Modeling Landscape Influence on Stream Baseflows for Watershed Conservation
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Background
2.3. Methods
2.4. Data and Methods
3. Results
Marginal Influence of Landscape Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Richter, B.D.; Arthiungton, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef]
- Randhir, T.O.; Raposa, S. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states. J. Hydrol. 2014, 519, 1526–1536. [Google Scholar] [CrossRef]
- Ross, E.R.; Randhir, T.O. Effects of climate and land use changes on water quantity and quality of coastal watersheds of Narragansett Bay. Sci. Total Environ. 2022, 807, 151082. [Google Scholar] [CrossRef] [PubMed]
- Talib, A.; Randhir, T.O. Long-term effects of land-use change on water resources in urbanizing watersheds. PLOS Water 2023, 2, e0000083. [Google Scholar] [CrossRef]
- Dunne, T.; Leopald, L.B. Water in Environmental Planning; W. H. Freeman and Company: San Francisco, CA, USA, 1978. [Google Scholar]
- Wang, K.; Onodera, S.I.; Saito, M.; Shimizu, Y. Long-term variations in water balance by increase in percent imperviousness of urban regions. J. Hydrol. 2021, 602, 126767. [Google Scholar] [CrossRef]
- Pappas, E.A.; Smith, D.R.; Huang, C.; Shuster, W.D.; Bonta, J.V. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena 2008, 72, 146–152. [Google Scholar] [CrossRef]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiela, K. Is Impervious Cover Still Important? A Review of Recent Research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef]
- McMahon, T.A.; Nathan, R.J. Baseflow and transmission loss: A review. Wiley Interdisciplinary Reviews. Water 2021, 8, e1527. [Google Scholar]
- Ferguson, B.K. Stormwater and Environment. In Introduction to Stormwater: Concept, Purpose, Design; John Wiley and Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comput. Environ. Urban Syst. 2000, 24, 5–22. [Google Scholar] [CrossRef]
- Lombard, P.J.; Dudley, R.W.; Collins, M.J.; Saunders, R.; Atkinson, E. Model estimated baseflow for streams with endangered Atlantic Salmon in Maine, USA. River Res. Appl. 2021, 37, 1254–1264. [Google Scholar] [CrossRef]
- Finkenbine, J.K.; Atwater, J.W.; Mavinic, D.S. Stream health after urbanization. J. Am. Water Resour. Assoc. 2000, 36, 1149–1160. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W. Historical summer baseflow and stormflow trends for New England river. Water Resour. Res. 2011, 47, 1–16. [Google Scholar] [CrossRef]
- Randhir, T.O.; Shriver, D.M. Multiattribute optimization of restoration options: Designing incentives for watershed management. Water Resour. Res. 2009, 45, W03405. [Google Scholar] [CrossRef]
- Klosterman, K.B. The Role of Structural Stormwater Best Management Practices, Impervious Surfaces and Natural Factors on Base Flow in Massachusetts. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, February 2012; p. 767. [Google Scholar] [CrossRef]
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Schilling, K.; Jones, C.; Brookfield, A.; Zipper, S.C.; Farmer, W.H. The role of climate in monthly baseflow changes across the Continental United States. J. Hydrol. Eng. 2022, 27, 04022006. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Jones, C.; Schilling, K. Changes in monthly baseflow across the US Midwest. Hydrol. Process. 2019, 33, 748–758. [Google Scholar] [CrossRef]
- Segura, C.; Noone, D.; Warren, D.; Jones, J.A.; Tenny, J.; Ganio, L.M. Climate, landforms, and geology affect baseflow sources in a mountain catchment. Water Resour. Res. 2019, 55, 5238–5254. [Google Scholar] [CrossRef]
- Rumsey, C.A.; Miller, M.P.; Susong, D.D.; Tillman, F.D.; Anning, D.W. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. J. Hydrol. Reg. Stud. 2015, 4, 91–107. [Google Scholar] [CrossRef]
- Singh, K.P. Some Factors Affecting Baseflow. Water Resour. Res. 1968, 4, 985–999. [Google Scholar] [CrossRef]
- Harr, R.D. Water flux in soil and subsoil on a steep forested slope. J. Hydrol. 1977, 33, 37–58. [Google Scholar] [CrossRef]
- Soil Conservation Service (Ed.) Examination and Description of Soils. In Soil Survey Manual; U.S. Department of Agriculture: Medina, OH, USA, 1993. [Google Scholar]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- De la Cretaz, A.L.; Barten, P.K. Land Use Effects on Streamflow & Water Quality in the Northeastern United States; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Pettyjohn, W.A.; Henning, R. Preliminary Estimates of Ground-Water Recharge Rates, Related Streamflow and Water Quality in Ohio; Interior, D.O.T., Ed.; Office of Water Research and Technology: Columbus, OH, USA, 1979. [Google Scholar]
- Castelltort, S.; Simpson, G.; Darrioulat, A. Slope-control on the aspect ratio of river basins. Terra Nova 2009, 21, 265–270. [Google Scholar] [CrossRef]
- Zernitz, E. Drainage Patterns and Their Significance. J. Geol. 1932, 40, 498–521. [Google Scholar] [CrossRef]
- Broxton, P.D.; Troch, P.A.; Lyon, S.W. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res. 2009, 45, 1–15. [Google Scholar] [CrossRef]
- Murray, C.D.; Buttle, J.M. Impacts of clearcut harvesting on snow accumulation and melt in a northern hardwood forest. J. Hydrol. 2003, 271, 197–212. [Google Scholar] [CrossRef]
- Mitchell, K.M.; DeWalle, D.R. Application of the snowmelt runoff model using multiple-parameter landscape zones on the Towanda Creek Basin, Pennsylvania. J. Am. Water Resour. Assoc. 1998, 34, 335–346. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1998. [Google Scholar]
- U.S. Geological Survey. National Water Information System: Web Interface. 2013. Available online: http://waterdata.usgs.gov/ma/nwis/ (accessed on 15 August 2014).
- MassGIS. MassGIS-Available GIS Datalayers. 2011. Available online: http://www.mass.gov/mgis/laylist.htm (accessed on 15 September 2011).
- Natural Resource Conservation Service-U.S. Department of Agriculture. Soil Data Survey Georgraphy (SSURGO) Database for Massachusetts. 2011. Available online: http://soildatamart.nrcs.usda.gov/ (accessed on 15 September 2011).
- U.S. Environmental Protection Agency. BASINS (Better Assessment Science Integrating Point and Non-Point Sources). 2011. Available online: http://water.epa.gov/scitech/datait/models/basins/index.cfm (accessed on 15 September 2011).
- Sloto, R.A.; Crouse, M.Y. HYSEP-A Computer Program for Streamflow Hydrograph Separation and Analysis; U.S. Geological Survey Water Resources Investigations Report 96-4040; U.S. Geological Survey: Reston, VA, USA, 1996. [Google Scholar]
- U.S. Geological Survey. HYSEP-Hydrograph Separation Program. 2011. Available online: http://water.usgs.gov/software/HYSEP/ (accessed on 20 January 2012).
- Meier, K.J.; Brudney, J.L.; Bohte, J. Applied Statistics for Public and Nonprofit Administration, 7th ed.; Cengage Learning: Wadswoth, OH, USA, 2009. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Harbor, J.M. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Park, J.; Jang, S.; Hong, R.; Song, I. Estimation of least ecological streamflow through long-term habitat evaluation using stream hydrodynamics and water quality factors. Hydrol. Sci. J. 2023, 68, 1794–1808. [Google Scholar] [CrossRef]
- Pavlovskii, I.; Jiang, Y.; Danielescu, S.; Kurylyk, B.L. Influence of precipitation event magnitude on baseflow and coastal nitrate export for Prince Edward Island, Canada. Hydrol. Process. 2023, 37, e14892. [Google Scholar] [CrossRef]
- Booth, D.B.; Karr, J.R.; Schauman, S.; Konrad, C.P.; Morley, S.A.; Larson, M.G.; Burges, S.J. Reviving urban streams: Land use, hydrology, biology, and human behavior 1. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1351–1364. [Google Scholar] [CrossRef]
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. JAWRA J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Ou, J.; Li, J.; Li, X.; Zhang, J. Planning and design strategies for green stormwater infrastructure from an urban design perspective. Water 2023, 16, 29. [Google Scholar] [CrossRef]
- Leopold, L.B. Hydrology for Urban Land Planning: A Guidebook on the Hydrologic Effects of Urban Land Use; US Geological Survey: Reston, VA, USA, 1968. [Google Scholar]
- Hamel, P.; Daly, E.; Fletcherb, T.D. Source-control stormwater management for mitigating the impacts of urbanization on baseflow: A review. J. Hydrol. 2013, 485, 201–211. [Google Scholar] [CrossRef]
- Randhir, T. Watershed-scale effects of urbanization on sediment export: Assessment and policy. Water Resour. Res. 2003, 39, 1169. [Google Scholar] [CrossRef]
- Hamel, P.; Daly, E.; Fletcherb, T.D. Which baseflow metrics should be used in assessing flow regimes of urban streams? Hydrol. Process. 2015, 29, 4367–4378. [Google Scholar] [CrossRef]
Subwatershed | Area (sq. mi) | Baseflow (Daily mean) | Impervious Cover (%) | Forest Cover (%) | Soil Drainage (Mean) | Precipitation (inches) | Slope (%) |
---|---|---|---|---|---|---|---|
Aberjona | 27.11 | 2.01 | 32.87 | 24.11 | 2.46 | 40.67 | 6.18 |
Assabet | 117.30 | 1.49 | 11.97 | 49.31 | 3.41 | 40.67 | 7.70 |
E Housa | 57.51 | 1.52 | 3.59 | 73.32 | 3.42 | 41.67 | 14.07 |
E Neponset | 27.21 | 1.75 | 27.54 | 17.27 | 3.33 | 41.03 | 5.86 |
Eswift | 43.66 | 1.35 | 1.66 | 0.24 | 3.40 | 42.95 | 14.77 |
Indian Head | 29.89 | 2.21 | 19.75 | 33.02 | 3.03 | 45.13 | 4.14 |
Jones | 13.73 | 3.08 | 10.41 | 43.32 | 3.53 | 47.28 | 5.81 |
MineBrook | 5.99 | 0.49 | 8.69 | 52.16 | 3.89 | 38.88 | 8.00 |
Miscoe | 1.14 | 0.72 | 5.85 | 60.53 | 3.36 | 40.67 | 7.75 |
Nashoba | 12.86 | 0.83 | 10.73 | 51.34 | 3.22 | 40.67 | 6.75 |
Neponsett | 32.77 | 1.66 | 23.93 | 40.93 | 3.23 | 39.96 | 6.20 |
Old Swamp | 4.47 | 1.26 | 26.35 | 34.05 | 3.60 | 43.83 | 7.11 |
Parker | 21.39 | 1.75 | 7.26 | 51.67 | 2.98 | 40.67 | 9.06 |
Quaboag | 150.18 | 1.68 | 4.63 | 64.69 | 3.35 | 42.95 | 10.27 |
Quinsigamond | 25.63 | 1.53 | 20.39 | 34.86 | 3.15 | 40.67 | 7.43 |
Segreganset | 10.60 | 1.33 | 7.10 | 2.14 | 2.57 | 45.24 | 4.16 |
Stillwater | 30.38 | 1.68 | 3.95 | 73.76 | 3.81 | 41.90 | 11.10 |
Tauton | 260.16 | 1.53 | 22.38 | 37.69 | 2.88 | 45.38 | 4.32 |
Wfarm | 91.24 | 1.54 | 2.04 | 80.61 | 3.28 | 43.78 | 14.97 |
Ware | 54.96 | 1.40 | 3.44 | 94.05 | 3.05 | 42.95 | 10.90 |
Ipswich | 45.37 | 1.20 | 15.93 | 37.25 | 2.94 | 40.67 | 5.96 |
Wading | 43.45 | 2.08 | 22.62 | 44.54 | 3.24 | 53.04 | 4.89 |
3Mile | 85.47 | 1.37 | 20.72 | 47.84 | 0.61 | 43.47 | 4.48 |
Ipswich29 | 126.67 | 1.45 | 12.22 | 44.10 | 2.93 | 41.21 | 7.81 |
SevenMile | 8.69 | 2.30 | 3.21 | 0.92 | 3.46 | 42.95 | 10.80 |
Shawsheen | 31.40 | 1.52 | 19.70 | 29.82 | 2.90 | 40.61 | 5.25 |
Sudbury92 | 105.21 | 1.35 | 16.82 | 40.71 | 3.03 | 38.86 | 6.96 |
Ware2 | 198.17 | 1.38 | 3.45 | 33.49 | 3.61 | 42.95 | 13.37 |
Variable | Effect | Coefficient | Significance |
---|---|---|---|
α | Intercept | −0.785 | |
x1 | Impervious Surface | 0.941 | *** |
x2 | Forest Cover | −0.056 | |
x3 | Soil Drainage Class | −8.392 | |
x4 | Precipitation | −0.077 | |
x5 | Slope | 2.994 | ** |
x1 × x2 | Impervious and Forest | 0.001 | |
x2 × x3 | Forest and Soil | −0.031 | * |
x2 × x4 | Forest and Precipitation | 0.003 | |
x2 × x5 | Forest and Slope | 0.003 | |
x1 × x3 | Impervious and Soil | −0.045 | |
x3 × x4 | Soil and Precipitation | 0.250 | * |
x3 × x5 | Soil and Slope | 0.014 | |
x1 × x4 | Impervious and Precipitation | −0.019 | *** |
x4 × x5 | Precipitation and Slope | −0.075 | ** |
x1 × x5 | Impervious and Slope | −0.003 |
ANOVA | Degrees of Freedom | Sum of Squares | Mean Square | F Statistic | F Significance |
---|---|---|---|---|---|
Regression | 15 | 5.606 | 0.374 | 3.961 | 0.011 |
Residual | 12 | 1.132 | 0.094 | ||
Total | 27 | 6.738 |
Sub-Watershed | Observed | Predicted | Error |
---|---|---|---|
Aberjona | 2.01 | 2.08 | +0.07 |
Assabet | 1.49 | 1.26 | −0.23 |
E Housatonic | 1.52 | 1.7 | +0.18 |
E Neponset | 1.75 | 1.73 | −0.02 |
E Swift | 1.35 | 1.37 | +0.02 |
Indian Head | 2.21 | 1.88 | −0.33 |
Jones | 3.08 | 3.15 | +0.06 |
Mine Brook | 0.49 | 0.63 | +0.13 |
Miscoe | 0.72 | 0.96 | +0.24 |
Nashoba | 0.83 | 1.13 | +0.3 |
Neponset | 1.66 | 1.59 | −0.07 |
Old Swamp | 1.26 | 1.17 | −0.08 |
Parker | 1.75 | 1.31 | −0.44 |
Quaboag | 1.68 | 1.48 | −0.2 |
Quinsigamond | 1.53 | 1.57 | +0.04 |
Segreganset | 1.33 | 1.45 | +0.12 |
Still Water | 1.68 | 1.29 | −0.39 |
Tauton | 1.53 | 1.59 | +0.06 |
W Farmington | 1.54 | 1.49 | −0.05 |
Ware | 1.4 | 1.55 | +0.15 |
Ipswich | 1.2 | 1.39 | +0.18 |
Wading | 2.08 | 2.2 | +0.12 |
Three Mile | 1.37 | 1.32 | −0.05 |
Ipswich Two | 1.45 | 1.35 | −0.11 |
Seven Mile | 2.3 | 2.04 | −0.26 |
Shawsheen | 1.52 | 1.52 | 0 |
Sudbury | 1.35 | 1.53 | +0.18 |
Ware Two | 1.38 | 1.77 | +0.39 |
Equation # | Independent Variable (xi) | |
---|---|---|
(5) | Impervious Surface | |
(6) | Forest Cover | |
(7) | Soil Drainage Class | |
(8) | Precipitation | |
(9) | Slope |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randhir, T.O.; Klosterman, K.B. Modeling Landscape Influence on Stream Baseflows for Watershed Conservation. Land 2024, 13, 324. https://doi.org/10.3390/land13030324
Randhir TO, Klosterman KB. Modeling Landscape Influence on Stream Baseflows for Watershed Conservation. Land. 2024; 13(3):324. https://doi.org/10.3390/land13030324
Chicago/Turabian StyleRandhir, Timothy O., and Kimberly B. Klosterman. 2024. "Modeling Landscape Influence on Stream Baseflows for Watershed Conservation" Land 13, no. 3: 324. https://doi.org/10.3390/land13030324
APA StyleRandhir, T. O., & Klosterman, K. B. (2024). Modeling Landscape Influence on Stream Baseflows for Watershed Conservation. Land, 13(3), 324. https://doi.org/10.3390/land13030324