Carbon Release Characteristics at Soil–Air Interface under Litter Cover with Different Decomposition Degrees in the Arbor and Bamboo Forests of Pi River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis Methods
2.3. Calculation Method of CO2 and CH4 Diffusion Flux
2.4. Physical and Chemical Factors
2.5. Data Statistical Analysis
3. Results
3.1. Variation Characteristics of Physical and Chemical Factors
3.2. Variation Characteristics of CH4 Flux at Soil–Air Interface under Different Decomposition Levels of Litter Cover
3.3. Variation Characteristics of CO2 Flux at Soil-Air Interface under Different Decomposition Levels of Litter Cover
3.4. The Results of Soil Carbon Release Flux under Litter Cover
3.5. Analysis Results of Soil Carbon Release with Temperature and Soil Moisture Content
3.5.1. The Analysis Results of Soil Carbon Release with Temperature
3.5.2. The Analysis Results of Soil Carbon Release with Soil Moisture Content
4. Discussion
4.1. Comparative Analysis of Soil Carbon Release Flux under Different Types of Litter Cover
4.2. Effects of Temperature on Soil Carbon Release
4.3. Effects of Soil Water on Soil Carbon Release
4.4. The Synergistic Effect of Temperature and Soil Moisture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.G.; Tong, C.; Luo, R.T. Litter Decomposition of Three Main Plants in Winter and Spring in the Marsh of Minjiang River Estuary. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2008, 24, 80–85. [Google Scholar]
- Berg, B.; Mcclaugherty, C. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Liu, Y.; Cui, Z.; Huang, Z.; Miao, H.T.; Wu, G.L. The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem. Hydrol. Earth Syst. Sci. 2019, 23, 2481–2490. [Google Scholar] [CrossRef]
- Nie, X.Q.; Wang, D.; Yang, L.C.; Zhou, G.Y. Storage and Climatic Controlling Factors of Litter Standing Crop Carbon in the Shrublands of the Tibetan Plateau. Forests 2019, 10, 987. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, K.; Sahu, N.; Singh, S.N.; Manika, N. Understanding the relationship between soil properties and litter chemistry in three forest communities in tropical forest ecosystem. Environ. Monit. Assess. 2019, 191 (Suppl. S3), 797. [Google Scholar] [CrossRef] [PubMed]
- Onwuka, B.; Mang, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res. 2018, 8, 34–37. [Google Scholar] [CrossRef]
- Wang, D.D.; Yu, X.X.; Jia, G.; Qin, W.; Shan, Z. Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China. Forests 2019, 10, 1081. [Google Scholar] [CrossRef]
- Leitner, S.; Sae-Tun, O.; Kranzinger, L.; Zechmeister-Boltenstern, S.; Zimmermann, M. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest. Plant Soil 2016, 403, 455–469. [Google Scholar] [CrossRef]
- Vivanco, L.; Austin, A.T. The importance of macro-and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. For. Ecol. Manag. 2019, 441, 144–154. [Google Scholar] [CrossRef]
- Rubino, M.; Dungait, J.A.J.; Evershed, R.P.; Bertolini, T.; Angelis, P.D.; D’Onofrio, A.; Lagomarsino, A.; Lubritto, C.; Merola, A.; Terrasi, F. Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. Soil Biol. Biochem. 2010, 42, 1009–1016. [Google Scholar] [CrossRef]
- Lu, M.H.; Zhang, L.H.; Zhang, M.Y.; Xu, L.H.; Hu, W.F. Effects of nitrogen and litter addition on soil CO2 release from the Minjiang River Estuary wetlands. J. Subtrop. Resour. Environ. 2020, 15, 25–32. [Google Scholar]
- Zhao, X.X.; Li, Y.L.; Xie, Z.M.; Li, P. Effects of nitrogen deposition and plant litter alteration on soil respiration in a semiarid grassland. Sci. Total Environ. 2020, 740, 139634. [Google Scholar] [CrossRef] [PubMed]
- Kandeler, E.; Luxhi, J.; Tscherko, D.; Magid, J. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biol. Biochem. 1999, 31, 1171–1179. [Google Scholar] [CrossRef]
- Chigineva, N.I.; Aleksandrova, A.V.; Marhan, S.; Kandeler, E.; Tiunov, A.V. The importance of mycelial connection at the soil–litter interface for nutrient translocation, enzyme activity and litter decomposition. Appl. Soil Ecol. 2011, 51, 35–41. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Qin, T.L.; Nie, H.J.; Tian, J.H. Research Advances on the Regulatory Mechanism of Forest Litters on Watershed Hydrological Processes. World For. Res. 2019, 32, 36–41. [Google Scholar]
- Lambert, M.; Fréchette, J.-L. Analytical Techniques for Measuring Fluxes of CO2 and CH4 from Hydroelectric Reservoirs and Natural Water Bodies; Springer: Berlin/Heidelberg, Germany, 2005; pp. 37–60. [Google Scholar]
- Gao, M.L. Effects of Understory Vegetation and Litter on Soil Greenhouse Gas Fluxes of Natural Forests in Cold Temperate Zone. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Fan, J.; Luo, R.; Mcconkey, B.G.; Ziadi, N. Effects of nitrogen deposition and litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine forestland. Sci. Rep. 2020, 10, 8959. [Google Scholar] [CrossRef]
- Yuan, H.Y. The Study on Soil Respiration and CO2 Release Rate of Litter Decomposition in Different Forestlands in Hilly Areas of the Central Sichuan Basin. Master’s Thesis, Southwest University, Chongqing, China, 2008. [Google Scholar]
- Dong, Y.S.; Peng, G.B.; Li, J. Seasonal variations of CO2, CH4, and N2O fluxes from temperate forest soil. Acta Geogr. Sin. 1996, 51, 120–128. [Google Scholar]
- Yang, J.S.; Liu, J.S.; Sun, L.N. CO2-release rate of soil respiration and litter decomposition of meadow marshes in Sanjiang Plain. Acta Ecol. Sin. 2008, 28, 805–810. [Google Scholar]
- Dou, X.; Zhou, W.; Zhang, Q.; Cheng, X. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China. Atmos. Environ. 2016, 126, 98–106. [Google Scholar] [CrossRef]
- Han, T.; Huang, W.; Liu, J.; Zhou, G.; Xiao, Y. Different soil respiration responses to litter manipulation in three subtropical successional forests. Sci. Rep. 2015, 5, 18166. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Zhou, G.Y.; Zhang, D.Q.; Wang, Y.H.; Liu, S.Z. Study on Surface CO2 Flux and Its Influencing Factors in Dinghushan Forest. Sci. Sin. (Terrae) 2004, 34, 175–182. [Google Scholar]
- Yu, Z.P.; Wang, X.H.; Hu, Z.H.; Wang, M.H.; Liu, R.Q.; Zhen, L.J.; He, Z.M.; Huang, Z.Q. Contrasting responses of soil respiration to litter manipulation in subtropical Mytilaria laosensis and Cunninghamia lanceolata plantations. Acta Ecol. Sin. 2014, 34, 2529–2538. [Google Scholar]
- Wachiye, S.; Merbold, L.; Vesala, T.; Rinne, J.; Pellikka, P. Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences 2020, 17, 2149–2167. [Google Scholar] [CrossRef]
- Qin, Z.W.; Zhou, X.G.; Wen, Y.G.; Zhu, H.G.; Li, H.Y.; Ruan, Y.W.; Cai, D.X. Effects of litter removal and addition on soil respiration in a Pinus massoniana × Castanopsis hystrix mixed plantation. Guangxi Sci. 2019, 26, 199–206. [Google Scholar]
- Chen, Q.; Long, C.Y.; Chen, J.W.; Cheng, X.L. Differential response of soil CO2, CH4, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China. Glob. Chang. Biol. 2021, 27, 5657–5669. [Google Scholar] [CrossRef] [PubMed]
- Goreau, T.J.; Mello, W.Z. Tropical deforestation: Some effects on atmospheric chemistry. Ambio 1988, 17, 275–281. [Google Scholar]
- Townsend, A.R.; Vitousek, P.M.; Trumbore, S.E. Soil organic matter dynamics along gradients in temperature and land use on the island of hawaii. Ecology 1995, 76, 721–733. [Google Scholar] [CrossRef]
- Keller, M.; Goreau, T.J.; Wofsy, S.C.; Kaplan, W.A.; Mcelroy, M.B. Production of nitrous oxide and consumption of methane by forest soils. Geophys. Res. Lett. 2013, 10, 1156–1159. [Google Scholar] [CrossRef]
- Qi, Y.C.; Luo, J.; Dong, Y.S.; Zhang, S. Research on greenhouse gas N2O and CH4 emissions from forest soil in the dark coniferous forest belt of Gongga Mountain. Sci. Sin. (Terrae) 2002, 32, 934–941. [Google Scholar]
- Huang, C.C.; Ge, Y.; Chang, J.; Lu, R.; Xu, Q.S. Studies on the soil respiration of three woody plant communities in the east mid-subtropical zone, China. Acta Ecol. Sin. 1999, 19, 324–328. [Google Scholar]
- Ge, X.G.; Zhou, B.Z.; Xiao, W.F.; Wang, X.M.; Cao, Y.H.; Ye, M. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest. Chin. J. Plant Ecol. 2017, 41, 1177–1189. [Google Scholar]
- Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G.D. Experimental analysis of drainage and water storage of litter layers. Hydrol. Earth Syst. Sci. 2007, 11, 1703–1716. [Google Scholar] [CrossRef]
- Jiang, J.M.; Fei, S.M.; Yu, Y.; Tang, S.Q.; He, Y.P. Hydrological effects of Five Forest Types in Changning Bamboo Sea. J. West China For. Sci. 2006, 35, 6. [Google Scholar]
- Wang, L.L.; Song, C.C.; Ge, R.J.; Song, Y.Y.; Liu, D.Y. Soil organic carbon storage under different land-use types in Sanjiang Plain. China Environ. Sci. 2009, 29, 656–660. [Google Scholar]
- Lv, F.C.; Wang, X.D. Contribution of Litters to Soil Respiration: A Review. Soils 2017, 49, 225–231. [Google Scholar]
- Luo, D.; Shi, Z.M.; Li, D.S. Short-term effects of litter treatment on soil C and N transformation and microbial community structure in Erythrophleum fordii plantatio. Chin. J. Appl. Ecol. 2018, 29, 2259–2268. [Google Scholar]
- Li, Y.Q.; Xu, M.; Sun, O.J.; Cui, W. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biol. Biochem. 2004, 36, 2111–2114. [Google Scholar] [CrossRef]
- Zheng, X.P.; Wu, F.Z.; Wu, Q.X.; Zhu, J.J.; NI, X.Y. The effect of litter input changes on CH4 uptake in forest soils. Chin. J. Ecol. 2024, 1–10. Available online: http://kns.cnki.net/kcms/detail/21.1148.Q.20240205.1728.008.html (accessed on 12 January 2024).
- Petraglia, A.; Cacciatori, C.; Chelli, S.; Fenu, G.; Carbognani, M. Litter decomposition: Effects of temperature driven by soil moisture and vegetation type. Plant Soil 2019, 435, 187–200. [Google Scholar] [CrossRef]
- Hosseiniaghdam, E.; Yang, H.; Mamo, M.; Kaiser, M.; Schacht, W.H.; Eskridge, K.M.; Abagandura, G.O. Effects of litter placement, soil moisture and temperature on soil carbon dioxide emissions in a sandy grassland soil. Grassl. Sci. 2023, 69, 197–206. [Google Scholar] [CrossRef]
- Xiang, Y.; Chang, S.X.; Shen, Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Castro, M.S.; Steudler, P.A.; Ittlo, J.M.M.; Aber, J.D.; Millham, S. Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the northeastern United States. Biogeochemistry 1993, 18, 119–135. [Google Scholar] [CrossRef]
- Darmawan, A.A.; Ariyanto, D.P.; Basuki, T.M.; Syamsiyah, J. Measuring of leaf litter decomposition rate and flux of carbon dioxide in various land cover in Gunung Bromo Education Forest, Karanganyar. IOP Conf. Ser. Earth Environ. Sci. 2021, 821, 1–8. [Google Scholar] [CrossRef]
- Wu, H.J.; Lee, X. Short-term effects of rain on soil respiration in two New England forests. Plant Soil 2011, 338, 329–342. [Google Scholar] [CrossRef]
- Li, R.P.; Zhou, G.S.; Yu, W. Responses of soil respiration in non-growing seasons to environmental factors in a maize agroecosystem, Northeast China. Chin. Sci. Bull. 2010, 55, 2723–2730. [Google Scholar] [CrossRef]
- Petia, S.N.; Stephan, R.; Christian, P.A.; Raphael, M. Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur. J. For. Res. 2009, 128, 87–98. [Google Scholar]
- Tu, Z.H. Mechanism Study on the Coupling Cycle of Soil Carbon-Nitrogen-Water of Forest Ecosystems in Beijing Mountains Area. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Li, B.B. The Coupling Mechanism and Resilience of Soil Carbon, Nitrogen and Water during Vegetation Restoration in the China’s Loess Plateau. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Guo, W.H.; Li, S.E. Preliminary Research on Vineyard’s Water-carbon Flux Coupling in Arid Northwestern China. J. Irrig. Drain. 2010, 29, 3. [Google Scholar]
- Zhang, L. Soil Organic Carbon in Mangrove Forests and Its Relationship with Soil Factor in Qinglangang, Hainan. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2013. [Google Scholar]
- Qing, J.; Shang Guan, Z.P. Variation characteristics of soil respiration rate in Ulmus pumila-robinia pseudocacia in different forest types during the growing season. J. Northwest A F Univ. (Nat. Sci. Ed.) 2012, 40, 91–98. [Google Scholar]
- Kou, T.J.; Zhu, J.G.; Xie, Z.B.; Liu, G.; Zeng, Q. The effects of temperature and soil moisture on soil respiration in the cropland under elevated pCO2. Ecol. Environ. Sci. 2008, 17, 950–956. [Google Scholar]
- Liu, W.; Chen, J.M.; Gao, Y.; Chen, J.; Liang, W.P. Distrbution of soil organic carbon in grassland on loess plateau and its influencing factors. Acta Pedol. Sin. 2012, 49, 68–76. [Google Scholar]
- Cao, L.H.; Liu, H.M.; Zhao, S.W. Distribution of soil organic carbon and its relationship with soil physical and chemical properties on degraded alpine meadows. Pratacultural Sci. 2011, 28, 1411–1415. [Google Scholar]
- Wang, H.S.; Zhang, J.S.; Meng, P.; Gao, J.; Jia, C.R.; Ren, Y.F. Soil Respiration Variation of Platycladus Orientalis Plantation and Its Affecting Factors. Chin. J. Soil Sci. 2009, 40, 1031–1035. [Google Scholar]
- Xia, G.F.; Zhang, L.; Wei, S.; Yang, H. Effects of temperature and soil moisture on soil organic carbon decomposition. Chin. J. Eco-Agric. 2007, 15, 57–59. [Google Scholar]
- Bowden, R.D.; Newkirk, K.M.; Rullo, G.M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 1998, 30, 1591–1597. [Google Scholar] [CrossRef]
- Meril, P.; Ohtonen, R. Soil microbial activity in the coastal Norway spruce [Picea abies (L.) Karst.] forests of the Gulf of Bothnia in relation to humus-layer quality, moisture and soil types. Biol. Fertil. Soils 1997, 25, 361–365. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.H.; Pang, Z.; Zhao, Y.; Yu, X. Variations of soil respiration and controlling factors in a Platycladus orientalis plantation in the west mountains of Beijin. Soil Biol. Biochem. 2015, 28, 58–65. [Google Scholar]
- Wildung, R.E.; Garland, T.R.; Buschbom, R.L. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem. 1975, 7, 373–378. [Google Scholar] [CrossRef]
- Schleser, G.H. The Response of CO2 Evolution from Soils to Global Temperature Changes. Z. Für Naturforsch. A 1982, 37, 287–291. [Google Scholar] [CrossRef]
Project | Vegetational Form | Soil Texture | Volume of Litter Storage (t/hm2) | pH | Appearance Density | Organic Carbon | |
---|---|---|---|---|---|---|---|
Undecomposed Layer | Decomposition Layer | / | g/cm3 | g/kg | |||
Arbor | cedar, robur | sandy clay loam, sandy loam | 2.88 | 17.9 | 5.30 | 1.40 | 16.03 |
Bamboo | Moso bamboo | sandy loam | 3.36 | 8.15 | 5.54 | 1.58 | 19.30 |
Project | Arbor | Bamboo | |||||||
---|---|---|---|---|---|---|---|---|---|
No Litter | Undecomposed Layer Litter | Semi-Decomposed Layer Litter | Decomposition Layer Litter | No Litter | Undecomposed Layer Litter | Semi-Decomposed Layer Litter | Decomposition Layer Litter | ||
soil temperature (°C) | average | 16.9 | 17.2 | 17.7 | 18.2 | 15.7 | 16.1 | 16.7 | 17.7 |
max | 26.0 | 26.2 | 26.5 | 27.3 | 24.2 | 24.5 | 26.0 | 28.2 | |
minimum | 3.5 | 3.5 | 3.6 | 3.6 | 4.2 | 4.4 | 4.5 | 4.5 | |
rangeability | 22.5 | 22.7 | 22.9 | 23.7 | 20.0 | 20.1 | 21.5 | 23.7 | |
Project | no litter | litter | no litter | litter | |||||
soil water (%) | average | 13.35 | 17.44 | 24.62 | 26.61 | ||||
max | 17.48 | 22.27 | 29.61 | 35.20 | |||||
minimum | 8.18 | 7.31 | 17.98 | 17.47 | |||||
rangeability | 9.30 | 14.96 | 11.63 | 17.73 |
Project | Type | No Litter | Under Litter | Undecomposed Layer | Semi Decomposed Layer | Decomposition Layer |
---|---|---|---|---|---|---|
CH4 mg·m−2·h−1 | arbor | −0.250 | −0.201 | −0.174 | −0.208 | −0.221 |
bamboo | −0.114 | 0.128 | −0.113 | −0.183 | −0.088 | |
CO2 mg·m−2·h−1 | arbor | 553.400 | 795.733 | 480.600 | 881.400 | 1025.200 |
Bamboo | 735.800 | 693.167 | 809.600 | 696.700 | 573.200 |
Area | Climatic Zone | Type of Litter | Carbon Release Fluxes | Reference | |
---|---|---|---|---|---|
Flux-CH4/ mg·m−2·h−1 | Flux-CO2/ mg·m−2·h−1 | ||||
Brazil | tropic | evergreen broad-leaved forest | - | 728.85 | [29] |
Hawaii | tropic | evergreen broad-leaved forest | - | 652.25 | [30] |
Dinghu Mountain | subtropics | evergreen broad-leaved forest | - | 475.83 | [24] |
Amazon | temperate zone | deciduous forest | −0.01~−0.16 | - | [31] |
Gongga Mountain | Transition zone between subtropical and temperate zones | fir forest | −0.080 ± 0.066 | - | [32] |
Hangzhou West Lake Region | subtropics | evergreen broad-leaved forest | - | 275.34 | [33] |
phyllostachys pubescens forest | - | 351.26 | |||
tea garden | - | 325.91 | |||
PI River Basin | subtropics | arbor forest | −0.20 | 795.42 | the study |
bamboo forest | −0.13 | 693.20 |
Project | Experiment Condition | Flux-CH4 | Flux-CO2 | |||
---|---|---|---|---|---|---|
Fitting Formula | R2 | Fitting Formula | Q10 | R2 | ||
Arbor | No litter cover | F = −0.0056T − 0.15 | 0.51 | F = 121.07e0.0798T | 2.22 | 0.81 |
Undecomposed litter cover | F = −0.0039T − 0.107 | 0.47 | F = 109.32e0.0766T | 2.15 | 0.84 | |
Semi-decomposition layer litter cover | F = −0.0034T − 0.148 | 0.41 | F = 235.6e0.0675T | 1.96 | 0.88 | |
Decomposition layer litter cover | F = −0.0005T − 0.132 | 0.54 | F = 387.78e0.0491T | 1.63 | 0.82 | |
Bamboo | No litter cover | F = −0.0024T − 0.075 | 0.63 | F = 583.97e0.0122T | 1.13 | 0.05 |
Undecomposed litter cover | F = −0.0026T − 0.072 | 0.39 | F = 163.53e0.0877T | 2.40 | 0.85 | |
Semi-decomposition layer litter cover | F = −0.0071T − 0.064 | 0.65 | F = 100.18e0.1007T | 2.73 | 0.87 | |
Decomposition layer litter cover | F = −0.002T − 0.052 | 0.49 | F = 108.32e0.0828T | 2.29 | 0.86 |
Project | Flux-CO2 | Flux-CH4 | Air Temperature | Soil Temperature | |
---|---|---|---|---|---|
Arbor | Flux-CO2 | 1 | 0.571 ** | 0.837 ** | 0.785 ** |
Flux-CH4 | 1 | 0.604 ** | 0.615 ** | ||
air temperature | 1 | 0.984 ** | |||
soil temperature | 1 | ||||
Bamboo | Flux-CO2 | 1 | 0.484 ** | 0.726 ** | 0.758 ** |
Flux-CH4 | 1 | 0.497 ** | 0.485 ** | ||
air temperature | 1 | 0.984 ** | |||
soil temperature | 1 |
Project | Experiment Condition | Flux-CH4 | Flux-CO2 | ||
---|---|---|---|---|---|
Fitting Formula | R2 | Fitting Formula | R2 | ||
Arbor | No litter cover | Flux = 0.0097ω + 0.0104 | 0.65 | Flux = 169.96e0.050ω | 0.31 |
Undecomposed litter cover | Flux = 0.0073ω + 0.051 | 0.43 | Flux = 120.33e0.080ω | 0.37 | |
Semi-decomposition layer litter cover | Flux = 0.0112ω − 0.0045 | 0.43 | Flux = 411.72e0.058ω | 0.54 | |
Decomposition layer litter cover | Flux = 0.0153ω − 0.0517 | 0.42 | Flux = 257.87e0.082ω | 0.51 | |
Bamboo | No litter cover | Flux = 0.0016ω + 0.0873 | 0.62 | Flux = 248.36e0.034ω | 0.45 |
Undecomposed litter cover | Flux = 0.0038ω + 0.0519 | 0.62 | Flux = 173.02e0.081ω | 0.41 | |
Semi-decomposition layer litter cover | Flux = 0.0109ω + 0.0197 | 0.58 | Flux = 91.47e0.105ω | 0.49 | |
Decomposition layer litter cover | Flux = 0.0037ω + 0.0240 | 0.44 | Flux = 98.84e0.090ω | 0.37 |
Project | Arbor | Bamboo | |||||||
---|---|---|---|---|---|---|---|---|---|
Flux-CH4 | Flux-CO2 | Soil Moisture Content | Rainfall | Flux-CH4 | Flux-CO2 | Soil Moisture Content | Rainfall | ||
No litter cover | Flux-CH4 | 1 | 0.492 * | 0.548 ** | 0.038 | 1 | 0.201 | 0.156 | −0.198 |
Flux-CO2 | 1 | −0.004 | 0.066 | 1 | 0.323 | 0.318 | |||
soil moisture content | 1 | 0.433 * | 1 | 0.178 | |||||
rainfall | 1 | 1 | |||||||
Covered with litter | Flux-CH4 | 1 | 0.805 ** | 0.472 * | −0.009 | 1 | 0.718 ** | −0.030 | −0.222 |
Flux-CO2 | 1 | 0.419 * | 0.054 | 1 | 0.454 * | −0.008 | |||
soil moisture content | 1 | 0.511 ** | 1 | 0.239 | |||||
rainfall | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Du, T.; Liu, S.; Abebe, S.A.; Yan, S.; Li, W.; Qin, T. Carbon Release Characteristics at Soil–Air Interface under Litter Cover with Different Decomposition Degrees in the Arbor and Bamboo Forests of Pi River Basin. Land 2024, 13, 427. https://doi.org/10.3390/land13040427
Zhang J, Du T, Liu S, Abebe SA, Yan S, Li W, Qin T. Carbon Release Characteristics at Soil–Air Interface under Litter Cover with Different Decomposition Degrees in the Arbor and Bamboo Forests of Pi River Basin. Land. 2024; 13(4):427. https://doi.org/10.3390/land13040427
Chicago/Turabian StyleZhang, Junwei, Tao Du, Shanshan Liu, Sintayehu A. Abebe, Sheng Yan, Wei Li, and Tianling Qin. 2024. "Carbon Release Characteristics at Soil–Air Interface under Litter Cover with Different Decomposition Degrees in the Arbor and Bamboo Forests of Pi River Basin" Land 13, no. 4: 427. https://doi.org/10.3390/land13040427
APA StyleZhang, J., Du, T., Liu, S., Abebe, S. A., Yan, S., Li, W., & Qin, T. (2024). Carbon Release Characteristics at Soil–Air Interface under Litter Cover with Different Decomposition Degrees in the Arbor and Bamboo Forests of Pi River Basin. Land, 13(4), 427. https://doi.org/10.3390/land13040427