ||
abandoned × intensive | 1.681 | 0.085 | 0.048 | 0.144 | ||
extensive × intensive | 0.841 | 0.044 | 0.621 | 1 |
References
- Lemaire, G.; Hodgson, J.; Chabbi, A. Grassland Productivity and Ecosystem Services; CABI: Wallingford, UK, 2011. [Google Scholar]
- Díaz, S.M.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Eurostat. Share of Main Land Types in Utilised Agricultural Area (UAA) by NUTS 2 Regions; Eurostat: Luxembourg, 2020. [Google Scholar]
- EuroStat. Permanent Grassland. 2019. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Permanent_grassland (accessed on 1 December 2023).
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Baumbach, H.; Gockel, S.; Hemp, A.; Schöning, I.; Wells, K.; Buscot, F.; et al. Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic Appl. Ecol. 2023, 14, 126–136. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.C.; Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 2016, 540, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Van Swaay, C.A.; Dennis, E.B.; Schmucki, R.; Sevilleja, C.; Balalaikins, M.; Botham, M.; Bourn, N.; Brereton, T.; Cancela, J.P.; Carlisle, B.; et al. The EU Butterfly Indicator for Grassland Species: 1990–2017; Technical Report; Natural Environment Research Council (NERC): Swindon, UK, 2019. [Google Scholar]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Melo, F.P.; Pinto, S.R.; Brancalion, P.H.; Castro, P.S.; Rodrigues, R.R.; Aronson, J.; Tabarelli, M. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environ. Sci. Policy 2013, 33, 395–404. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Aune, S.; Bryn, A.; Hovstad, K.A. Loss of semi-natural grassland in a boreal landscape: Impacts of agricultural intensification and abandonment. J. Land Use Sci. 2018, 13, 375–390. [Google Scholar] [CrossRef]
- Pellaton, R.; Lellei-Kovács, E.; Báldi, A. Cultural ecosystem services in European grasslands: A systematic review of threats. Ambio 2022, 51, 2462–2477. [Google Scholar] [CrossRef]
- Uchida, K.; Koyanagi, T.F.; Matsumura, T.; Koyama, A. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands. J. Environ. Manag. 2018, 218, 622–629. [Google Scholar] [CrossRef]
- Guariento, E.; Rüdisser, J.; Fiedler, K.; Paniccia, C.; Stifter, S.; Tappeiner, U.; Seeber, J.; Hilpold, A. From diverse to simple: Butterfly communities in South Tyrol erode from extensive grasslands to intensively used farmland and urban areas. Biodivers. Conserv. 2023, 32, 867–882. [Google Scholar] [CrossRef]
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Solascasas, P.; Azcárate, F.M.; Hevia, V. Edaphic arthropods as indicators of the ecological condition of temperate grassland ecosystems: A systematic review. Ecol. Indic. 2022, 142, 109277. [Google Scholar] [CrossRef]
- Uhler, J.; Redlich, S.; Zhang, J.; Hothorn, T.; Tobisch, C.; Ewald, J.; Thorn, S.; Seibold, S.; Mitesser, O.; Morinière, J.; et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 2021, 12, 5946. [Google Scholar] [CrossRef]
- Kaiser, W.; Avenant, N.L.; Haddad, C.R. Assessing the ecological integrity of a grassland ecosystem: The applicability and rapidity of the SAGraSS method. Afr. J. Ecol. 2009, 47, 308–317. [Google Scholar] [CrossRef]
- Jernej, I.; Bohner, A.; Walcher, R.; Hussain, R.I.; Arnberger, A.; Zaller, J.G.; Frank, T. Impact of land-use change in mountain semi-dry meadows on plants, litter decomposition and earthworms. Web Ecol. 2019, 19, 53–63. [Google Scholar] [CrossRef]
- Batary, P.; Baldi, A.; Sarospataki, M.; Kohler, F.; Verhulst, J.; Knop, E.; Herzog, F.; Kleijn, D. Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric. Ecosyst. Environ. 2010, 136, 35–39. [Google Scholar] [CrossRef]
- Alison, J.; Botham, M.; Maskell, L.C.; Garbutt, A.; Seaton, F.M.; Skates, J.; Smart, S.M.; Thomas, A.R.; Tordoff, G.; Williams, B.L.; et al. Woodland, cropland and hedgerows promote pollinator abundance in intensive grassland landscapes, with saturating benefits of flower cover. J. Appl. Ecol. 2022, 59, 342–354. [Google Scholar] [CrossRef]
- Hussain, R.I.; Ablinger, D.; Starz, W.; Friedel, J.K.; Frank, T. Is the Abandonment of Organic Grassland a Threat to Alpine Insect Diversity? Land 2023, 12, 867. [Google Scholar] [CrossRef]
- Olfert, O.; Weiss, R.M.; Giffen, D.; Vankosky, M.A. Modeling ecological dynamics of a major agricultural pest insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A cohort-based approach incorporating the effects of weather on grasshopper development and abundance. J. Econ. Entomol. 2021, 114, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Soler, R.; Erb, M.; Kaplan, I. Long distance root–shoot signalling in plant–insect community interactions. Trends Plant Sci. 2013, 18, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Takahashi, S.; Shinohara, T.; Ushimaru, A. Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agric. Ecosyst. Environ. 2016, 221, 156–162. [Google Scholar] [CrossRef]
- Kleijn, D.; Van Langevelde, F. Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl. Ecol. 2006, 7, 201–214. [Google Scholar] [CrossRef]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
- Gutiérrez, Y.; Fresch, M.; Hellmann, S.L.; Hankeln, T.; Scherber, C.; Brockmeyer, J. A multifactorial proteomics approach to sex-specific effects of diet composition and social environment in an omnivorous insect. Ecol. Evol. 2021, 11, 8623–8639. [Google Scholar] [CrossRef]
- Murphy, S.M.; Richards, L.A.; Wimp, G.M. Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol. 2020, 8, 93. [Google Scholar] [CrossRef]
- Tregenza, T.; Niemelä, P.T.; Rodríguez-Muñoz, R.; Hopwood, P.E. Environment and mate attractiveness in a wild insect. Behav. Ecol. 2022, 33, 999–1006. [Google Scholar] [CrossRef]
- Di Giulio, M.; Edwards, P.J.; Meister, E. Enhancing insect diversity in agricultural grasslands: The roles of management and landscape structure. J. Appl. Ecol. 2001, 38, 310–319. [Google Scholar] [CrossRef]
- Nordström, K.; Barnett, P.D.; de Miguel, I.M.M.; Brinkworth, R.S.; O’Carroll, D.C. Sexual dimorphism in the hoverfly motion vision pathway. Curr. Biol. 2008, 18, 661–667. [Google Scholar] [CrossRef]
- Sjödin, N.E.; Bengtsson, J.; Ekbom, B. The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J. Appl. Ecol. 2008, 45, 763–772. [Google Scholar] [CrossRef]
- Sommaggio, D.; Zanotelli, L.; Vettorazzo, E.; Burgio, G.; Fontana, P. Different Distribution Patterns of Hoverflies (Diptera: Syrphidae) and Bees (Hymenoptera: Anthophila) Along Altitudinal Gradients in Dolomiti Bellunesi National Park (Italy). Insects 2022, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Möhl, P.; von Büren, R.S.; Hiltbrunner, E. Growth of alpine grassland will start and stop earlier under climate warming. Nat. Commun. 2022, 13, 7398. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.I.; Walcher, R.; Brandl, D.; Arnberger, A.; Zaller, J.G.; Frank, T. Efficiency of two methods of sampling used to assess the abundance and species diversity of adult Syrphidae (Diptera) in mountainous meadows in the Austrian and Swiss Alps. Eur. J. Entomol. 2018, 115, 150–156. [Google Scholar] [CrossRef]
- Miličić, M.; Vujić, A.; Cardoso, P. Effects of climate change on the distribution of hoverfly species (Diptera: Syrphidae) in Southeast Europe. Biodivers. Conserv. 2018, 27, 1173–1187. [Google Scholar] [CrossRef]
- Stubbs, A. British Hoverflies: An Illustrated Identification Guide; British Entomological & Natural History Society: Wokingham, UK, 1983. [Google Scholar]
- Veen, M.P.V. Hoverflies of Northwest Europe: Identification Keys to the Syrphidae; KNNV Publishing: Utrecht, The Netherlands, 2010. [Google Scholar]
- Hussain, R.I.; Walcher, R.; Vogel, N.; Krautzer, B.; Rasran, L.; Frank, T. Effectiveness of flowers strips on insect’s restoration in intensive grassland. Agric. Ecosyst. Environ. 2023, 348, 108436. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kleiber, C.; Zeileis, A. Applied Econometrics with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Korner-Nievergelt, F.; Roth, T.; Von Felten, S.; Gu’elat, J.; Almasi, B.; KornerNievergelt, P. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Harrison, X.A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baud-Bovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S.; et al. Car: Companion to Applied Regression, R-Package 3.0-8, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2020. [Google Scholar]
- Leyer, I.; Wesche, K. Multivariate Statistik in der Ökologie: Eine Einführung; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Boetzl, F.A.; Schuele, M.; Krauss, J.; Steffan-Dewenter, I. Pest control potential of adjacent agri-environment schemes varies with crop type and is shaped by landscape context and within-field position. J. Appl. Ecol. 2020, 57, 1482–1493. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (Ver. v3.1.1). 2018. Available online: http://www.R-project.org (accessed on 2 February 2023).
- Zuur, A.F.; Ieno, E.N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 2016, 7, 636–645. [Google Scholar] [CrossRef]
- Walcher, R.; Hussain, R.I.; Karrer, J.; Bohner, A.; Brandl, D.; Zaller, J.G.; Arnberger, A.; Frank, T. Effects of management cessation on hoverflies (Diptera: Syrphidae) across Austrian and Swiss mountain meadows. Web Ecol. 2020, 20, 143–152. [Google Scholar] [CrossRef]
- Hussain, R.I.; Walcher, R.; Brandl, D.; Jernej, I.; Arnberger, A.; Zaller, J.G.; Frank, T. Influence of abandonment on syrphid assemblages in mountainous meadows. J. Appl. Entomol. 2018, 142, 450–456. [Google Scholar] [CrossRef]
- Ekroos, J.; Kleijn, D.; Batáry, P.; Albrecht, M.; Báldi, A.; Blüthgen, N.; Knop, E.; Kovács-Hostyánszki, A.; Smith, H.G. High land-use intensity in grasslands constrains wild bee species richness in Europe. Biol. Conserv. 2020, 241, 108255. [Google Scholar] [CrossRef]
- Davis, A.E.; Bickel, D.J.; Saunders, M.E.; Rader, R. Crop-pollinating D iptera have diverse diets and habitat needs in both larval and adult stages. Ecol. Appl. 2023, 33, e2859. [Google Scholar] [CrossRef] [PubMed]
- Wotton, K.R.; Gao, B.; Menz, M.H.; Morris, R.K.; Ball, S.G.; Lim, K.S.; Reynolds, D.R.; Hu, G.; Chapman, J.W. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 2019, 29, 2167–2173. [Google Scholar] [CrossRef]
- Nicholas, S.; Thyselius, M.; Holden, M.; Nordström, K. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. 2018, 135, e57711. [Google Scholar]
- Moquet, L.; Laurent, E.; Bacchetta, R.; Jacquemart, A.L. Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at the landscape and local scales. Insect Conserv. Divers. 2018, 11, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.I.; Brandl, M.; Maas, B.; Krautzer, B.; Frank, T.; Moser, D. Establishing new grasslands on crop fields: Short-term development of plant and arthropod communities. Restor. Ecol. 2022, 30, e13641. [Google Scholar] [CrossRef]
- Schirmel, J.; Albrecht, M.; Bauer, P.M.; Sutter, L.; Pfister, S.C.; Entling, M.H. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. J. Appl. Ecol. 2018, 55, 1747–1758. [Google Scholar] [CrossRef]
- Blaix, C.; Anna-Camilla, M. The influence of field margin characteristics on syrphid abundance. Arthropod-Plant Interact. 2023, 17, 31–42. [Google Scholar] [CrossRef]
- Hussain, R.I.; Brandl, M.; Maas, B.; Rabl, D.; Walcher, R.; Krautzer, B.; Entling, M.H.; Moser, D.; Frank, T. Re-established grasslands on farmland promote pollinators more than predators. Agric. Ecosyst. Environ. 2021, 319, 107543. [Google Scholar] [CrossRef]
- Ganuza, C.; Redlich, S.; Uhler, J.; Tobisch, C.; Rojas-Botero, S.; Peters, M.K.; Zhang, J.; Benjamin, C.S.; Englmeier, J.; Ewald, J.; et al. Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Sci. Adv. 2022, 8, eabm9359. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.C., Jr.; Silveira, M.L. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
- Gonzalez, N.; Fauteux, A.; Louis, J.C.; Buitenhuis, R.; Lucas, E. Oviposition Preference of the American Hoverfly, Eupeodes americanus, between Banker Plants and Target Crops. Insects 2023, 14, 295. [Google Scholar] [CrossRef]
- Klecka, J.; Hadrava, J.; Biella, P.; Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, 6, e6025. [Google Scholar] [CrossRef]
- Stanton, C.; Starek, M.J.; Elliott, N.; Brewer, M.; Maeda, M.M.; Chu, T. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. J. Appl. Remote Sens. 2017, 11, 026035. [Google Scholar] [CrossRef]
- Almohamad, R.; Verheggen, F.; Haubruge, É. Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): A review. Biotechnol. Agron. Soc. 2009, 13, 467–481. [Google Scholar]
- Swacha, G.; Botta-Dukát, Z.; Kącki, Z.; Pruchniewicz, D.; Żołnierz, L. The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS ONE 2018, 13, e0197363. [Google Scholar] [CrossRef]
- Carroll, T.; Stafford, R.; Gillingham, P.K.; Bullock, J.M.; Brown, D.; Brown, M.; Walls, R.M.; Diaz, A. Correlated biodiversity change between plant and insect assemblages resurveyed after 80 years across a dynamic habitat mosaic. Ecol. Evol. 2023, 13, e10168. [Google Scholar] [CrossRef]
- Parrish, J.A.D.; Bazzaz, F.A. Difference in pollination niche relationships in early and late successional plant communities. Ecol. 1979, 60, 597–610. [Google Scholar] [CrossRef]
- Thomas, J.A.; Edwards, M.; Simcox, D.J.; Powney, G.D.; August, T.A.; Isaac, N.J. Recent trends in UK insects that inhabit early successional stages of ecosystems. Biol. J. Linn. Soc. 2015, 115, 636–646. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
Syrphid (Male) | Estimate | Std. Error | z | p | 95% CI | ||
---|---|---|---|---|---|---|---|
abundance | GLMM | abandoned (Intercept) | 1.009 | 0.114 | 8.796 | <0.001 | 2.19–3.44 |
extensive | 0.462 | 0.148 | 3.109 | 0.002 | 1.19–2.13 | ||
intensive | 0.422 | 0.154 | 2.743 | 0.006 | 1.13–2.06 | ||
Dispersion | 0.96 | R2m | 0.057 | R2c | 0.726 | ||
Tukey’s post hoc pairwise comparisons | extensive × abandoned | 0.462 | 0.148 | 3.109 | 0.005 | ||
intensive × abandoned | 0.422 | 0.154 | 2.743 | 0.016 | |||
intensive × extensive | −0.039 | 0.144 | −0.273 | 0.959 | |||
richness | |||||||
GLMM | abandoned (Intercept) | 0.886 | 0.103 | 8.592 | <0.001 | 1.98–2.97 | |
extensive | 0.489 | 0.131 | 3.s718 | <0.001 | 1.26–2.11 | ||
intensive | 0.493 | 0.135 | 3.652 | <0.001 | 1.26–2.13 | ||
Dispersion | 1.277 | R2m | 0.116 | R2c | 0.406 | ||
Tukey’s post hoc pairwise comparisons | extensive × abandoned | 0.489 | 0.131 | 3.718 | <0.001 | ||
intensive × abandoned | 0.493 | 0.135 | 3.652 | <0.001 | |||
intensive × extensive | 0.003 | 0.123 | 0.03 | 0.999 | |||
Syrphid (Female) | |||||||
abundance | GLMM | abandoned (Intercept) | 1.259 | 0.098 | 12.822 | <0.001 | 2.91–4.27 |
extensive | 0.341 | 0.13 | 2.626 | 0.009 | 1.09–1.82 | ||
intensive | 0.305 | 0.129 | 2.357 | 0.018 | 1.05–1.75 | ||
Dispersion | 0.99 | R2m | 0.044 | R2c | 0.619 | ||
Tukey’s post hoc pairwise comparisons | extensive × abandoned | 0.341 | 0.13 | 2.626 | 0.023 | ||
intensive × abandoned | 0.305 | 0.129 | 2.357 | 0.048 | |||
intensive × extensive | −0.036 | 0.123 | −0.296 | 0.953 | |||
richness | |||||||
GLMM | abandoned (Intercept) | 1.212 | 0.085 | 14.239 | <0.001 | 2.85–3.97 | |
extensive | 0.255 | 0.112 | 2.266 | 0.023 | 1.04–1.61 | ||
intensive | 0.241 | 0.112 | 2.151 | 0.032 | 1.02–1.59 | ||
Dispersion | 1.18 | R2m | 0.038 | R2c | 0.311 | ||
Tukey’s post hoc pairwise comparisons | extensive × abandoned | 0.255 | 0.112 | 2.266 | 0.061 | ||
intensive × abandoned | 0.241 | 0.112 | 2.151 | 0.079 | |||
intensive × extensive | −0.014 | 0.107 | −0.134 | 0.99 |
Syrphid (Male) | Estimate | Std. Error | z | p | 95% CI | |||
---|---|---|---|---|---|---|---|---|
abundance | (Intercept) | 0.977513 | 0.194999 | 5.013 | <0.001 | 1.81–3.90 | ||
Flower cover | 0.046236 | 0.009983 | 4.631 | <0.001 | 1.03–1.07 | |||
Plant height | 0.003303 | 0.002554 | 1.293 | 0.196 | 1.00–1.01 | |||
R2m | 0.121 | R2c | 0.193 | Dispersion | 0.9784 | VIF | 1.003 | |
richness | (Intercept) | 0.776352 | 0.141685 | 5.479 | <0.001 | 1.65–2.87 | ||
Flower cover | 0.030096 | 0.007167 | 4.199 | <0.001 | 1.02–1.05 | |||
Plant height | 0.001823 | 0.001883 | 0.968 | 0.333 | 1.00–1.01 | |||
R2m | 0.099 | R2c | 0.162 | Dispersion | 0.9572 | VIF | 1.005 | |
Syrphid (Female) | ||||||||
abundance | (Intercept) | 1.170764 | 0.139302 | 8.405 | <0.001 | 2.45–4.24 | ||
Flower cover | 0.039004 | 0.006846 | 5.697 | <0.001 | 1.03–1.05 | |||
Plant height | 0.005217 | 0.001911 | 2.73 | 0.006 | 1.00–1.01 | |||
R2m | 0.172 | R2c | 0.232 | Dispersion | 1.006 | VIF | 1.001 | |
richness | (Intercept) | 0.834297 | 0.127584 | 6.539 | <0.001 | 1.79–2.96 | ||
Flower cover | 0.024706 | 0.005777 | 4.277 | <0.001 | 1.01–1.04 | |||
Plant height | 0.00496 | 0.00155 | 3.201 | 0.001 | 1.00–1.01 | |||
R2m | 0.139 | R2c | 0.1975 | Dispersion | 0.906 | VIF | 1.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, R.I.; Ablinger, D.; Starz, W.; Friedel, J.K.; Frank, T. Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group. Land 2024, 13, 201. https://doi.org/10.3390/land13020201
Hussain RI, Ablinger D, Starz W, Friedel JK, Frank T. Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group. Land. 2024; 13(2):201. https://doi.org/10.3390/land13020201
Chicago/Turabian StyleHussain, Raja Imran, Daniela Ablinger, Walter Starz, Jürgen Kurt Friedel, and Thomas Frank. 2024. "Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group" Land 13, no. 2: 201. https://doi.org/10.3390/land13020201
APA StyleHussain, R. I., Ablinger, D., Starz, W., Friedel, J. K., & Frank, T. (2024). Understanding the Dynamics of Sex-Specific Responses Driven by Grassland Management: Using Syrphids as a Model Insect Group. Land, 13(2), 201. https://doi.org/10.3390/land13020201