Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review
Abstract
:1. Introduction
2. Review of Existing DSS Tools for Tree Selection and Plantations
2.1. Review of the Existing Literature
2.2. Methods
2.3. Results
3. The Need for an Ecosystem-Services-Focused DSS
4. Proposed Use of DNN in DSS for Tree Selection/Plantation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- IPCC 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 16 December 2023).
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M. Forest contribution to climate change mitigation: Management oriented to carbon capture and storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef]
- Yang, H.; Ciais, P.; Frappart, F.; Li, X.; Brandt, M.; Fensholt, R.; Fan, L.; Saatchi, S.; Besnard, S.; Deng, Z.; et al. Global increase in biomass carbon stoc dominated by growth of northern young forests over past decade. Nat. Geosci. 2023, 16, 886–892. [Google Scholar] [CrossRef]
- Poch, M.; Comas, J.; Rodriguez-Roda, I.; Sanchez-Marri, M.; Cortes, U. Ten years of experience in Designing and Building real Environmental Decision Support Systems. In Proceedings of the What Have We Learnt?—1st International Congress on Environmental Modelling and Software, Lugano, Switzerland, 24–27 June 2002; p. 168. Available online: https://scholarsarchive.byu.edu/iemssconference/2002/all/168 (accessed on 10 December 2023).
- Prince, S.; Safriel, U. Land use and degradation in a desert margin: The Northern Negev. Remote Sens. 2021, 13, 2884. [Google Scholar] [CrossRef]
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, T.P.; Linkov, I. Application of multi criteria decision analysis in environmental decision making. Integr. Environ. Assess. Manag. 2009, 1, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Vihervaara, P.; Marjokorpi, A.; Kumpula, T.; Walls, M.; Kamppinen, M. Ecosystem services of fast-growing tree plantations: A case study on integrating social valuations with land-use changes in Uruguay. For. Policy Econ. 2012, 14, 58–68. [Google Scholar] [CrossRef]
- Muller, R.; Turner, R. The influence of project managers on project success by type of project. Eur. Manag. J. 2007, 25, 298–309. [Google Scholar] [CrossRef]
- Veldman, J.W.; Overbeck, G.E.; Negreiros, D.; Mahy, G.; Le Stradic, S.; Fernandes, G.W.; Durigan, G.; Buisson, E.; Putz, F.E.; Bond, W.J. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 2015, 65, 1011–1018. [Google Scholar] [CrossRef]
- Lanza, K.; Stone, B., Jr. Climate adaptation in cities: What trees are suitable for urban heat management? Landsc. Urban Plan. 2016, 153, 74–82. [Google Scholar] [CrossRef]
- Kourtz, P. Artificial intelligence: A new tool for forest management. Can. J. For. Res. 1990, 20, 428–437. [Google Scholar] [CrossRef]
- Silvestro, D.; Goria, S.; Sterner, T.; Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 2022, 5, 415–424. [Google Scholar] [CrossRef]
- Mason, E.G. Planning forest establishment operations with a computerised decision-support system: A case study analysis of decision-making over a full rotation. NZJ For. Sci 1996, 26, 222–234. [Google Scholar]
- Randall, T.A.; Churchill, C.J.; Baetz, B.W. A GIS-based decision support system for neighbourhood greening. Environ. Plan. B Plan. Des. 2003, 30, 541–563. [Google Scholar] [CrossRef]
- Kirnbauer, M.C.; Kenney, W.A.; Churchill, C.J.; Baetz, B.W. A prototype decision support system for sustainable urban tree planting programs. Urban For. Urban Green. 2009, 8, 3–19. [Google Scholar] [CrossRef]
- McGee, J.A., III; Day, S.D.; Wynne, R.H.; White, M.B. Using geospatial tools to assess the urban tree canopy: Decision support for local governments. J. For. 2012, 110, 275–286. [Google Scholar] [CrossRef]
- McVicar, T.R.; Li, L.; Van Niel, T.G.; Zhang, L.; Li, R.; Yang, Q.; Zhang, X.P.; Mu, X.M.; Wen, Z.M.; Liu, W.Z.; et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manag. 2007, 251, 65–81. [Google Scholar] [CrossRef]
- Saksa, T.; Uusitalo, J.; Lindeman, H.; Häyrynen, E.; Kulju, S.; Huuskonen, S. Decision support tool for tree species selection in forest regeneration based on harvester data. Forests 2021, 12, 1329. [Google Scholar] [CrossRef]
- Tyndall, J. Prairie and Tree Planting Tool—PT 2 (1.0): A Conservation Decision Support Tool for Iowa, USA. Agrofor. Syst. 2021, 96, 49–64. [Google Scholar] [CrossRef]
- Tabassum, S.; Beaumont, L.J.; Shabani, F.; Staas, L.; Griffiths, G.; Ossola, A.; Leishman, M.R. Which Plant Where: A Plant Selection Tool for Changing Urban Climates. Arboric. Urban For. 2023, 49, 190–210. [Google Scholar] [CrossRef]
- Bentrup, G.; Dosskey, M.G. Tree Advisor: A Novel Woody Plant Selection Tool to Support Multifunctional Objectives. Land 2022, 11, 397. [Google Scholar] [CrossRef]
- White, M.R.; Langenheim, N. A spatio-temporal decision support system for designing with street trees. In Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 533–560. [Google Scholar]
- Werbin, Z.R.; Heidari, L.; Buckley, S.; Brochu, P.; Butler, L.J.; Connolly, C.; Bloemendaal, L.H.; McCabe, T.D.; Miller, T.K.; Hutyra, L.R. A tree-planting decision support tool for urban heat mitigation. PLoS ONE 2020, 15, e0224959. [Google Scholar] [CrossRef]
- Bonannella, C.; Hengl, T.; Heisig, J.; Parente, L.; Wright, M.N.; Herold, M.; De Bruin, S. Forest tree species distribution for Europe 2000–2020: Mapping potential and realized distributions using spatiotemporal machine learning. PeerJ 2022, 10, e13728. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Plant-Best: A novel plant selection tool for slope protection. Ecol. Eng. 2017, 106, 154–173. [Google Scholar] [CrossRef]
- Ellis, E.A.; Nair, P.K.R.; Linehan, P.E.; Beck, H.W.; Blanche, C.A. A GIS-based database management application for agroforestry planning and tree selection. Comput. Electron. Agric. 2000, 27, 41–55. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Taedoumg, H.; Briers, S.; Gutiérrez-Miranda, C.E.; Alcázar-Caicedo, C.; Lindau, A.; Kpoumie, H.M.; Vincenti, B.; Kettle, C.; et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate-resilient restoration of tropical forest landscapes. J. Appl. Ecol. 2022, 59, 664–679. [Google Scholar] [CrossRef]
- Vogt, J.; Gillner, S.; Hofmann, M.; Tharang, A.; Dettmann, S.; Gerstenberg, T.; Schmidt, C.; Gebauer, H.; Van de Riet, K.; Berger, U.; et al. Citree: A database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 2017, 157, 14–25. [Google Scholar] [CrossRef]
- Nowak, D.J.; Maco, S.; Binkley, M.J.A.C. i-Tree: Global tools to assess tree benefits and risks to improve forest management. Arboric. Consult. 2018, 51, 10–13. [Google Scholar]
- Van der Wolf, J.; Jassogne, L.; Gram, G.I.L.; Vaast, P. Turning local knowledge on agroforestry into an online decision-support tool for tree selection in smallholder’s farms. Exp. Agric. 2019, 55, 50–66. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Dupras, J. Increasing functional diversity of the urban canopy for climate resilience: Potential tradeoffs with ecosystem services? Urban For. Urban Green. 2021, 58, 126972. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Cavender-Bares, J.M.; Nelson, E.; Meireles, J.E.; Lasky, J.R.; Miteva, D.A.; Nowak, D.J.; Pearse, W.D.; Helmus, M.R.; Zanne, M.E.; Fagan, W.F.; et al. The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US. PLOS Sustain. Transform. 2022, 1, e0000010. [Google Scholar] [CrossRef]
- Marais, Z.E.; Baker, T.P.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A natural capital approach to agroforestry decision-making at the farm scale. Forests 2019, 10, 980. [Google Scholar] [CrossRef]
- Barth, N.C.; Döll, P. Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosyst. Serv. 2016, 21, 39–52. [Google Scholar] [CrossRef]
- Quirogaa, V.M.; Kurea, S.; Udoa, K.; Manoa, A. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua 2016, 3, 25–33. [Google Scholar] [CrossRef]
- Anderson, P.H.; Pezeshki, S.R. Effects of flood pre-conditioning on responses of three bottomland tree species to soil waterlogging. J. Plant Physiol. 2001, 158, 227–233. [Google Scholar] [CrossRef]
- Kreuzwieser, J.; Fürniss, S.; Rennenberg, H. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ. 2002, 25, 1039–1049. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2020, 168, 106490. [Google Scholar] [CrossRef]
- Yosef, R.; Rakholia, S.; Mehta, A.; Bhatt, A.; Kumbhojkar, S. Land Surface temperature regulation ecosystem service: A case study of Jaipur, India, and the urban island of Jhalana Forest Reserve. Forests 2022, 13, 1821. [Google Scholar] [CrossRef]
- Sahdev, S.; Yosef, R.; Rakholia, S.; Mehta, A.; Yadav, N. Bidecadal Analysis of Ecosystem Services and Urbanization Effects in the Western Himalayas: A Case Study from Haldwani, Uttarakhand. Remote Sens. Appl. Soc. Environ. 2023. accepted for publication. [Google Scholar]
- Rasul, A.; Balzter, H.; Smith, C. Applying a normalized ratio scale technique to assess influences of urban expansion on land surface temperature of the semi-arid city of Erbil. Int. J. Remote Sens. 2017, 38, 3960–3980. [Google Scholar] [CrossRef]
- Johnson, D.P.; Stanforth, A.; Lulla, V.; Luber, G. Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- Menon, J.S.; Sharma, R. Nature-based solutions for co-mitigation of air pollution and urban heat in Indian cities. Front. Sustain. Cities 2021, 3, 705185. [Google Scholar] [CrossRef]
- Kowarik, I. The Mediterranean tree Acer manspessulanum invades urban green spaces in Berlin. Dendrobiology 2023, 89, 20–26. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Davison, A.; Daniels, G.D. Resident attitudes towards trees influence the planting and removal of different types of trees in eastern Australian cities. Landsc. Urban Plan. 2012, 107, 147–158. [Google Scholar] [CrossRef]
- Pukkala, T.; Kellomäki, S. Anticipatory vs adaptive optimization of stand management when tree growth and timber prices are stochastic. For. Int. J. For. Res. 2012, 85, 463–472. [Google Scholar] [CrossRef]
- Nath, P.C.; Nath, A.J.; Sileshi, G.W.; Das, A.K. Growth and Coppicing Ability of the Critically Endangered Agarwood (Aquilaria malaccensis Lam.) Tree in Monoculture and Polyculture in North East India. J. Sustain. For. 2022, 42, 947–959. [Google Scholar] [CrossRef]
- Yahya, M.S.; Syafiq, M.; Ashton-Butt, A.; Ghazali, A.; Asmah, S.; Azhar, B. Switching from monoculture to polyculture farming benefits birds in oil palm production landscapes: Evidence from mist netting data. Ecol. Evol. 2017, 7, 6314–6325. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.; Boddeker, H.; Albrecht, A.; Saha, S. Drought tolerance differs between urban tree species but is not affected by the intensity of traffic pollution. Trees 2023, 37, 111–131. [Google Scholar] [CrossRef]
- Henderson, A.F.; Santoro, J.A.; Kremer, P. Impacts of spatial scale and resolution on species distribution models of American chestnut (Castanea dentata) in Pennsylvania, USA. For. Ecol. Manag. 2023, 529, 120741. [Google Scholar] [CrossRef]
- Nitoslawski, S.A.; Galle, N.J.; Van Den Bosch, C.K.; Steenberg, J.W. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- de Lima Araújo, H.C.; Martins, F.S.; Cortese, T.T.P.; Locosselli, G.M. Artificial intelligence in urban forestry—A systematic review. Urban For. Urban Green. 2021, 66, 127410. [Google Scholar] [CrossRef]
- Cheng, X.; Doosthosseini, A.; Kunkel, J. Improve the deep learning models in forestry based on explanations and expertise. Front. Plant Sci. 2022, 13, 902105. [Google Scholar] [CrossRef] [PubMed]
- Altalak, M.; Ammad Uddin, M.; Alajmi, A.; Rizg, A. Smart agriculture applications using deep learning technologies: A survey. Appl. Sci. 2022, 12, 5919. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Luo, M. A deep neural network-based decision support system for intelligent geospatial data analysis in intelligent agriculture system. Soft Comput. 2022, 26, 10813–10826. [Google Scholar] [CrossRef]
- Araujo, S.O.; Peres, R.S.; Filipe, L.; Manta-Costa, A.; Lidon, F.; Ramalho, J.C.; Barata, J. Intelligent data-driven decision support for agricultural systems-ID3SAS. IEEE Access 2023, 11, 115798–115815. [Google Scholar] [CrossRef]
- Rew, J.; Cho, Y.; Hwang, E. A robust prediction model for species distribution using bagging ensembles with deep neural networks. Remote Sens. 2021, 13, 1495. [Google Scholar] [CrossRef]
- Deneu, B.; Servajean, M.; Bonnet, P.; Botella, C.; Munoz, F.; Joly, A. Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Comput. Biol. 2021, 17, e1008856. [Google Scholar] [CrossRef]
- Unawong, W.; Yaemphum, S.; Nathalang, A.; Chen, Y.; Domec, J.-C.; Torngern, P. Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand. Sci. Rep. 2022, 12, 6882. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, H.; Dong, X.; Wang, X.; Liu, M.; Zhang, Y.; Zhang, Y.; Huang, J.; Dong, S.; Xiao, R. Understanding and Applications of Tensors in Ecosystem Services: A Case Study of the Manas River Basin. Land 2023, 12, 454. [Google Scholar] [CrossRef]
- Ciaburro, G.; Venkateswaran, B. Neural Networks with R: Smart Models Using CNN, RNN, Deep Learning, and Artificial Intelligence Principles; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Zaccone, G.; Karim, M.R. Deep Learning with TensorFlow: Explore Neural Networks and Build Intelligent Systems with Python; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Vasilev, I.; Slater, D.; Spacagna, G.; Roelants, P.; Zocca, V. Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with Pytorch, Keras, and TensorFlow; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Rothman, D. Transformers for Natural Language Processing: Build Innovative Deep Neural Network Architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and More; Packt Publishing Ltd.: Birmingham, UK, 2021. [Google Scholar]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021. [Google Scholar]
- Singh, P.; Manure, A. Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python; Apress: New York, NY, USA, 2019. [Google Scholar]
- Pally, R.J.; Samadi, S. Application of image processing and convolutional neural networks for flood image classification and semantic segmentation. Environ. Model. Softw. 2022, 148, 105285. [Google Scholar] [CrossRef]
- Truong, T.X.; Nhu, V.H.; Phuong, D.T.N.; Nghi, L.T.; Hung, N.N.; Hoa, P.V.; Bui, D.T. A New Approach Based on TensorFlow Deep Neural Networks with ADAM Optimizer and GIS for Spatial Prediction of Forest Fire Danger in Tropical Areas. Remote Sens. 2023, 15, 3458. [Google Scholar] [CrossRef]
- Bhullar, A.; Nadeem, K.; Ali, R.A. Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Sci. Rep. 2023, 13, 6823. [Google Scholar] [CrossRef]
- Osah, S.; Acheampong, A.A.; Fosu, C.; Dadzie, I. Deep learning model for predicting daily IGS zenith tropospheric delays in West Africa using TensorFlow and Keras. Adv. Space Res. 2021, 68, 1243–1262. [Google Scholar] [CrossRef]
DSS Name (Provisional) | Software/Language/Framework | Objective Type | Reference | |
---|---|---|---|---|
1 | Knowledge-based DSS | Prolog | Forest plantation DSS | [13] |
2 | Prototype Decision Support System | SMODT; ArcTrees; Treemodules | Visual Basic Analysis (VBA) | Urban tree plantation suitability | [15] |
3 | ReVegIH Decision Support Tool | C#, Visual Basic, C++, .NET | Tree species selection with ecohydrological modelling | [17] |
4 | Prototype Decision Support System (Randall) | ArcView GIS Extension|Avenue | Neighborhood greening | [14] |
5 | Decision Support Tool—Precision Forestry | HprAnalys, ArcGIS, Motti stand simulator | Tree species selection with stand dynamics | [18] |
6 | Virginia UTC Assessment Process | ERDAS; ISODATA | Object-oriented classification of urban tree canopy analysis | [16] |
7 | Right Place, Right Tree—Boston | R packages—shinydashboard; leaflet; tigris; DT | Tree plantation DSS for UHI mitigation | [23] |
8 | Which Plant Where? | Python; Django; PostgreSQL | Plant selection tool for climate resilience and sustainability | [20] |
9 | Tree Advisor USDA | MySQL; Drupal | Woody plant selection tool for multifunctional objectives | [21] |
10 | Plant-Best | R | Plant selection tool for slope protection | [25] |
11 | Spatio-Temporal Decision Support System for Street Trees | QGIS/ArcGIS; exlevel GrowFX; Autodesk; AutoCAD; ForestPro | Detailed 3D trees for urban design | [22] |
12 | Florida Agroforestry Decision Support System (FADSS) | Delphi; SQL | Agroforestry planning and tree selection | [26] |
13 | PT2 (Prairie and Tree Planting Tool) | HTML; CSS; Javascript | Prairie and tree planting selection and financial cost estimation | [19] |
14 | Diversity for Restoration (D4R) | JavaScript, Python, and R. | Ecosystem restoration and agroforestry | [27] |
15 | Citree | PHP; MariaDB server | Tree selection for urban areas in temperate climate | [28] |
16 | i-tree USDA | Java; Javascript; Python | Multi-module suite for urban tree structures and ecosystem service evaluation | [29] |
17 | Unique DSS for Agroforestry Systems | R; HTML | Decision support tool for coffee and cocoa agroforestry systems | [30] |
# | DSS | CR | I/SO | AF | ES | US | Ecosystem Services |
---|---|---|---|---|---|---|---|
1 | Knowledge-based DSS | No | No | Yes | No | No | - |
2 | Prototype Decision Support System | No | Yes | No | No | Yes | - |
3 | ReVegIH Decision Support Tool | Yes | No | Yes | No | No | - |
4 | Prototype Decision Support System (Randall) | No | Yes | No | No | Yes | - |
5 | Decision Support Tool—Precision Forestry | No | Yes | Yes | No | No | - |
6 | Virginia UTC Assessment Process | No | Yes | No | Yes | Yes | Air quality; flood mitigation; UHI mitigation |
7 | Right Place, Right Tree—Boston | No | No | No | Yes | Yes | UHI mitigation |
8 | Which Plant Where? | Yes | Yes | No | No | Yes | - |
9 | Tree Advisor USDA | No | No | Yes | Yes | No | Extensive ecosystem services |
10 | Plant-Best | Yes | Yes | No | Yes | No | Slope protection (landslide prevention) |
11 | Spatio-Temporal Decision Support System for Street Trees | No | Yes | No | No | Yes | - |
12 | Florida Agroforestry Decision Support System (FADSS) | Yes | Yes | Yes | Yes | No | Runoff reduction; erosion control; timber provisioning, etc. |
13 | PT2 (Prairie and Tree Planting Tool) | No | Yes | Yes | Yes | No | Biodiversity (wildlife and pollinator habitat); water quality |
14 | Diversity for Restoration (D4R) | Yes | No | Yes | Yes | No | Extensive ecosystem services |
15 | Citree | Yes | Yes | No | Yes | Yes | Air quality; bird feeding; provisioning (honey and edibles) |
16 | i-tree | Yes | No | Yes | Yes | Yes | Air quality; runoff reduction; Carbon sequestration; Cooling effect, etc. |
17 | Unique Decision Support Tool for Cocoa and Coffee | No | No | Yes | Yes | No | Microclimate buffering; soil fertility; pest/weed suppression; provisioning (timber, food and fuelwood), etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, N.; Rakholia, S.; Yosef, R. Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review. Land 2024, 13, 230. https://doi.org/10.3390/land13020230
Yadav N, Rakholia S, Yosef R. Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review. Land. 2024; 13(2):230. https://doi.org/10.3390/land13020230
Chicago/Turabian StyleYadav, Neelesh, Shrey Rakholia, and Reuven Yosef. 2024. "Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review" Land 13, no. 2: 230. https://doi.org/10.3390/land13020230
APA StyleYadav, N., Rakholia, S., & Yosef, R. (2024). Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review. Land, 13(2), 230. https://doi.org/10.3390/land13020230