The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Dynamic Degree of Territorial Space
2.3.2. Transition Matrix of Territorial Space
2.3.3. Contribution Rates of Carbon Storage in the Territorial Space
2.3.4. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Module and Carbon Density
3. Results
3.1. Analysis of the Spatiotemporal Evolution of Territorial Space Use in Suqian City
3.1.1. The Transformation Intensity of Territorial Space
3.1.2. The Territorial Space Transition Matrix
3.2. Analysis of Spatiotemporal Differentiation of Carbon Storage in Suqian City
3.2.1. The Carbon Storage Structure in Suqian
3.2.2. The Carbon Storage Distribution Pattern in Suqian City from 2000 to 2020
3.3. Analysis of the Carbon Storage Effect of National Land Transition in Suqian City
3.3.1. The Relationship between National Land Transition and Change in Carbon Storage
3.3.2. The Contribution of Territorial Spatial Transformation to Changes Carbon Storage
4. Discussion
4.1. Territorial Space Conversion and Its Carbon Storage Effect
4.2. Carbon Storage Optimization Strategy under Low-Carbon Targets
4.3. Uncertainty and Limitations
5. Conclusions
- (1)
- The conversion between agricultural space and urban–rural space in Suqian City was the largest from 2000 to 2020, with urban–rural space occupying 684.42 km2 of agricultural space. The area of wetland space showed a stable growth trend, while forestland space exhibited a continuous decline.
- (2)
- Carbon storage in Suqian City showed a gradual decrease, with a total reduction of 1.23 × 106 tons over 20 years and a decrease of 1.46% compared to the initial value. Forest spaces had significantly higher carbon density than other spaces. The conversion from agricultural space to urban–rural construction space was the dominant factor leading to an increase in carbon storage. Conversely, the conversion from agricultural production space to urban–rural construction space and wetland space was the main reason for the significant reduction in carbon storage.
- (3)
- The mechanisms and specific strategies for optimizing space use planning under low-carbon goals were determined based on the transformation of the territorial space and carbon storage change in the study area. To enhance carbon storage capacity, optimizing the planning of territorial space requires both an overall regulation of spatial functions, scale, structure and layout and the differentiated management and regulation of specific spaces. This will effectively enhance the regional carbon storage capacity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Xu, L.; Shi, Y.; Ma, Q.; Wu, Y.; Lu, Z.; Mao, L.; Pang, E.; Zhang, Q. Impact of land use change on vegetation carbon storage during rapid urbanization: A case study of Hangzhou, China. Chin. Geogr. Sci. 2021, 31, 209–222. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef]
- Ito, A.; Nishina, K.; Noda, H.M. Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data. Polar Sci. 2016, 10, 346–355. [Google Scholar] [CrossRef]
- Wang, L.Y.; Anna, H.; Zhang, L.Y.; Xiao, Y.; Wang, Y.Q.; Xiao, Y.; Liu, J.G.; Ouyang, Z.Y. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.J.; Yang, H.; Chuai, X.W.; Zhang, M.; Zhong, T.Y.; Chen, Z.G.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, 8. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Kong, L.Q.; Tian, G.J.; Ma, B.G.; Liu, X.J. Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the beijing metropolitan region, China. Ecol. Indic. 2017, 82, 233–249. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land use transitions: Progress, challenges and prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Hong, C.P.; Burney, J.A.; Pongratz, J.; Nabel, J.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Wang, G.Z.; Han, Q.; De Vries, B. Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. J. Environ. Manag. 2019, 247, 413–424. [Google Scholar] [CrossRef]
- Xia, C.Y.; Chen, B. Urban land-carbon nexus based on ecological network analysis. Appl. Energy 2020, 276, 115465. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of hainan island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Dou, H.; Li, M.; Liu, S.; Cao, W. Optimizing the land use and land cover pattern to increase its contribution to carbon neutrality. Remote Sens. 2022, 14, 4751. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Islam, I.; Cui, S.; Hoque, M.Z.; Abdullah, H.M.; Tonny, K.F.; Ahmed, M.; Ferdush, J.; Xu, L.; Ding, S. Dynamics of tree outside forest land cover development and ecosystem carbon storage change in eastern coastal zone, Bangladesh. Land 2022, 11, 76. [Google Scholar] [CrossRef]
- Leh, M.D.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Cui, Y.; Zhu, L. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China. J. Geogr. Sci. 2020, 30, 1507–1522. [Google Scholar] [CrossRef]
- Guo, H.; He, S.; Jing, H.; Yan, G.; Li, H. Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China. Sustainability 2023, 15, 14244. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, C.; Lu, M.; Wang, L.; Guo, B. Patterns and Dominant Driving Factors of Carbon Storage Changes in the Qinghai–Tibet Plateau under Multiple Land Use Change Scenarios. Forests 2024, 15, 418. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.; Zhang, X.; Zhao, Y.; Wei, B. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Wang, H.; Tian, F.; Wu, J.; Nie, X. Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view. World Dev. 2023, 161, 106126. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, J.; Wang, Z.; Qian, Z.; Wang, X.; Xu, W.; Zhang, H. Multi-Temporal Change of LULC and Its Impact on Carbon Storage in Jiangsu Coastal, China. Land 2023, 12, 1943. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. Chin. Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Global Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Yang, G. Analysis and Estimation of Net Primary Productivity of Vegetation in Nanjing Using Multi-Sourced Remote Sensing Data. IEEE Access 2022, 10, 35665–35674. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Xia, B.; Zheng, L. Ecological Environmental Effects and Their Driving Factors of Land Use/Cover Change: The Case Study of Baiyangdian Basin, China. Processes 2022, 10, 2648. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the US: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Burgin, S.; Franklin, M.J.; Hull, L. Wetland loss in the transition to urbanisation: A case study from Western Sydney, Australia. Wetlands 2016, 36, 985–994. [Google Scholar] [CrossRef]
- Salvati, L.; Zambon, I.; Chelli, F.M.; Serra, P. Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in Europe? Sci. Total Environ. 2018, 625, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Schulp, C.J.; Levers, C.; Kuemmerle, T.; Tieskens, K.F.; Verburg, P.H. Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy 2019, 80, 332–344. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Wu, C.; Zhao, R. Spatial simulation of land use based on terrestrial ecosystem carbon storage in coastal Jiangsu, China. Sci. Rep. 2014, 4, 5667. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Li, C. Content and densities of soil organic carbon in urban soil in different function districts of Kaifeng. J. Geogr. Sci. 2010, 20, 148–156. [Google Scholar] [CrossRef]
- Chuai, X.-W.; Huang, X.-J.; Wan-Jing, W.; Zhang, M.; Li, L.; Qi-Lin, L. Spatial variability of soil organic carbon and related factors in Jiangsu Province, China. Pedosphere 2012, 22, 404–414. [Google Scholar] [CrossRef]
- Adiku, S.; Narh, S.; Jones, J.; Laryea, K.; Dowuona, G. Short-term effects of crop rotation, residue management, and soil water on carbon mineralization in a tropical cropping system. Plant Soil 2008, 311, 29–38. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, C.H.; Jung, K.Y.; Do Park, K.; Lee, D.; Kim, P.J. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res. 2009, 104, 227–232. [Google Scholar] [CrossRef]
- Eatherall, A.; Naden, P.; Cooper, D. Simulating carbon flux to the estuary: The first step. Sci. Total Environ. 1998, 210, 519–533. [Google Scholar] [CrossRef]
- Konarska, K.M.; Sutton, P.C.; Castellon, M. Evaluating scale dependence of ecosystem service valuation: A comparison of NOAA-AVHRR and Landsat TM datasets. Ecol. Econ. 2002, 41, 491–507. [Google Scholar] [CrossRef]
- Yu, S.; Wang, R.; Zhang, X.; Miao, Y.; Wang, C. Spatiotemporal Evolution of Urban Shrinkage and Its Impact on Urban Resilience in Three Provinces of Northeast China. Land 2023, 12, 1412. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Y.; Ma, W.; Mohammat, A.; Shen, H. Ecosystem carbon stocks and their changes in China’s grasslands. Sci. Chin. Life Sci. 2010, 53, 757–765. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, H.; Li, P.; Li, N.; Fang, J. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. Chin. Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, Z.; Wu, H.; Kahmann, J.A.; Oldfield, F. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Z.; Li, F.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhu, Q.; Chen, M.; Cai, Y. Spatiotemporal Change and the Natural–Human Driving Processes of a Megacity’s Coastal Blue Carbon Storage. Int. J. Environ. Res. Public Health 2021, 18, 8879. [Google Scholar] [CrossRef] [PubMed]
Territorial Space | Carbon Density (t/hm2) | |||
---|---|---|---|---|
Above | Below | Soil | Dead | |
Agricultural space | 5.387 | 1.024 | 91.886 | 1.000 |
Forestland space | 18.909 | 7.564 | 125.910 | 3.800 |
Grassland space | 2.056 | 10.031 | 98.612 | 0.190 |
Wetland space | 1.023 | 0.019 | 72.203 | 0.010 |
Urban–rural space | 0.575 | 0.117 | 80.215 | 1.200 |
Other space | 0.127 | 0.064 | 73.786 | 0.010 |
Territorial Space | Dynamic Degree | ||||
---|---|---|---|---|---|
2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | |
Agricultural space | −0.08% | −1.18% | −0.13% | −0.32% | −0.42% |
Urban–rural space | 0.51% | −1.74% | −0.55% | −0.63% | −0.59% |
Forestland space | −0.03% | −0.02% | 0.06% | 4.17% | 1.32% |
Grassland space | 0.20% | 0.23% | 0.00% | 0.16% | 0.15% |
Wetland space | 0.08% | 3.59% | 0.36% | 0.61% | 1.22% |
Other space | −1.96% | −6.43% | −15.61% | 0.04% | −4.33% |
Total | 0.06% | 0.80% | 0.10% | 0.82% | 0.45% |
2000 | 2005 | ||||||
---|---|---|---|---|---|---|---|
Agricultural Space | Forestland | Grassland | Wetland | Urban–rural | Other | Total | |
Agricultural space | 5232.89 | 3.19 | 0.19 | 25.52 | 120.43 | 0.22 | 5382.46 |
Forestland | 1.82 | 52.94 | 0.00 | 0.67 | 0.87 | 0.00 | 56.30 |
Grassland | 0.22 | 0.00 | 12.90 | 0.91 | 0.16 | 0.00 | 14.19 |
Wetland | 11.16 | 0.76 | 0.95 | 1353.83 | 2.52 | 0.00 | 1369.24 |
Urban–rural | 114.20 | 0.84 | 0.13 | 2.01 | 1579.45 | 0.09 | 1696.69 |
Other space | 0.55 | 0.00 | 0.00 | 0.00 | 0.09 | 2.63 | 3.26 |
Total | 5360.83 | 57.74 | 14.16 | 1382.93 | 1703.53 | 2.94 | 8522.13 |
2005 | 2010 | ||||||
---|---|---|---|---|---|---|---|
Agricultural Space | Forestland | Grassland | Wetland | Urban–Rural | Other | Total | |
Agricultural space | 4951.10 | 3.84 | 0.11 | 33.95 | 371.81 | 0.03 | 5360.83 |
Forestland | 4.73 | 47.65 | 0.00 | 0.91 | 4.45 | 0.00 | 57.74 |
Grassland | 0.12 | 0.00 | 13.41 | 0.53 | 0.11 | 0.00 | 14.16 |
Wetland | 13.79 | 0.41 | 0.55 | 1362.12 | 6.06 | 0.00 | 1382.93 |
Urban–rural | 74.48 | 0.80 | 0.08 | 1.54 | 1626.59 | 0.04 | 1703.53 |
Other | 0.44 | 0.00 | 0.00 | 0.00 | 0.56 | 1.93 | 2.94 |
Total | 5044.66 | 52.70 | 14.15 | 1399.05 | 2 009.57 | 1.99 | 8522.13 |
2010 | 2015 | ||||||
---|---|---|---|---|---|---|---|
Agricultural Space | Forestland | Grassland | Wetland | Urban–Rural | Other | Total | |
Agricultural space | 4991.34 | 0.23 | 0.01 | 2.08 | 51.00 | 0.00 | 5044.66 |
Forestland | 0.19 | 50.77 | 0.00 | 0.12 | 1.62 | 0.00 | 52.70 |
Grassland | 0.05 | 0.00 | 13.94 | 0.10 | 0.06 | 0.00 | 14.15 |
Wetland | 1.56 | 0.10 | 0.23 | 1396.68 | 0.47 | 0.00 | 1399.05 |
Urban–rural | 17.72 | 0.16 | 0.01 | 0.37 | 1991.30 | 0.01 | 2009.57 |
Other | 0.00 | 0.00 | 0.00 | 0.00 | 1.56 | 0.43 | 1.99 |
Total | 5010.87 | 51.27 | 14.19 | 1399.35 | 2046.02 | 0.44 | 8522.13 |
2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|
Agricultural Space | Forestland | Grassland | Wetland | Urban–Rural | Other | Total | |
Agricultural space | 4573.42 | 4.25 | 1.82 | 45.20 | 386.18 | 0.00 | 5010.87 |
Forestland | 4.24 | 40.56 | 0.91 | 2.14 | 3.42 | 0.00 | 51.27 |
Grassland | 0.15 | 0.00 | 10.04 | 3.84 | 0.15 | 0.00 | 14.19 |
Wetland | 33.66 | 2.32 | 2.34 | 1351.35 | 9.69 | 0.00 | 1399.35 |
Urban–rural | 321.36 | 2.57 | 2.81 | 8.41 | 1710.77 | 0.10 | 2046.02 |
Other | 0.03 | 0.00 | 0.00 | 0.00 | 0.07 | 0.34 | 0.44 |
Total | 4932.85 | 49.70 | 17.92 | 1410.94 | 2110.27 | 0.44 | 8522.13 |
Type | Amount of Change (km2) | Rate of Change (%) | ||||||
---|---|---|---|---|---|---|---|---|
2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | |
Agricultural space | −21.62 | −316.18 | −33.79 | −78.02 | −0.08 | −1.18 | −0.13 | −0.32 |
Forestland | 1.43 | −5.03 | −1.44 | −1.56 | 0.51 | −1.74 | −0.55 | −0.63 |
Grassland | −0.02 | −0.01 | 0.04 | 3.73 | −0.03 | −0.02 | 0.06 | 4.17 |
Wetland | 13.70 | 16.12 | 0.30 | 11.59 | 0.20 | 0.23 | 0.00 | 0.16 |
Urban–rural | 6.84 | 306.05 | 36.44 | 64.26 | 0.08 | 3.59 | 0.36 | 0.61 |
Other | −0.32 | −0.94 | −1.56 | 0.00 | −1.96 | −6.43 | −5.61 | 0.04 |
Classification | Scope of Change (t) | Area (km2) | Proportion (%) |
---|---|---|---|
Significant decrease | −1.245 | 17.6299 | 0.21% |
Slight decrease | −0.415 | 786.1857 | 9.22% |
No change | 0 | 7376.778 | 86.56% |
Slight increase | 0–0.415 | 330.5294 | 3.88% |
Territorial Space Conversion | Vegetation Carbon Density (t/hm2) | Soil Carbon Density (t/hm2) | Vegetation Carbon Storage (103 t) | Soil Carbon Storage (103 t) | Total (103 t) |
---|---|---|---|---|---|
Agricultural space–Forestland | 22.9 | 34 | 14.73 | 21.92 | 36.66 |
Agricultural space–Grassland | 4.9 | 6.7 | 1.64 | 2.27 | 3.91 |
Agricultural space–Wetland | −5.5 | −11.7 | −45.10 | −95.37 | −140.47 |
Agricultural space–Urban–rural space | −6.4 | −19.7 | −435.06 | −1346.73 | −1781.78 |
Subtotal | - | - | −463.78 | −1417.90 | −1881.68 |
Forestland–Agricultural space | −36.8 | −34 | −27.06 | −25.00 | −52.06 |
Forestland–Grassland | −30.9 | −27.3 | −2.79 | −2.46 | −5.25 |
Forestland–Wetland | −48.3 | −45.7 | −10.97 | −10.38 | −21.35 |
Forestland–Urban–rural space | −57.5 | −53.7 | −40.89 | −38.20 | −79.09 |
Subtotal | - | - | −81.71 | −76.04 | −157.75 |
Grassland–Agricultural space | −4.9 | −6.7 | −0.07 | −0.10 | −0.17 |
Grassland–Forestland | 18 | 27.3 | 0.00 | 0.01 | 0.01 |
Grassland–Wetland | −10.4 | −18.4 | −3.54 | −6.27 | −9.81 |
Grassland–Urban–rural space | −11.2 | −26.4 | −0.15 | −0.35 | −0.50 |
Subtotal | - | - | −3.76 | −6.72 | −10.48 |
Wetland–Agricultural space | 5.5 | 11.7 | 18.35 | 38.80 | 57.15 |
Wetland–Forestland | 28.4 | 45.7 | 6.55 | 10.55 | 17.10 |
Wetland–Grassland | 10.4 | 18.4 | 2.20 | 3.91 | 6.11 |
Wetland–Urban–rural space | −0.8 | −8 | −1.14 | −10.87 | −12.01 |
Subtotal | - | - | 25.97 | 42.38 | 68.35 |
Urban–rural space–Agricultural space | 6.4 | 19.7 | 181.08 | 560.54 | 741.62 |
Urban–rural space–Forestland | 29.2 | 53.7 | 1.15 | 2.70 | 3.85 |
Urban–rural space–Grassland | 11.2 | 26.4 | 0.50 | 4.73 | 5.22 |
Urban–rural space–Wetland | 0.8 | 8 | 0.50 | 4.73 | 5.22 |
Urban–rural space–Other space | −0.9 | 1.6 | −0.01 | 0.01 | 0.00 |
Subtotal | - | - | 183.21 | 572.71 | 755.92 |
Other space–Agricultural space | 7.2 | 18.1 | 0.07 | 0.17 | 0.23 |
Other space–Urban–rural space | 0.9 | −1.6 | 0.24 | −0.44 | −0.20 |
Subtotal | - | 2.9 | 0.30 | −0.27 | 0.03 |
Total | - | - | −339.77 | −885.84 | −1225.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Guo, L.; Zhang, T.; Chen, T.; Chen, L.; Li, L.; Zhang, X. The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China. Land 2024, 13, 348. https://doi.org/10.3390/land13030348
Huang W, Guo L, Zhang T, Chen T, Chen L, Li L, Zhang X. The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China. Land. 2024; 13(3):348. https://doi.org/10.3390/land13030348
Chicago/Turabian StyleHuang, Wenting, Long Guo, Ting Zhang, Ting Chen, Longqian Chen, Long Li, and Xundi Zhang. 2024. "The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China" Land 13, no. 3: 348. https://doi.org/10.3390/land13030348
APA StyleHuang, W., Guo, L., Zhang, T., Chen, T., Chen, L., Li, L., & Zhang, X. (2024). The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China. Land, 13(3), 348. https://doi.org/10.3390/land13030348