Exploring the Ecological Effects of Rural Land Use Changes: A Bibliometric Overview
Abstract
:1. Introduction
- (1)
- What are the trends in the production of relevant literature in this field?
- (2)
- How are academic journals, authors, research countries, and institutions in this field of research developing?
- (3)
- How have the research focal points and topics within this field progressed and advanced?
- (4)
- What are the ecological impacts of changing land use in rural areas?
- (5)
- What are the prospects for future directions of research in this field?
2. Data Sources and Methods
2.1. Data Sources
2.2. Methods
3. Results of the Bibliometric Analysis
3.1. Quantitative Analysis of the Literature
3.2. Analysis of Journals
3.3. Analysis of Key Researchers, Institutions, and Countries
3.3.1. Analysis of Key Researchers
3.3.2. Analysis of the Main Countries and Institutions
3.4. Keyword Analysis
3.4.1. Analysis of High-Frequency Keywords
3.4.2. Co-Occurrence Network Analysis of High-Frequency Keywords
3.5. Analysis of the Evolution of Research Hotspots
4. Review of the Ecological Effects of Rural Land Use Changes
4.1. Urbanization and Rural Land Use Change
4.1.1. Linkages between Urbanization and Rural Land Use Change
4.1.2. Protection of Cultivated Land in the Process of Urbanization
4.2. Ecological Impacts of Rural Land Use Change
4.2.1. Impact of Rural Land Use Change on the Soil Environment
4.2.2. Impact of Rural Land Use Change on the Water Environment
4.2.3. Impact of Rural Land Use Change on Biodiversity
4.2.4. Impact of Rural Land Use Change on Climate Change
4.3. Global Innovations in Sustainable Land Use: Benefiting Rural Areas
4.3.1. Green Infrastructure Integration
4.3.2. Green Space Management
4.3.3. Climate Change Adaptation
4.3.4. Agricultural Policy
4.4. Future Research Directions
4.5. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change, and Forestry. Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dale, V.H.; Brown, S.; Haeuber, R.A.; Hobbs, N.T.; Huntly, N.; Naiman, R.J.; Riebsame, W.E.; Turner, M.G.; Valone, T.J. Ecological Principles and Guidelines for Managing the Use of Land. Ecol. Appl. 2000, 10, 639–670. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Change Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.J.; Zhu, F.; Sun, Z.L.; Moore, J.C.; Cui, X.F. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective. Int. J. Environ. Res. Public Health 2016, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ding, T.H.; Chen, J.Y.; Xue, S.; Zhou, Q.; Wang, Y.D.; Wang, Y.X.; Huang, Z.D.; Yang, S.L. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Chiarella, C.; Meyfroidt, P.; Abeygunawardane, D.; Conforti, P. Balancing the trade-offs between land productivity, labor productivity and labor intensity. AMBIO 2023, 52, 1618–1634. [Google Scholar] [CrossRef] [PubMed]
- Follmann, A. Geographies of peri-urbanization in the global south. Geogr. Compass 2022, 16, e12650. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Song, Y. Unraveling land system vulnerability to rapid urbanization: An indicator-based vulnerability assessment for Wuhan, China. Environ. Res. 2022, 211, 112981. [Google Scholar] [CrossRef]
- Xuemei, B.; Peijun, S.; Yansui, L. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Li, J. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- Dale, V.; Archer, S.; Chang, M.; Ojima, D. Ecological Impacts and Mitigation Strategies for Rural Land Management. Ecol. Appl. 2005, 15, 1879–1892. [Google Scholar] [CrossRef]
- Tu, S.; Long, H.; Li, T.; Ge, D. The mechanism and models of villages and towns construction and rural development in China. Econ. Geogr. 2015, 35, 141–147. [Google Scholar]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Yusuf, S.; Nabeshima, K.; Ha, W. Income and Health in Cities: The Messages from Stylized Facts. J. Urban Health-Bull. New York Acad. Med. 2007, 84, I35–I41. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Z.; Zhao, J.; Liu, X.; Qiu, M.; Shen, H.; Guillas, S.; Giorio, C.; Staniaszek, Z.; Yu, P.; Wan, M.W.L.; et al. Antagonism between ambient ozone increase and urbanization-oriented population migration on Chinese cardiopulmonary mortality. Innovation 2023, 4, 100517. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Xie, D.; Liao, H.; Tu, B.; Yang, J. Land Use Efficiency and Total Factor Productivity—Distribution Dynamic Evolution of Rural Living Space in Chongqing, China. Sustainability 2017, 9, 444. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, H.X.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. PeerJ 2019, 7, e7665. [Google Scholar] [CrossRef]
- Garden, J.G.; McAlpine, C.A.; Possingham, H.P.; Jones, D.N. Habitat structure is more important than vegetation composition for local-level management of native terrestrial reptile and small mammal species living in urban remnants: A case study from Brisbane, Australia. Austral. Ecol. 2007, 32, 669–685. [Google Scholar] [CrossRef]
- Shan, L.P.; Yu, A.T.W.; Wu, Y.Z. Strategies for risk management in urban-rural conflict: Two case studies of land acquisition in urbanising China. Habitat Int. 2017, 59, 90–100. [Google Scholar] [CrossRef]
- Huang, Y.L. Technology innovation and sustainability: Challenges and research needs. Clean Technol. Environ. Policy 2021, 23, 1663–1664. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, Z.B.; Dong, J.H.; Gao, F.W.; Zhang, W.B.; Gong, W.M. Spatial production or sustainable development? An empirical research on the urbanization of less-developed regions based on the case of Hexi Corridor in China. PLoS ONE 2020, 15, e0235351. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.X.; Wei, H.J.; Xue, D.; Liu, M.X.; Cai, E.X.; Chen, W.Q.; Feng, X.W.; Li, J.W.; Lu, J.; Guo, Y.L. Trade-Off and Projecting Effects of Land Use Change on Ecosystem Services under Different Policies Scenarios: A Case Study in Central China. Int. J. Environ. Res. Public Health 2021, 18, 3552. [Google Scholar] [CrossRef] [PubMed]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Bluethgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, G.; Zhong, P.L.; Wang, Y.X. Integrated assessment of coastal ecological security based on land use change and ecosystem services in the Jiaozhou Bay, Shandong Peninsula, China. J. Appl. Ecol. 2018, 29, 4097–4105. [Google Scholar] [CrossRef]
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Roberts, G.; Dash, J.; Tripathy, S. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef]
- López, S.; Wright, C.; Costanza, P. Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sens. Appl. Soc. Environ. 2017, 8, 291–303. [Google Scholar] [CrossRef]
- Swanepoel, C.M.; van der Laan, M.; Weepener, H.L.; du Preez, C.C.; Annandale, J.G. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutr. Cycl. Agroecosystems 2016, 104, 107–123. [Google Scholar] [CrossRef]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Review: Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2019, 13, 1773–1784. [Google Scholar] [CrossRef]
- Zhao, X.C.; Li, F.S.; Yan, Y.Z.; Zhang, Q. Biodiversity in Urban Green Space: A Bibliometric Review on the Current Research Field and Its Prospects. Int. J. Environ. Res. Public Health 2022, 19, 12544. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.F.A.; dos Santos, J.A.; Franca, L.C.D.; Campoe, O.C.; Altoe, T.F.; Scolforo, J.R.S. Use of the process-based models in forest research: A bibliometric review. Cerne 2021, 27, e-102769. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
- Garfield, E. From the science of science to Scientometrics visualizing the history of science with HistCite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Gagolewski, M. Bibliometric impact assessment with R and the CITAN package. J. Informetr. 2011, 5, 678–692. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Q.; Zhu, Z. Evolutionary Overview of Land Consolidation Based on Bibliometric Analysis in Web of Science from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 3218. [Google Scholar] [CrossRef]
- Li, J.; Song, W. Review of rural settlement research based on bibliometric analysis. Front. Environ. Sci. 2023, 10, 1089438. [Google Scholar] [CrossRef]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Su, H.N.; Lee, P.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Zhang, P.; Xia, L.; Sun, Z.; Zhang, T. Analysis of spatial and temporal changes and driving forces of arable land in the Weibei dry plateau region in China. Sci. Rep. 2023, 13, 20618. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, Y.; Li, J. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural. Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Gu, L.; Yan, J.B.; Li, Y.R.; Gong, Z.W. Spatial-temporal evolution and correlation analysis between habitat quality and landscape patterns based on land use change in Shaanxi Province, China. Ecol. Evol. 2023, 13, e10657. [Google Scholar] [CrossRef]
- Zhao, S.X.; Yin, M.M. Change of urban and rural construction land and driving factors of arable land occupation. PLoS ONE 2023, 18, e0286248. [Google Scholar] [CrossRef]
- Deng, X.; Lin, Y.; Seto, K.C. Land-Use Competition between Food Production and Urban Expansion in China. In Rethinking Global Land Use in an Urban Era; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Wang, L.; Gui, X.; Zheng, Y.; Zhang, H.; Huang, X. Urbanization Effects on Vegetation and Surface Urban Heat Islands in China’s Yangtze River Basin. Remote Sens. 2017, 9, 540. [Google Scholar] [CrossRef]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Shu, N.; Wan, Q.; Huang, Q. Land Use Function Transition and Associated Ecosystem Service Value Effects Based on Production–Living–Ecological Space: A Case Study in the Three Gorges Reservoir Area. Land 2023, 12, 391. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Tang, Z.; Chen, C.; Berry, J. How cropland losses shaped by unbalanced urbanization process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Liu, S.S.; Peng, Y.P.; Xia, Z.Q.; Hu, Y.M.; Wang, G.X.; Zhu, A.X.; Liu, Z.H. The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors 2019, 19, 5127. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kalantari, Z.; Destouni, G. Infectious Disease Sensitivity to Climate and Other Driver-Pressure Changes: Research Effort and Gaps for Lyme Disease and Cryptosporidiosis. GeoHealth 2023, 7, e2022GH000760. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, M.H. The Impact Mechanism and Spillover Effect of Digital Rural Construction on the Efficiency of Green Transformation for Cultivated Land Use in China. Int. J. Environ. Res. Public Health 2022, 19, 16159. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, G.L.; Liu, M.; Li, X.Q.; Wang, L.Q.; Liang, B. Distribution and Contamination Assessment of Soil Heavy Metals in the Jiulongjiang River Catchment, Southeast China. Int. J. Environ. Res. Public Health 2019, 16, 4674. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Li, H.; Chen, C.; Tang, Z.; Zhang, K.; Berry, J. Tracking spatial–temporal landscape changes of impervious surface areas, bare lands, and inundation areas in China during 2001–2017. Land Degrad. Dev. 2019, 30, 1802–1812. [Google Scholar] [CrossRef]
- Song, W.; Liu, M. Farmland Conversion Decreases Regional and National Land Quality in China. Land Degrad. Dev. 2017, 28, 459–471. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Lee, E.; Sagong, J.; Lee, Y. Influence of land use change on the waterbird community of Sihwa Lake, Republic of Korea. Avian Res. 2020, 11, 36. [Google Scholar] [CrossRef]
- Bueno, A.S.; Peres, C.A. The role of baseline suitability in assessing the impacts of land-use change on biodiversity. Biol. Conserv. 2020, 243, 108396. [Google Scholar] [CrossRef]
- Pătru-Stupariu, I.; Hossu, C.A.; Grădinaru, S.R.; Nita, A.; Stupariu, M.-S.; Huzui-Stoiculescu, A.; Gavrilidis, A.-A. A Review of Changes in Mountain Land Use and Ecosystem Services: From Theory to Practice. Land 2020, 9, 336. [Google Scholar] [CrossRef]
- Caulfield, M.E.; Fonte, S.J.; Groot, J.C.J.; Vanek, S.J.; Sherwood, S.; Oyarzun, P.; Borja, R.M.; Dumble, S.; Tittonell, P. Agroecosystem patterns and land management co-develop through environment, management, and land-use interactions. Ecosphere 2020, 11, e03113. [Google Scholar] [CrossRef]
- Fu, B.; Ma, K.; Zhou, H.; Chen, L. The effect of land use structure on the distribution of soil nutrients in the hilly area of the Loess Plateau, China. Chin. Sci. Bull. 1999, 44, 732–736. [Google Scholar] [CrossRef]
- Lal, R.; Mokma, D.; Lowery, B. Relation between soil quality and erosion. In Soil Quality and Soil Erosion; CRC Press: Boca Raton, FL, USA, 1999; pp. 237–258. [Google Scholar]
- Liu, R.; Wang, M.; Chen, W. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc. Urban Plan. 2018, 169, 241–249. [Google Scholar] [CrossRef]
- Shan, Y.J.; Wei, S.K.; Yuan, W.L.; Miao, Y. Evaluation and prediction of land ecological security in Shenzhen based on DPSIR-TOPSIS-GM(1,1) model. PLoS ONE 2022, 17, e0265810. [Google Scholar] [CrossRef] [PubMed]
- Hemkemeyer, M.; Schwalb, S.A.; Heinze, S.; Joergensen, R.G.; Wichern, F. Functions of elements in soil microorganisms. Microbiol. Res. 2021, 252, 126832. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, L.; Zhao, F.; Tang, J.; Bu, Q.; Wang, X.; Yang, L. Effects of Urban–Rural Environmental Gradient on Soil Microbial Community in Rapidly Urbanizing Area. Ecosyst. Health Sustain. 2023, 9, 0118. [Google Scholar] [CrossRef]
- Gao, J.; Wen, Y. Impact of Land Use Change on Runoff of Taihu Basin. Acta Geogr. Sin. 2002, 57, 194–200. [Google Scholar]
- Li, J.; Chen, L.; Guo, X.; Fu, B. Effects of land use structure on non-point source pollution. Chin. Environ. Sci. 2000, 20, 506. [Google Scholar]
- Nunez, S.; Alkemade, R. Exploring interaction effects from mechanisms between climate and land-use changes and the projected consequences on biodiversity. Biodivers. Conserv. 2021, 30, 3685–3696. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Kuang, W.; Ouyang, Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China during 1990–2010. Acta Geogr. Sin. 2014, 69, 1640–1650. [Google Scholar]
- Horak, J.; Peltanova, A.; Podavkova, A.; Safarova, L.; Bogusch, P.; Romportl, D.; Zasadil, P. Biodiversity responses to land use in traditional fruit orchards of a rural agricultural landscape. Agric. Ecosyst. Environ. 2013, 178, 71–77. [Google Scholar] [CrossRef]
- Li, X. Study on Protection Ways of Biodiversity in Rural Environment Construction. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 042020. [Google Scholar] [CrossRef]
- Bonthoux, S.; Barnagaud, J.Y.; Goulard, M.; Balent, G. Contrasting spatial and temporal responses of bird communities to landscape changes. Oecologia 2013, 172, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Kati, V.; Kassara, C.; Vrontisi, Z.; Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 2021, 768, 144471. [Google Scholar] [CrossRef]
- Yan, D.; Schneider, U.A.; Schmid, E.; Huang, H.Q.; Pan, L.; Dilly, O. Interactions between land use change, regional development, and climate change in the Poyang Lake district from 1985 to 2035. Agric. Syst. 2013, 119, 10–21. [Google Scholar] [CrossRef]
- Lindesay, J.A.; Andreae, M.O.; Goldammer, J.G.; Harris, G.; Annegarn, H.J.; Garstang, M.; Scholes, R.J.; van Wilgen, B.W. International geosphere-biosphere programme/international global atmospheric chemistry SAFARI-92 field experiment: Background and overview. J. Geophys. Res. Atmos. 1996, 101, 23521–23530. [Google Scholar] [CrossRef]
- Tzilivakis, J.; Warner, D.J.; Green, A.; Lewis, K.A. Spatial and temporal variability of greenhouse gas emissions from rural development land use operations. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 447–467. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B-Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Alikhanova, S.; Bull, J.W. Review of Nature-based Solutions in Dryland Ecosystems: The Aral Sea Case Study. Environ. Manag. 2023, 72, 457–472. [Google Scholar] [CrossRef]
- Huang, C.; He, H.S.; Liang, Y.; Wu, Z.W. Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing’an Mountains, China. J. Appl. Ecol. 2018, 29, 2088–2100. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Carvalho, S.C.P.; Chiti, T.; Coppola, E.; D’Ascoli, R.; La Mantia, T.; Marzaioli, R.; Mastrocicco, M.; Pulido, F.; Rutigliano, F.A.; et al. Critical range of soil organic carbon in southern Europe lands under desertification risk. J. Environ. Manag. 2021, 287, 112285. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.P.; Fernandes, C.O.; Ahern, J.; Honrado, J.P.; Farinha-Marques, P. Urban ecological novelty assessment: Implications for urban green infrastructure planning and management. Sci. Total Environ. 2021, 773, 145121. [Google Scholar] [CrossRef] [PubMed]
- Anderson, V.; Gough, W.A. Enabling Nature-Based Solutions to Build Back Better-An Environmental Regulatory Impact Analysis of Green Infrastructure in Ontario, Canada. Buildings 2022, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yin, M. Research on Rural Population/Arable Land/Rural Settlements Association Model and Coordinated Development Path: A Case Analysis of the Yellow River Basin (Henan Section). Int. J. Environ. Res. Public Health 2023, 20, 3833. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.B.; Bai, Y.; Alatalo, J.M.; Guo, G.M.; Yang, Z.Q.; Yang, Z.B.; Yang, W. Impacts of urbanization at city cluster scale on ecosystem services along an urban-rural gradient: A case study of Central Yunnan City Cluster, China. Environ. Sci. Pollut. Res. 2022, 29, 88852–88865. [Google Scholar] [CrossRef] [PubMed]
- Peake, L.; Robb, C. Saving the ground beneath our feet: Establishing priorities and criteria for governing soil use and protection. R. Soc. Open Sci. 2021, 8, 201994. [Google Scholar] [CrossRef]
- Snyman, S.; Bricker, K.S. Living on the Edge: Benefit-Sharing from Protected Area Tourism. J. Sustain. Tour. 2019, 27, 705–719. [Google Scholar] [CrossRef]
- Gunson, K.E.; Mountrakis, G.; Quackenbush, L.J. Spatial Wildlife-Vehicle Collision Models: A Review of Current Work and Its Application to Transportation Mitigation Projects. J. Environ. Manag. 2011, 92, 1074–1082. [Google Scholar] [CrossRef]
- Sawaya, M.A.; Kalinowski, S.T.; Clevenger, A.P. Genetic Connectivity for Two Bear Species at Wildlife Crossing Structures in Banff National Park. Proc. R. Soc. B Biol. Sci. 2014, 281, 20131705. [Google Scholar] [CrossRef] [PubMed]
- Zeppel, H. Managing Cultural Values in Sustainable Tourism: Conflicts in Protected Areas. Tour. Hosp. Res. 2010, 10, 93–115. [Google Scholar] [CrossRef]
- Comín, F.A. Planning the Development of Urban and Rural Areas: An Integrative Approach. In Sustainable Cities and Communities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 468–478. [Google Scholar]
- Jun, M.-J. The Effects of Portland’s Urban Growth Boundary on Urban Development Patterns and Commuting. Urban Stud. 2004, 41, 1333–1348. [Google Scholar] [CrossRef]
- Giovannoni, G. Urban Containment Planning: Is It Effective? The Case of Portland, OR. Sustainability 2021, 13, 12925. [Google Scholar] [CrossRef]
- Wani, G.A.; Nagaraj, V. Effect of Sustainable Infrastructure and Service Delivery on Sustainable Tourism: Application of Kruskal Wallis Test (Non-Parametric). Int. J. Sustain. Transp. Technol. 2022, 5, 38–50. [Google Scholar] [CrossRef]
- Marzo-Navarro, M.; Pedraja-Iglesias, M.; Vinzón, L. Sustainability Indicators of Rural Tourism from the Perspective of the Residents. In Tourism and Sustainable Development Goals; Routledge: Abingdon-on-Thames, UK, 2020; pp. 148–164. [Google Scholar]
- de Pádua Andrade, C.O.; Carvalho, R.d.C.R.; Godinho, R.F.; Magri, R.A.F. Elaboração e aplicação de uma rota de trekking em uma área do Parque Nacional da Serra da Canastra. Rev. Bras. Ecotur. (RBEcotur) 2016, 9, 285–317. [Google Scholar] [CrossRef]
- Fifanou, V.G.; Ousmane, C.; Gauthier, B.; Brice, S. Traditional Agroforestry Systems and Biodiversity Conservation in Benin (West Africa). Agrofor. Syst. 2011, 82, 1–13. [Google Scholar] [CrossRef]
- Hidayat, N.; Sianipar, J. The Potential of Agroforestry in Supporting Food Security for Peatland Community–A Case Study in the Kalampangan Village, Central Kalimantan. J. Ecol. Eng. 2021, 22, 123–130. [Google Scholar]
- Uchino, H.; Iwama, K.; Jitsuyama, Y.; Yudate, T.; Nakamura, S. Yield Losses of Soybean and Maize by Competition with Interseeded Cover Crops and Weeds in Organic-Based Cropping Systems. Field Crops Res. 2009, 113, 342–351. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Dick, W.A. No-Tillage Crop Production: A Revolution in Agriculture! Agron. J. 2008, 100, S-153. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European Agroforestry Systems Enhance Biodiversity and Ecosystem Services? A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Fuchs, L.E.; Orero, L.; Ngoima, S.; Kuyah, S.; Neufeldt, H. Asset-Based Adaptation Project Promotes Tree and Shrub Diversity and above-Ground Carbon Stocks in Smallholder Agroforestry Systems in Western Kenya. Front. For. Glob. Change 2022, 4, 773170. [Google Scholar] [CrossRef]
- Du Toit, M.; Du Preez, C.; Cilliers, S. Plant Diversity and Conservation Value of Wetlands along a Rural–Urban Gradient. Bothalia-Afr. Biodivers. Conserv. 2021, 51, 1–18. [Google Scholar] [CrossRef]
- Dumenu, W.K.; Obeng, E.A. Climate Change and Rural Communities in Ghana: Social Vulnerability, Impacts, Adaptations and Policy Implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Beacham, A.M.; Hand, P.; Barker, G.C.; Denby, K.J.; Teakle, G.R.; Walley, P.G.; Monaghan, J.M. Addressing the Threat of Climate Change to Agriculture Requires Improving Crop Resilience to Short-Term Abiotic Stress. Outlook Agric. 2018, 47, 270–276. [Google Scholar] [CrossRef]
- Nkegbe, P.K.; Abu, B.M.; Issahaku, H. Food Security in the Savannah Accelerated Development Authority Zone of Ghana: An Ordered Probit with Household Hunger Scale Approach. Agric. Food Secur. 2017, 6, 35. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Li, X.; Muhammad, A.; Huang, G. Carbon Sequestration of Cropland and Paddy Soils in China: Potential, Driving Factors, and Mechanisms. Greenh. Gases Sci. Technol. 2019, 9, 872–885. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Uriarte, M. Natural Regeneration in the Context of Large-Scale Forest and Landscape Restoration in the Tropics. Biotropica 2016, 48, 709–715. [Google Scholar] [CrossRef]
- Kohlitz, J.; Chong, J.; Willetts, J. Rural Drinking Water Safety under Climate Change: The Importance of Addressing Physical, Social, and Environmental Dimensions. Resources 2020, 9, 77. [Google Scholar] [CrossRef]
- Glendenning, C.; Vervoort, R. Hydrological Impacts of Rainwater Harvesting (RWH) in a Case Study Catchment: The Arvari River, Rajasthan, India: Part 2. Catchment-Scale Impacts. Agric. Water Manag. 2011, 98, 715–730. [Google Scholar] [CrossRef]
- Dosso, F.; Idrissou, L.; Moussa, I.M. Innovativity in Legislative, Political and Organizational Frameworks of Sustainable Land Management in Benin. Asian J. Agric. Ext. Econ. Sociol. 2021, 39, 603–615. [Google Scholar] [CrossRef]
- Donald, P.F.; Green, R.; Heath, M. Agricultural Intensification and the Collapse of Europe’s Farmland Bird Populations. Proc. R. Soc. London. Ser. B Biol. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef]
- Camara, G.; Simoes, R.; Ruivo, H.M.; Andrade, P.R.; Soterroni, A.C.; Ramos, F.M.; Ramos, R.G.; Scarabello, M.; Almeida, C.; Sanches, I.; et al. Impact of Land Tenure on Deforestation Control and Forest Restoration in Brazilian Amazonia. Environ. Res. Lett. 2023, 18, 065005. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Liu, Y.; Wu, J.; Li, W.; Zhou, B. Evidence of Green Space Sparing to Ecosystem Service Improvement in Urban Regions: A Case Study of China’s Ecological Red Line Policy. J. Clean. Prod. 2020, 251, 119678. [Google Scholar] [CrossRef]
Sources | Category | Number of Publications | H-Index |
---|---|---|---|
Sustainability | Environmental Sciences | 59 | 12 |
Land Use Policy | Environmental Studies | 47 | 23 |
Land | Environmental Studies | 46 | 11 |
Ecological Indicators | Environmental Sciences | 37 | 22 |
Science of The Total Environment | Environmental Sciences | 32 | 20 |
Landscape and Urban Planning | Ecology | 28 | 21 |
Journal of Environmental Management | Environmental Sciences | 24 | 15 |
Landscape Ecology | Ecology | 23 | 17 |
Urban Ecosystems | Biodiversity Conservation | 23 | 10 |
International Journal of Environmental Research and Public Health | Environmental Sciences | 21 | 7 |
Country | Number of Publications | Total Citations | Average Article Citations |
---|---|---|---|
China | 345 | 6393 | 18.53 |
USA | 175 | 9783 | 55.90 |
United Kingdom | 67 | 4204 | 62.75 |
Germany | 56 | 2476 | 44.21 |
Brazil | 50 | 796 | 15.92 |
Australia | 43 | 2939 | 68.35 |
Italy | 42 | 1392 | 33.14 |
Spain | 37 | 1160 | 31.35 |
France | 35 | 1427 | 40.77 |
Canada | 30 | 998 | 33.27 |
Affiliation | Number of Publications |
---|---|
Institute of Geographic Sciences and Natural Resources Research, CAS | 59 |
University of Chinese Academy of Sciences | 41 |
Beijing Normal University | 28 |
Chinese Academy of Sciences | 28 |
University of São Paulo | 22 |
Arizona State University | 19 |
Northwest A&F University | 19 |
China University of Geosciences | 18 |
University of Georgia | 18 |
The University of North Carolina at Chapel Hill | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Sun, Q.; Song, W. Exploring the Ecological Effects of Rural Land Use Changes: A Bibliometric Overview. Land 2024, 13, 303. https://doi.org/10.3390/land13030303
Xie H, Sun Q, Song W. Exploring the Ecological Effects of Rural Land Use Changes: A Bibliometric Overview. Land. 2024; 13(3):303. https://doi.org/10.3390/land13030303
Chicago/Turabian StyleXie, Haojun, Quan Sun, and Wei Song. 2024. "Exploring the Ecological Effects of Rural Land Use Changes: A Bibliometric Overview" Land 13, no. 3: 303. https://doi.org/10.3390/land13030303
APA StyleXie, H., Sun, Q., & Song, W. (2024). Exploring the Ecological Effects of Rural Land Use Changes: A Bibliometric Overview. Land, 13(3), 303. https://doi.org/10.3390/land13030303