Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.1.1. The USHCN Data Set
2.1.2. The CRN Data Set
2.1.3. The LULC Data Set
2.2. Research Methods
2.2.1. Selection of Rural Reference Stations
- 1.
- Machine learning method
- 2.
- Machine learning model
- 3.
- The contamination parameter
2.2.2. Regional Average
- Calculating the anomaly: The station SAT series are calculated to form SAT anomalies relative to the reference period (1961–1990).
- Gridding: Due to the high density of USHCN stations and the regional scale of climate in the contiguous United States, as well as for the convenience of comparison with previous relevant studies, the research area is divided into a 2° × 2° latitude–longitude grid [43,44], and the mean temperature anomalies of all stations in each grid cell are calculated every year to obtain the temperature anomaly series of each grid cell.
- Regional average: The spatial area-weighted average method is adopted for the calculation, with the cosine of each grid cell’s latitude (the mid-latitude value) used as the weight to obtain the regional average temperature anomalies of the whole research area.
2.2.3. Evaluation Method of Urbanization Effect
3. Results
3.1. Overall Temperature Trend
3.2. Urbanization Effect
3.3. Urbanization Contribution
4. Discussion
4.1. Comparison with Other Relevant Studies
4.2. Limitations of the Study
4.2.1. Limitations of Research Methods
4.2.2. Uncertainty of Research Data
5. Conclusions
- Since 1921, the urbanization effects in the latest homogenized Tmean, Tmax, and Tmin data series in the contiguous United States are 0.002 °C dec−1, −0.015 °C dec−1 and 0.013 °C dec−1, respectively, and the urbanization contributions are 35% and 34% for Tmean and Tmin, respectively.
- The urbanization effects are roughly distributed within −0.1~0.2 °C dec−1 for the annual mean Tmean, with about half of the grid cells showing an urbanization warming effect. Urbanization effects are distributed within −0.2~0.3 °C dec−1 for the annual mean Tmin series, and they are positive in most regions, with positive urbanization effects that are most extensive in the northwestern, western and southeastern coastal areas.
- For Tmean, Tmax and Tmin, the urbanization effects in the eastern and western coastal areas of the United States are generally more significant. However, there are also some grid cells with negative urbanization effects, among which the negative effect of Tmax is the most significant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar]
- Karl, T.R.; Diaz, H.F.; Kukla, G. Urbanization: Its detection and effect in the United States climate record. J. Clim. 1988, 1, 1099–1123. [Google Scholar] [CrossRef]
- Fujibe, F. Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol. 2009, 29, 1811–1822. [Google Scholar] [CrossRef]
- Hausfather, Z.; Menne, M.; Williams, C.; Masters, T.; Broberg, R.; Jones, D. Quantifying the impact of urbanization on U.S. Historical Climatology Network temperature records. J. Geophys. Res. Atmos. 2013, 118, 481–494. [Google Scholar] [CrossRef]
- Zhou, L.M.; Dickinson, R.E.; Tian, Y.H. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Lau, N.C. Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophys. Res. Lett. 2018, 45, 13060–13069. [Google Scholar] [CrossRef]
- Andrew, G.; John, D. Trends in extreme apparent temperatures over the United States, 1949–2010. J. Appl. Meteorol. Climatol. 2011, 50, 1650–1653. [Google Scholar]
- Arthur, T.; Robert, J. Trends in twentieth-century temperature extremes across the United States. J. Clim. 2002, 15, 3188–3205. [Google Scholar]
- Evan, M.; Richard, B. A trend analysis of the 1930–2010 extreme heat events in the Continental United States. J. Appl. Meteorol. Climatol. 2014, 53, 565–582. [Google Scholar]
- Du, J.; Wang, K.; Cui, B.; Jiang, S. Correction of inhomogeneities in observed land surface temperatures over China. Atmos. Res. 2020, 33, 8885–8902. [Google Scholar] [CrossRef]
- Tysa, S.; Ren, G.; Qin, Y.; Zhang, P.; Ren, Y.; Jia, W.; Wen, K. Urbanization Effect in Regional Temperature Series Based on a Remote Sensing Classification Scheme of Stations. J. Geophys. Res. 2019, 124, 10646–10661. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Uncertainty in global warming research. Earth Sci. Front. 2002, 9, 371–376. (In Chinese) [Google Scholar]
- Zhao, Z.C. The changes of temperature and the effects of the urbanization in China in the last 39 years. Meteor. Monogr. 1991, 17, 14–16. (In Chinese) [Google Scholar]
- Shi, Z.T.; Jia, G.S.; Hu, Y.H.; Zhou, Y.Y. The contribution of intensified urbanization effects on surface warming trends in China. Theor. Appl. Climatol. 2019, 138, 1125–1137. [Google Scholar] [CrossRef]
- Shi, T.; Yang, Y.J.; Sun, D.B.; Huang, Y.; Shi, C. Influence of Changes in Meteorological Observational Environment on Urbanization Bias in Surface Air Temperature: A Review. Front. Clim. 2022, 3, 781999. [Google Scholar] [CrossRef]
- Mahmood, R.; Foster, S.A.; Logan, D. The Geoprofille metadata, exposure of instruments, and measurement bias in climatic record revisited. Int. J. Clim. 2006, 26, 1091–1124. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol. 2016, 36, 4384–4392. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Y.; Chen, B. Observed surface warming induced by urbanization in east China. J. Geophys. Res. 2011, 116, D14113. [Google Scholar] [CrossRef]
- Das, L.; Annan, J.D.; Hargreaves, J.C.; Emori, S. Centennial scale warming over Japan: Are the rural stations really rural? Atmos. Sci. Lett. 2011, 12, 362–367. [Google Scholar] [CrossRef]
- Connolly, R.; Connolly, M. Has poor station quality biased U.S. temperature estimates? Open Peer Rev. J. 2014, 11. Available online: http://oprj.net/articles/climate-science/11 (accessed on 8 December 2021).
- Yang, X.; Leung, L.R.; Zhao, N.; Zhao, C.; Yun, Q.K.H.; Liu Chen, B. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Genki, K.; Ronan, C.; Peter, O. Evidence of Urban Blending in Homogenized Temperature Records in Japan and in the United States: Implications for the Reliability of Global Land Surface Air Temperature Data. J. Appl. Meteorol. Climatol. 2023, 62, 1095–1114. [Google Scholar]
- Ma, X.B. A review of the urbanization process in the United States and its experience. J. Guizhou Univ. Soc. Sci. 2019, 37, 40–46. (In Chinese) [Google Scholar]
- Connolly, R.; Connolly, M. Urbanization bias III. Estimating the extent of bias in the Historical Climatology Network datasets. Open Peer Rev. J. 2014, 34, ver. 0.1. [Google Scholar]
- Scafetta, N. Detection of non-climatic biases in land surface temperature records by comparing climatic data and their model simulations. Clim. Dyn. 2021, 56, 2959–2982. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, G.; Qin, Y.; Zhai, Y.; Zhai, T.; Tysa, S.; Xue, X.; Yang, G.; Sun, X. Urbanization effects on estimates of global trends in mean and extreme air temperature. J. Clim. 2021, 34, 1923–1945. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Parker, D.E. A demonstration that large-scale warming is not urban. J. Clim. 2006, 19, 4179–4197. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Li, Q. Urbanization effects in largescale temperature records, with an emphasis on China. J. Geophys. Res. 2008, 113, D16122. [Google Scholar] [CrossRef]
- Hausfather, Z.; Cowtan, K.; Menne, M.; Williams, C.N., Jr. Evaluating the impact of U.S. Historical Climatology Network homogenization using the U.S. Climate Reference Network. Geophys. Res. Lett. 2016, 43, 1695–1701. [Google Scholar] [CrossRef]
- Oke, T. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Diamond, H.; Karl, T.; Palecki, M.; Baker, C.; Bell, J.; Leeper, R.; Easterling, D.; Lawrimore, J.; Meyers, T.; Helfert, M.; et al. Climate reference network after one decade of operations: Status and assessment. Bull. Am. Meteorol. Soc. 2013, 94, 485–498. [Google Scholar] [CrossRef]
- Ren, G.; Chu, Z. Construction of American climate reference network and its enlightenment. China Meteorol. Adm. 2019, 9, 56–61. (In Chinese) [Google Scholar]
- Menne, M.; Williams, C.N., Jr.; Vose, R. The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc. 2009, 90, 993–1007. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Khan, S.; Madden, M. A survey of recent trends in one class classification. In Artificial Intelligence and Cognitive Science. AICS 2009. Lecture Notes in Computer Science, vol 6206; Coyle, L., Freyne, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 188–197. [Google Scholar]
- Liu, F.; Ting, K.; Zhou, Z. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM), Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar]
- Liu, F.; Ting, K.; Zhou, Z. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Ren, G. Urbanization as a major driver of urban climate change. Adv. Clim. Chang. Res. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zhou, H.; Zhao, G.; Ling, F.; Li, X.; Qiu, J. Urbanization effects on changes in the observed air temperatures during 1977–2014 in China. Int. J. Climatol. 2018, 39, 251–265. [Google Scholar] [CrossRef]
- Jones, P.D.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 1996, 16, 361–377. [Google Scholar] [CrossRef]
- Ren, G.; Wang, G.; Li, Q. Principles of Climate Change Monitoring and Detection Technology, 1st ed.; China Meteorological Press: Beijing, China, 2023; pp. 214–228. [Google Scholar]
- Dunn, L.; Donat, M.; Alexander, L. Investigating uncertainties in global gridded data sets of climate extremes. Clim. Past 2014, 10, 2171–2199. [Google Scholar] [CrossRef]
- Avila, F.; Dong, S.; Menang, K.; Rajczak, J.; Renom, M.; Donat, M.; Alexander, L. Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia. Weather. Clim. Extrem. 2015, 9, 6–16. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, M.; Wang, L.; Zong, L.; Liu, D.; Zhang, W.; Wang, M.; Wan, B.; Guo, Y. Unevenly spatiotemporal distribution of urban excess warming in coastal Shanghai megacity, China: Roles of geophysical environment, ventilation and sea breezes. Build. Environ. 2023, 235, 110180. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Clim. 2014, 27, 2340–2360. [Google Scholar] [CrossRef]
- Xue, J.; Zong, L.; Yang, Y.; Bi, X.; Zhang, Y.; Zhao, M. Diurnal and interannual variations of canopy urban heat island (CUHI) effectsover a mountain-valley city with a semi-arid climate. Urban Clim. 2023, 48, 101425. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, L.; Xu, P.; Cao, J.; Yang, R. Heatwaves similar to the unprecedented one in summer 2021 over western North America are projected to become more frequent in a warmer world. Earth’s Future 2023, 11, e2022EF003437. [Google Scholar] [CrossRef]
- Elvidge, C.; Tuttle, B.; Sutton, P.; Baugh, K.; Howard, A.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef] [PubMed]
- Peterson, T.; Owen, T. Urban heat island assessment: Metadata are important. J. Clim. 2005, 18, 2637–2646. [Google Scholar] [CrossRef]
- He, J.; Ren, G.; Zhang, P.; Zheng, X.; Zhang, S. Updated analysis of surface warming trends in North China based on in-depth homogenized data (1951−2020). Clim. Res. 2023, 91, 47–66. [Google Scholar] [CrossRef]
Temperature Index | Urbanization Effect (°C dec−1) | Urbanization Contribution (%) | Significance p-Value |
---|---|---|---|
Tmean | 0.002 | 35% | 0.0514 (p < 0.1) |
Tmax | −0.015 | \ * | 9.04 × 10−5 (p < 0.05) |
Tmin | 0.013 | 34% | 0.0059 (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Ren, G.; Zhang, P. Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States. Land 2024, 13, 388. https://doi.org/10.3390/land13030388
Huang S, Ren G, Zhang P. Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States. Land. 2024; 13(3):388. https://doi.org/10.3390/land13030388
Chicago/Turabian StyleHuang, Siqi, Guoyu Ren, and Panfeng Zhang. 2024. "Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States" Land 13, no. 3: 388. https://doi.org/10.3390/land13030388
APA StyleHuang, S., Ren, G., & Zhang, P. (2024). Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States. Land, 13(3), 388. https://doi.org/10.3390/land13030388