Impacts of Climate Change and Human Activity on Lakes around the Depression of Great Lakes in Mongolia
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources
3.2. Water Extraction and Processing
- (1)
- Data preprocessing
- (2)
- Water body identification rules
- (3)
- Accuracy verification
3.3. Methods for Attributing Inter-Annual Trends in Lake Area
4. Results and Discussion
4.1. Changes in Lakes > 1 km2 in the Great Lakes Depression and Adjacent Areas from 1992 to 2021
4.2. Lake Changes in Different Administrative Regions of Western Mongolia
4.3. Characteristic Variations in the Area of Typical Lakes
4.4. Attribution Analyses of Lake Changes in Western Mongolia
5. Discussion
5.1. Regional Geographical Significance of the Dynamics of Lake Area in Western Mongolia
5.2. Analysis of Drivers of Lake Area Change
5.3. Environmental Impact of Lake Desiccation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chen, X.; Bao, A. Spatial-temporal Characteristics of Lake Level Changes in Central Asia during 2003–2009. Acta Geogr. Sin. 2011, 66, 1219–1229. [Google Scholar]
- Cao, G.; Li, T.; Lu, C.; Xu, Z. Dynamic variation and evaporation of seasonal lakes in arid areas: A case study for the Aiding Lake. Arid Zone Res. 2020, 37, 1095–1104. [Google Scholar]
- Yang, T.; Wu, T.; Ji, X.; Qin, B.; Luan, C.; Hu, R.; He, X. Reconstruction of the depletion process of lake water resources in semi-arid areas under strong human activities-Taking Lake Daihai as an example. J. Lake Sci. 2022, 34, 2105–2121. [Google Scholar]
- Luo, R.; Yuan, Q.Q.; Yue, L.W.; Shi, X.G. Monitoring Recent Lake Variations Under Climate Change Around the Altai Mountains Using Multimission Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1374–1388. [Google Scholar] [CrossRef]
- Tao, S.L.; Fang, J.Y.; Zhao, X.; Zhao, S.Q.; Shen, H.H.; Hu, H.F.; Tang, Z.Y.; Wang, Z.H.; Guo, Q.H. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Orkhonselenge, A.; Uuganzaya, M.; Davaagatan, T. Lakes of Mongolia: Geomorphology, Geochemistry and Paleoclimatology; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Liu, R.G.; Zou, Z.H.; Zhao, G.S.; Ge, Q.S. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Sun, A.Z.; Feng, Z.D.; Ran, M.; Zhang, C.J. Pollen-recorded bioclimatic variations of the last ∼22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau. Quat. Int. 2013, 311, 36–43. [Google Scholar] [CrossRef]
- Feng, Q.; Chang, Z.; Xi, H.; Su, Y.; Wen, X.; Zhu, M.; Zhang, J.; Zhang, C. Response to Global Change in the Ecologically Fragile and Desert Region of China-Mongolia Based on Carbon and Nitrogen Cycles. Adv. Earth Sci. 2022, 37, 1101–1114. [Google Scholar]
- Fang, L.Q.; Tao, S.L.; Zhu, J.L.; Liu, Y. Impacts of climate change and irrigation on lakes in arid northwest China. J. Arid Environ. 2018, 154, 34–39. [Google Scholar] [CrossRef]
- Huang, W.J.; Duan, W.L.; Chen, Y.N. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef]
- Huang, W.J.; Duan, W.L.; Nover, D.; Sahu, N.; Chen, Y.N. An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990-2019 and exploratory factor analyses. J. Hydrol. 2021, 593, 125905. [Google Scholar] [CrossRef]
- Yembuu, B. The Physical Geography of Mongolia; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Lamchin, M.; Park, T.; Lee, J.Y.; Lee, W.K. Monitoring of Vegetation Dynamics in the Mongolia Using MODIS NDVIs and their Relationship to Rainfall by Natural Zone. J. Indian Soc. Remote Sens. 2015, 43, 325–337. [Google Scholar] [CrossRef]
- Zhang, P.; Jeong, J.H.; Yoon, J.H.; Kim, H.; Wang, S.Y.S.; Linderholm, H.W.; Fang, K.Y.; Wu, X.C.; Chen, D.L. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef]
- Han, J.; Dai, H.; Gu, Z.L. Sandstorms and desertification in Mongolia, an example of future climate events: A review. Environ. Chem. Lett. 2021, 19, 4063–4073. [Google Scholar] [CrossRef]
- Kang, S.; Hong, S.Y. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000–2011 Using Minimum Composite MODIS NDVI. PLoS ONE 2016, 11, e0151395. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, G.; Togtokh, C.; Jang, K.C. Characterizing regional precipitation-driven lake area change in Mongolia. J. Arid Land 2015, 7, 146–158. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Chen, B.Q.; Ma, J.; Dong, J.W.; Doughty, R.B.; Zhong, Q.Y.; Qin, Y.W.; Dai, S.Q.; et al. Tracking annual changes of coastal tidal flats in China during 1986-2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.M.; Tian, B.S.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Hu, R.Y.; Wang, Y.M.; Chang, J.X.; Istanbulluoglu, E.; Guo, A.J.; Meng, X.J.; Li, Z.H.; He, B.; Zhao, Y.X. Coupling water cycle processes with water demand routes of vegetation using a cascade causal modeling approach in arid inland basins. Sci. Total Environ. 2022, 840, 156492. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Boldgiv, B.; Chang, J.F.; Ciais, P.; Davaanyam, E.; Batbold, A.; Bat-Oyun, T.; Stenseth, N.C. Risk and vulnerability of Mongolian grasslands under climate change. Environ. Res. Lett. 2021, 16, 034035. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Piao, S.L.; Bolch, T.; Xie, H.J.; Chen, D.L.; Gao, Y.H.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Dong, S.; Xue, X.; You, Q.; Peng, F. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years. J. Lake Sci. 2014, 26, 535–544. [Google Scholar]
- Liu, J.; Zhou, T.; Yu, H.; Sun, J. Dynamics and Driving Forces of Lake Changes in Tibet During the Past 25 Years. J. Yangtze River Sci. Res. Inst. 2018, 35, 145–150. [Google Scholar]
- Lu, S.J.; Si, J.H.; Hou, C.Y.; Li, Y.S.; Wang, M.M.; Yan, X.X.; Xie, M.; Sun, J.X.; Chen, B.J.; Li, S.S. Spatiotemporal distribution of nitrogen and phosphorus in alpine lakes in the Sanjiangyuan Region of the Tibetan Plateau. Water Sci. Technol. 2017, 76, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Xiao, P.; Feng, X.; Li, H.; Ma, R.; Duan, H. Remote sensing analysis for changes of lakes in the southeast of Qiangtang area, Qinghai-Tibet Plateau in recent 30 years. Sci. Limnol. Sin. 2010, 22, 874–881. [Google Scholar]
- Fukumoto, Y.; Kashima, K.; Ganzorig, U. The Holocene environmental changes in boreal fen peatland of northern Mongolia reconstructed from diatom assemblages. Quat. Int. 2014, 348, 66–81. [Google Scholar] [CrossRef]
- Tumenjargal, S.; Fassnacht, S.R.; Venable, N.B.H.; Kingston, A.P.; Fernández-Giménez, M.E.; Batbuyan, B.; Laituri, M.J.; Kappas, M.; Adyabadam, G. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia. Front. Earth Sci. 2020, 14, 286–297. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Z.J.; Jiang, L.G.; Wang, R.; Wu, S.S.; Liu, Z.F. Changes in Climate Extremes and Catastrophic Events in the Mongolian Plateau from 1951 to 2012. J. Appl. Meteorol. Climatol. 2016, 55, 1169–1182. [Google Scholar] [CrossRef]
- Li, S.G.; Eugster, W.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D.; Sugita, M. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agric. For. Meteorol. 2006, 137, 89–106. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.H.; Wang, Y.Q.; Sa, C.L.; Duan, Y.C.; Bao, Y.H.; Liu, T. Quantitative detection and attribution of soil moisture heterogeneity and variability in the Mongolian Plateau. J. Hydrol. 2023, 621, 129673. [Google Scholar] [CrossRef]
- Blanc, E.; Strzepek, K.; Schlosser, A.; Jacoby, H.; Gueneau, A.; Fant, C.; Rausch, S.; Reilly, J. Modeling US water resources under climate change. Earths Future 2014, 2, 197–224. [Google Scholar] [CrossRef]
- Sasaki, T.; Okayasu, T.; Jamsran, U.; Takeuchi, K. Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. J. Ecol. 2008, 96, 145–154. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.H.; Sa, C.L.; Duan, Y.C.; Bao, Y.H.; Liu, T.; De Maeyer, P. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. Catena 2021, 206, 105505. [Google Scholar] [CrossRef]
- Du, B.J.; Wang, Z.M.; Mao, D.H.; Li, H.Y.; Xiang, H.X. Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers. Water 2020, 12, 1108. [Google Scholar] [CrossRef]
- Li, H.Y.; Mao, D.H.; Li, X.Y.; Wang, Z.M.; Wang, C.Z. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sens. 2019, 11, 343. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Shi, J.; Chan, N.W.; Cai, Y.; Cheng, C.; An, C.; Wang, W.; Liu, C. Analysis of surface water area dynamics and driving forces in the Bosten Lake basin based on GEE and SEM for the period 2000 to 2021. Environ. Sci. Pollut. Res. Int. 2024, 31, 9333–9346. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.Y.; Duan, X.F.; Kong, F.J.; Zhang, F.; Zheng, Y.F.; Li, Z.; Mei, Y.; Zhao, Y.W.; Hu, S.J. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 7331. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Pan, C.G.; Kamp, U.; Munkhjargal, M.; Halvorson, S.J.; Dashtseren, A.; Walther, M. An Estimated Contribution of Glacier Runoff to Mongolia’s Upper Khovd River Basin in the Altai Mountains. Mt. Res. Dev. 2019, 39, R12–R20. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yin, Y.; Piao, S.L.; Zhao, F.J.; Engels, M.; Ciais, P. Disappearing Lakes in Semiarid Northern China: Drivers and Environmental Impact. Environ. Sci. Technol. 2013, 47, 12107–12114. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.H.; Chen, S.Q.; Zhang, X.; Chen, J.H.; Wang, X.; Gowan, E.J.; Qiang, M.R.; Dong, G.H.; Wang, Z.L.; Li, Y.C.; et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nat. Commun. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.C.; Wang, M.M.; Sun, H.Y.; Wang, X.; Wang, Y.Q.; Li, Y.G.; Zhang, L.X.; Mu, Z. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. Environ. Int. 2018, 121, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, C.; Zhang, J.; Huang, X.; Otgonbayar, D. Aeolian activities in the NW Mongolia during the Holocene recorded by grain-sizesensitive particles in the sediments of Lake Tolbo. J. Lake Sci. 2023, 35, 368–380. [Google Scholar]
Types | AP | SMT | PET | Grazing | Population | Irrigation | SM1 | SM2 | SM3 | SM4 |
---|---|---|---|---|---|---|---|---|---|---|
Alpine lakes | −0.62 ** | |||||||||
Throughflow lakes | −0.48 ** | 0.625 ** | 0.49 ** | 0.54 ** | 0.65 ** | 0.82 ** | ||||
Terminal lakes | 0.474 * | 0.41 ** | 0.68 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhou, H.; Liu, Y.; Dorjsuren, B.; Demberel, O.; Batmunkh, D. Impacts of Climate Change and Human Activity on Lakes around the Depression of Great Lakes in Mongolia. Land 2024, 13, 310. https://doi.org/10.3390/land13030310
Yang S, Zhou H, Liu Y, Dorjsuren B, Demberel O, Batmunkh D. Impacts of Climate Change and Human Activity on Lakes around the Depression of Great Lakes in Mongolia. Land. 2024; 13(3):310. https://doi.org/10.3390/land13030310
Chicago/Turabian StyleYang, Song, Hongfei Zhou, Yan Liu, Batsuren Dorjsuren, Otgonbayar Demberel, and Dashlkham Batmunkh. 2024. "Impacts of Climate Change and Human Activity on Lakes around the Depression of Great Lakes in Mongolia" Land 13, no. 3: 310. https://doi.org/10.3390/land13030310
APA StyleYang, S., Zhou, H., Liu, Y., Dorjsuren, B., Demberel, O., & Batmunkh, D. (2024). Impacts of Climate Change and Human Activity on Lakes around the Depression of Great Lakes in Mongolia. Land, 13(3), 310. https://doi.org/10.3390/land13030310