Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Introduction
2.3. Method of Analysis and Data Processing
2.3.1. Land Use Transition Matrix and Land Use Transition Probability Matrix
2.3.2. Logistic Regression
2.3.3. Data Processing
3. Results
3.1. Characteristics of the LULC in the LMRB
3.2. Regional Differentiation Pattern in the LMRB
3.3. Conversion between Forests and Cultivated Land in the LMRB
3.4. Mechanisms Impacting the Conversion from Cultivated Land to Forests
4. Discussion
4.1. Classification of Countries within the Study Area
4.2. Implications of the Findings for Policy Development
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; He, T.; Guo, X.; Liu, A. Study on Land Degradation Trend by Applying Logistic Multivariate Regression Model in Northwest Region of Beijing. Prog. Geogr. 2005, 24, 25–34+134. [Google Scholar]
- Ge, R.; Ma, C. Analysis on Land Use Change and Driving Factors of Lake Wetland in Arid Plateau. Res. Soil Water 2022, 29, 376–385. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, M.; Xia, B.-C. Spatio-Temporal Dynamics of Ecological Security Pattern of the Pearl River Delta Urban Agglomeration Based on LUCC Simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Li, B.; Bi, J.; Tian, Y. Effects of Land Use Change on Ecosystem Service Value in the Heavy Polluted Area in Taihu Lake Basin. Sci. Geogr. Sin. 2012, 32, 471–476. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Li, S.; Wang, S.; Zhang, X.; Gao, Q. Coastline and Land Use Change Detection and Analysis with Remote Sensing in the Pearl River Estuary Gulf. Sci. Geogr. Sin. 2016, 36, 1903–1911. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Liu, Q.; Wu, Y.; Sun, Q.; Gao, Y. Land Use Structure Optimization Research Based on Nitrogenand Phosphorus Output Risky Control in Small Watershed. Sci. Geogr. Sin. 2013, 33, 1111–1116. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Chen, D.; Duan, Y.; Ji, H.; Zhang, L.; Chai, Q.; Hu, X. Understanding Land Use/Land Cover Dynamics and Impacts of Human Activities in the Mekong Delta over the Last 40 Years. Glob. Ecol. Conserv. 2020, 22, e00991. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Q.; Ding, Z.; Li, C.; Tang, L.; Chen, B. Ecosystem landscape pattern change and its response to climate in desert steppe of Inner Mongolia. Chin. J. Ecol. 2023, 42, 748–758. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, T.; Wang, H.; Sun, Y. Analysis on Spatial Structure of Landuse Change Based on Remote Sensing and Geographical Information System. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S145–S150. [Google Scholar] [CrossRef]
- Hao, B.; Han, X.; Ma, M.; Liu, Y.; Li, S. Research Progress on the Application of Google Earth Engine in Geoscience and Environmental Sciences. Remote Sens. Technol. Appl. 2018, 33, 600–611. [Google Scholar]
- Sang, X.; Guo, Q.; Wu, X.; Fu, Y.; Xie, T.; He, C.; Zang, J. Intensity and Stationarity Analysis of Land Use Change Based on CART Algorithm. Sci. Rep. 2019, 9, 12279. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Chen, D.; Li, W.; Wang, Y. Stability of Landscape Pattern of Land Use:A Case Study of Changde. Sci. Geogr. Sin. 2013, 33, 1484–1488. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Grainger, A. National Land Use Morphology: Patterns and Possibilities. Geography 1995, 80, 235–245. [Google Scholar]
- Liang, Y.; Zeng, J.; Sun, W.; Zhou, K.; Zhou, Z. Expansion of Construction Land along the Motorway in Rapidly Developing Areas in Cambodia. Land Use Policy 2021, 109, 105691. [Google Scholar] [CrossRef]
- He, D.; Jin, F.; Zhou, J. The Changes of Land Use and Landscape Pattern Based on Logistic-CA-Markov Model—A Case Study of Beijing-Tianjin-Hebei Metropolitan Region. Sci. Geogr. Sin. 2011, 31, 903–910. [Google Scholar] [CrossRef]
- Yu, M.; Sun, J.; Yang, W.; Xie, F.; Lyu, J. Evolution of Land Use Degree in Gansu Province Based on Bayesian Hierarchical Spatio-temporal Model. Sci. Geogr. Sin. 2022, 42, 918–925. [Google Scholar] [CrossRef]
- Achard, F.; Beuchle, R.; Mayaux, P.; Stibig, H.; Bodart, C.; Brink, A.; Carboni, S.; Desclée, B.; Donnay, F.; Eva, H.D.; et al. Determination of Tropical Deforestation Rates and Related Carbon Losses from 1990 to 2010. Glob. Change Biol. 2014, 20, 2540–2554. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary Forest Cover Loss in Indonesia over 2000–2012. Nat. Clim. Change 2014, 4, 730–735. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Forests in 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136001-9. [Google Scholar]
- Zeng, Z.; Gower, D.B.; Wood, E.F. Accelerating Forest Loss in Southeast Asian Massif in the 21st Century: A Case Study in Nan Province, Thailand. Glob. Change Biol. 2018, 24, 4682–4695. [Google Scholar] [CrossRef]
- Yun, X.; Tang, Q.; Xu, X.; Zhou, Y.; Liu, X.; Wang, J.; Sun, S. Impact of climate change on water resource cooperation between the upstream and downstream of the Lancang-Mekong River basin. Clim. Change Res. 2020, 16, 555–563. [Google Scholar]
- Zhou, Y.; Li, X.; Liu, Y. Land Use Change and Driving Factors in Rural China during the Period 1995–2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Lazar, M. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Meng, Y.; Pokhrel, Y.; Zhang, H. Basin-Scale High-Resolution Extraction of Drainage Networks Using 10-m Sentinel-2 Imagery. Remote Sens. Environ. 2021, 255, 112281. [Google Scholar] [CrossRef]
- Munia, H.; Guillaume, J.H.A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress. Environ. Res. Lett. 2016, 11, 014002. [Google Scholar] [CrossRef]
- Mora, B.; Romijn, E.; Herold, M. Monitoring Progress towards Sustainable Development Goals. In Proceedings of the 5th GEOSS Science and Technology Stakeholder Workshop—Linking the Sustainable Development Goals to Earth Observations, Models and Capacity Building, Berkeley, CA, USA, 9–10 December 2016. [Google Scholar]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]
- GlobeLand30 Data Platform. Available online: http://www.globallandcover.com (accessed on 2 February 2024).
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting Important Categorical Land Changes while Accounting for Persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Sun, Z.; Scott, I.; Bell, S.; Zhang, X.; Wang, L. Time Distances to Residential Food Amenities and Daily Walking Duration: A Cross-Sectional Study in Two Low Tier Chinese Cities. Int. J. Environ. Res. Public Health 2021, 18, 839. [Google Scholar] [CrossRef]
- Zhou, Z.-R.; Wang, W.-W.; Li, Y.; Jin, K.-R.; Wang, X.-Y.; Wang, Z.-W.; Chen, Y.-S.; Wang, S.-J.; Hu, J.; Zhang, H.-N.; et al. In-Depth Mining of Clinical Data: The Construction of Clinical Prediction Model with R. Ann. Transl. Med. 2019, 7, 796. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Pir Bavaghar, M. Deforestation Modelling Using Logistic Regression and GIS. J. For. Sci. 2015, 61, 193–199. [Google Scholar] [CrossRef]
- Linkie, M.; Smith, R.J.; Leader-Williams, N. Mapping and Predicting Deforestation Patterns in the Lowlands of Sumatra. Biodivers. Conserv. 2004, 13, 1809–1818. [Google Scholar] [CrossRef]
- Press, S.J.; Wilson, S. Choosing between Logistic Regression and Discriminant Analysis. J. Am. Stat. Assoc. 1978, 73, 699–705. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
EV * | FC * | The Meaning of the Variable | Variable Type | Unit |
---|---|---|---|---|
X1 | natural | slope | continuous | degree |
X2 | natural | elevation | continuous | m |
X3 | locational | distance to the nearest main road | continuous | m |
X4 | locational | distance to the nearest tourist attraction | continuous | m |
X5 | locational | distance to nearest town center | continuous | m |
X6 | socio-economic | change in population density | continuous | |
X7 | socio-economic | change in nighttime light | continuous |
Proportion * | |||
---|---|---|---|
2000 | 2010 | 2020 | |
CL | 33.63 | 34.71 | 36.23 |
F | 50.00 | 49.05 | 47.14 |
GL | 12.61 | 12.13 | 10.45 |
SL | 0.54 | 0.70 | 0.68 |
WL | 0.97 | 1.01 | 1.06 |
WB | 1.49 | 1.44 | 1.62 |
AS | 0.47 | 0.54 | 1.07 |
BL | 0.18 | 0.20 | 0.64 |
PSI | 0.12 | 0.23 | 1.12 |
2000 | 2010 | Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CL * | F | GL | SL | WL | WB | AS | BL | PSI | |||
28,409,553 | 40,113,679 | 9,949,944 | 570,273 | 825,300 | 1,174,767 | 439,432 | 155,103 | 172,520 | |||
CL | 27,521,109 | 26,681,996 | 525,545 | 90,944 | 26,453 | 37,304 | 74,815 | 82,657 | 1396 | 0 | 839,113 |
F | 40,887,870 | 1,211,866 | 38,260,549 | 1,058,075 | 195,655 | 53,248 | 75,531 | 25,022 | 5397 | 2529 | 2,627,321 |
GL | 10,337,740 | 229,769 | 1,107,761 | 8,690,976 | 111,523 | 20,359 | 25,830 | 8993 | 28,920 | 113,610 | 1,646,764 |
SL | 440,345 | 14,137 | 141,197 | 49,527 | 234,482 | 7 | 422 | 296 | 270 | 6 | 205,863 |
WL | 793,435 | 59,272 | 8853 | 2802 | 27 | 693,156 | 29,180 | 135 | 10 | 0 | 100,280 |
WB | 1,220,705 | 150,978 | 56,214 | 21,248 | 1420 | 21,084 | 967,220 | 1966 | 334 | 240 | 253,485 |
AS | 387,850 | 60,730 | 3741 | 1104 | 291 | 69 | 1564 | 320,348 | 3 | 0 | 67,502 |
BL | 141,916 | 805 | 3951 | 18,084 | 109 | 74 | 205 | 12 | 116,828 | 1847 | 25,088 |
PSI | 79,601 | 0 | 5869 | 17,184 | 312 | 0 | 0 | 3 | 1946 | 54,288 | 25,313 |
Gain | 1,727,557 | 1,853,130 | 1,258,968 | 335,792 | 132,144 | 207,548 | 119,084 | 38,275 | 118,232 | ||
Net change | 888,444 | −774,191 | −387,796 | 129,929 | 31,864 | −45,937 | 51,582 | 13,187 | 92,919 |
2010 | 2020 | Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CL * | F | GL | SL | WL | WB | AS | BL | PSI | |||
29,637,662 | 38,569,101 | 8,545,321 | 556,399 | 865,043 | 1,321,850 | 875,079 | 520,563 | 919,554 | |||
CL | 28,409,553 | 27,252,609 | 424,081 | 87,564 | 16,709 | 74,808 | 136,630 | 415,178 | 1974 | - | 1,156,944 |
F | 40,113,679 | 1,954,153 | 36,998,930 | 839,098 | 167,693 | 6163 | 88,274 | 41,039 | 16,539 | 1790 | 3,114,749 |
GL | 9,949,944 | 256,249 | 940,373 | 7,507,432 | 60,298 | 1927 | 29,317 | 17,855 | 385,584 | 750,910 | 2,442,512 |
SL | 570,273 | 24,467 | 163,814 | 65,076 | 310,278 | 28 | 4329 | 2083 | 189 | 9 | 259,996 |
WL | 825,300 | 44,085 | 1368 | 1420 | 6 | 760,283 | 17,685 | 441 | 12 | - | 65,016 |
WB | 1,174,767 | 67,443 | 24,981 | 12,425 | 883 | 20,766 | 1,043,590 | 3155 | 1096 | 428 | 131,178 |
AS | 439,432 | 38,560 | 2043 | 1361 | 254 | 174 | 1685 | 395,323 | 30 | - | 44,109 |
BL | 155,103 | 95 | 4931 | 22,381 | 274 | 893 | 256 | 5 | 112,269 | 14,000 | 42,834 |
PSI | 172,520 | - | 8579 | 8565 | 5 | - | 83 | - | 2871 | 152,417 | 20,103 |
Gain | 1,727,557 | 2,385,052 | 1,570,171 | 1,037,890 | 246,121 | 104,759 | 278,260 | 479,756 | 408,295 | ||
Net change | 888,444 | 1,228,109 | −544,578 | −404,623 | −13,875 | 39,743 | 147,082 | 435,647 | 365,460 |
AUC | |||||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | |
I | 0.735 *** | 0.726 *** | 0.608 *** | 0.702 *** | 0.580 *** | 0.417 *** | 0.468 * |
II | 0.669 *** | 0.657 *** | 0.636 *** | 0.669 *** | 0.615 *** | 0.347 *** | 0.420 *** |
Exp (B) | AUC | |||||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | ||
I | 1.061 *** | 1.000 | 4.743 *** | 38.355 *** | 1.000 *** | 0.997 *** | 0.060 *** | 0.782 *** |
II | 1.016 | 1.000 | 3.427 ** | 21.180 *** | 1.000 *** | 0.990 *** | 0.010 *** | 0.749 *** |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | ||
---|---|---|---|---|---|---|---|---|
first decade | X1 | 1 | ||||||
X2 | 0.696 ** | 1 | ||||||
X3 | 0.100 ** | 0.075 ** | 1 | |||||
X4 | 0.458 ** | 0.428 ** | 0.246 ** | 1 | ||||
X5 | −0.006 | −0.152 ** | 0.355 ** | 0.017 | 1 | |||
X6 | −0.173 ** | −0.077 ** | 0.011 | −0.152 ** | −0.072 ** | 1 | ||
X7 | −0.125 ** | −0.060 ** | −0.175 ** | −0.178 ** | −0.134 ** | −0.064 ** | 1 | |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | ||
second decade | X1 | 1 | ||||||
X2 | 0.695 ** | 1 | ||||||
X3 | 0.382 ** | 0.344 ** | 1 | |||||
X4 | 0.212 ** | 0.237 ** | 0.179 ** | 1 | ||||
X5 | 0.094 ** | −0.046 | 0.223 ** | 0.076 ** | 1 | |||
X6 | 0.022 | 0.027 | −0.032 | −0.175 ** | −0.093 ** | 1 | ||
X7 | −0.147 ** | 0.057 * | −0.198 ** | −0.219 ** | −0.185 ** | 0.145 ** | 1 |
Constant | X1 | X3 | X4 | X6 | X7 | OA | ||
---|---|---|---|---|---|---|---|---|
I | Model 1 | −1.851 *** | 0.055 *** | 1.547 *** | 3.611 *** | −0.003 *** | −2.81 *** | 0.714 |
Model 2 | −1.836 *** | 1.4 *** | 4.141 *** | −0.004 *** | −3.211 *** | 0.693 | ||
II | Model 1 | −1.438 *** | 0.026 ** | 1.233 ** | 3.121 *** | −0.01 *** | −4.419 *** | 0.709 |
Model 2 | −1.498 *** | 1.365 *** | 3.113 *** | −0.011 *** | −1.498 *** | 0.694 |
Indicators at Level | 2000–2010 | 2010–2020 | |||||
---|---|---|---|---|---|---|---|
1 | 2 | OR | n | % | OR | n | % |
Slope | Flat slope (Rf) | 1.00 | 1299 | 61.5% | 1.00 | 770 | 64.2% |
Gentle slope | 0.279 *** | 335 | 15.9% | 0.773 | 238 | 19.8% | |
Slope | 1.003 | 304 | 14.4% | 1.578 | 129 | 10.8% | |
Steep slope | 1.812 * | 174 | 8.2% | 1.604 | 63 | 5.3% | |
DNMR | Long distance (Rf) | 1.00 | 690 | 32.7% | 1.00 | 475 | 39.6% |
Middle distance | 2.223 *** | 399 | 18.9% | 1.693 *** | 247 | 20.6% | |
Near Distance | 0.980 | 1023 | 48.4% | 1.711 * | 478 | 39.8% | |
DNTA | Long distance (Rf) | 1.00 | 833 | 39.4% | 1.00 | 484 | 40.3% |
Middle distance | 1.533 *** | 561 | 26.6% | 2.379 *** | 396 | 33.0% | |
Near Distance | 0.816 | 718 | 34.0% | 1.035 | 320 | 26.7% | |
CPD | No growth (Rf) | 1.00 | 1100 | 52.1% | 1.00 | 805 | 67.1% |
Growth | 1.458 *** | 1012 | 47.9% | 2.916 *** | 395 | 32.9% | |
CNL | No enhancement (Rf) | 1.00 | 2030 | 96.1% | 1.00 | 1040 | 86.7% |
Enhancement | 6.420 *** | 82 | 3.9% | 3.062 *** | 160 | 13.3% | |
Total sample size | 2112 | 1200 | |||||
Pseudo R-square | 0.287 | 0.259 |
Condition 1: If the Forests in the Country Are Converted into Cultivated Land the Most. | |||
---|---|---|---|
Yes | No | ||
Condition 2: If the cultivated land in the country is converted into forests the most. | Yes | ||
No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, F.; Liang, Y.; Li, S.; Cheng, Z.; Li, G.; Guo, Z. Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020. Land 2024, 13, 305. https://doi.org/10.3390/land13030305
Lang F, Liang Y, Li S, Cheng Z, Li G, Guo Z. Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020. Land. 2024; 13(3):305. https://doi.org/10.3390/land13030305
Chicago/Turabian StyleLang, Fansi, Yutian Liang, Shangqian Li, Zhaofeng Cheng, Guanfeng Li, and Zijing Guo. 2024. "Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020" Land 13, no. 3: 305. https://doi.org/10.3390/land13030305
APA StyleLang, F., Liang, Y., Li, S., Cheng, Z., Li, G., & Guo, Z. (2024). Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020. Land, 13(3), 305. https://doi.org/10.3390/land13030305