Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data and Methods
2.2.1. Data Collection and Processing
2.2.2. Land-Use Dynamics Tracking Techniques and Dynamic Degree
2.2.3. Landscape Pattern Analysis
2.2.4. The Valuation of the Ecosystem Services
3. Results
3.1. Land Data Accuracy Evaluation
3.2. Spatiotemporal Characteristics of Current Land Status and Dynamic Change Trend in Different Land Management System Regions from 1990 to 2020
3.2.1. Analysis of the Spatiotemporal Variations in Land Use in the Whole Sanjiang Plain from 1990 to 2020
3.2.2. Comparative Analysis of Land Spatiotemporal Characteristic Changes in Different Land Management System Regions from 1990 to 2020
3.3. Landscape Analysis from Different Scales in Different Land Management System Regions from 1990 to 2020
3.4. Analysis of Spatiotemporal Characteristics of Ecosystem Service Values between the Different Land Management System Regions from 1990 to 2020
3.4.1. Comparison Analysis of the Differentiated Ecosystem Service Changes under Different Land Management System Regions
3.4.2. Comparison Analysis of Spatial Ecosystem Service Evolution in Different Land Management System Regions
3.4.3. Comparative Analysis of Different Ecosystem Service Functions on State and Private Farms
3.4.4. Comparative Analysis of Ecological Service Functions from Different Land Types on State and Private Farms
4. Discussions
4.1. Cultivated Land Continues to Increase in Sanjiang Plain, and Is Accompanied by a More Differentiated Pattern of Upland Crops and Paddy Fields in Different Land Management Systems in Northeast China
4.2. A Greater Amount of Loss of Ecosystem Services on State-Owned Farms than Private Farms in China
4.3. Compared the Ecosystem Service Changes in Sanjiang Plain to Other Regions
4.4. Differences in Environmental Effects and Socio-Ecological Implications of Different Land Changes in Different Land Management System Regions
4.5. Research Shortcomings and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Jiang, H.-H.; Cai, L.-M.; Wen, H.-H.; Hu, G.-C.; Chen, L.-G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Whiting, S.H. Land rights, industrialization, and urbanization: China in comparative context. J. Chin. Political Sci. 2022, 27, 399–414. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Sci. Total Environ. 2022, 833, 155218. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Stephens, C.M.; Lall, U.; Johnson, F.; Marshall, L.A. Landscape changes and their hydrologic effects: Interactions and feedbacks across scales. Earth-Sci. Rev. 2021, 212, 103466. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Cousins, S.A. Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landsc. Ecol. 2001, 16, 41–54. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z. Using satellite imagery and GIS for land-use and land-cover change mapping in an estuarine watershed. Int. J. Remote Sens. 2005, 26, 5275–5296. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415. [Google Scholar]
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Cacetta, P.; De Wit, A.; Di Bella, C.; Gérard, B.; Giri, C.; Gond, V. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience. 2009. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC54524 (accessed on 13 July 2022).
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1: 100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf. Sci. 2021, 24, 85–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Liu, Y.; Cheng, T.; Liang, M.; Ding, Y.; Gao, M.; Wei, X.; Li, J. A Multi-feature Combined Cloud-snow Differentiation Algorithm for Gaofen-1 WFV Data Using Temperature, Temporal, and Spectral Characteristics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9802–9815. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol. 2016, 31, 1509–1522. [Google Scholar] [CrossRef]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, X. Value of ecosystem services in China. Chin. Sci. Bull. 2000, 45, 870–876. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Gaodi, X.; Lin, Z.; Chunxia, L.; Yu, X.; Wenhua, L. Applying value transfer method for eco-service valuation in China. J. Resour. Ecol. 2010, 1, 51–59. [Google Scholar]
- de Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Tuan, Q.V.; Kuenzer, C.; Oppelt, N. How remote sensing supports mangrove ecosystem service valuation: A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [Google Scholar]
- Wang, L.; Chen, C.; Zhang, Z.; Gan, W.; Yu, J.; Chen, H. Approach for estimation of ecosystem services value using multitemporal remote sensing images. J. Appl. Remote Sens. 2022, 16, 012010. [Google Scholar] [CrossRef]
- Huang, T.; Huang, W.; Wang, K.; Li, Y.; Li, Z.; Yang, Y.a. Ecosystem service value estimation of paddy field ecosystems based on multi-source remote sensing data. Sustainability 2022, 14, 9466. [Google Scholar] [CrossRef]
- Sutton, P.C.; Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- del Río-Mena, T.; Willemen, L.; Tesfamariam, G.T.; Beukes, O.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Guo, M.; Shu, S.; Ma, S.; Wang, L.-J. Using high-resolution remote sensing images to explore the spatial relationship between landscape patterns and ecosystem service values in regions of urbanization. Environ. Sci. Pollut. Res. 2021, 28, 56139–56151. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Ma, C. The green development mode and the process evaluation of agricultural modernization in Beidahuang. Res. Agric. Mod. 2017, 38, 364–374. [Google Scholar]
- Jin, S.; Liu, X.; Yang, J.; Lv, J.; Gu, Y.; Yan, J.; Yuan, R.; Shi, Y. Spatial-temporal changes of land use/cover change and habitat quality in Sanjiang plain from 1985 to 2017. Front. Environ. Sci. 2022, 10, 1032584. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Wang, L.; Xie, W.; Song, L.; Zhang, H.; Bi, H.; Zheng, Y.; Zhang, Y.; Zhang, X. Analysis of 22-year Drought Characteristics in Heilongjiang Province Based on Temperature Vegetation Drought Index. Comput. Intell. Neurosci. 2022, 2022, 1003243. [Google Scholar] [CrossRef]
- Ling, Z.; Shu, L.; Wang, D.; Lu, C.; Liu, B. Assessment and projection of the groundwater drought vulnerability under different climate scenarios and land use changes in the Sanjiang Plain, China. J. Hydrol. Reg. Stud. 2023, 49, 101498. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Du, G.; Chen, Z. Analysis of climatic basis for the change of cultivated land area in Sanjiang Plain of China. Front. Earth Sci. 2022, 10, 862141. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; Luo, G.; Du, G.; DeMaeyer, P.; Yin, Z. A large-scale shift of cropland structure profoundly affects grain production in the cold region of China. J. Clean. Prod. 2021, 307, 127300. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Kuang, W.; Luo, G.; Du, G.; Yin, Z. Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Sci. Total Environ. 2020, 722, 137917. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Costanza, J.K.; Riitters, K.; Vogt, P.; Wickham, J. Describing and analyzing landscape patterns: Where are we now, and where are we going? Landsc. Ecol. 2019, 34, 2049–2055. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Gaodi, X.; Shuyan, C.; Chunxia, L.; Changshun, Z.; Yu, X. Current status and future trends for eco-compensation in China. J. Resour. Ecol. 2015, 6, 355–362. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, M.; Xie, G.; Zhen, L. Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the Hunshandake region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef]
- Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining eco-compensation standards based on the ecosystem services value of the mountain ecological forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Shi, S.; Chang, Y.; Wang, G.; Li, Z.; Hu, Y.; Liu, M.; Li, Y.; Li, B.; Zong, M.; Huang, W. Planning for the wetland restoration potential based on the viability of the seed bank and the land-use change trajectory in the Sanjiang Plain of China. Sci. Total Environ. 2020, 733, 139208. [Google Scholar] [CrossRef]
- Liu, X.; An, Y.; Dong, G.; Jiang, M. Land use and landscape pattern changes in the Sanjiang Plain, Northeast China. Forests 2018, 9, 637. [Google Scholar] [CrossRef]
- Qing-chun, G.; Jin-min, H.; Xue-jie, S.; Yang, G.; Hong-liang, W.; Mu, L. Study on the changes of ecological land and ecosystem service value in China. J. Nat. Resour. 2018, 33, 195–207. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X.; Zhang, J. Impact of Land Transition on Landscape and Ecosystem Service Value in Northeast Region of China from 2000–2020. Land 2022, 11, 696. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Chatterjee, D.; Tripathi, R.; Chatterjee, S.; Debnath, M.; Shahid, M.; Bhattacharyya, P.; Swain, C.K.; Tripathy, R.; Bhattacharya, B.K.; Nayak, A.K. Characterization of land surface energy fluxes in a tropical lowland rice paddy. Theor. Appl. Climatol. 2019, 136, 157–168. [Google Scholar] [CrossRef]
- Tan, J.; Yu, D.; Li, Q.; Tan, X.; Zhou, W. Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China. Sci. Rep. 2020, 10, 9245. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Liping, C.; Haijuan, Y.; Kun, B. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
Path/Row | Year | |||||
---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2015 | 2020 | Total | |
113/027 | 11 | 12 | 10 | 11 | 9 | 53 |
114/026 | 12 | 11 | 9 | 10 | 11 | 53 |
114/027 | 14 | 10 | 8 | 11 | 8 | 51 |
114/028 | 13 | 8 | 9 | 10 | 12 | 52 |
114/029 | 12 | 9 | 10 | 12 | 10 | 53 |
115/026 | 8 | 9 | 9 | 13 | 9 | 48 |
115/027 | 9 | 8 | 11 | 9 | 8 | 45 |
115/028 | 11 | 10 | 9 | 8 | 9 | 47 |
115/029 | 8 | 8 | 9 | 10 | 10 | 45 |
116/027 | 10 | 11 | 9 | 11 | 12 | 53 |
116/028 | 11 | 10 | 11 | 12 | 11 | 55 |
116/029 | 13 | 12 | 9 | 10 | 9 | 53 |
Total | 132 | 118 | 113 | 127 | 118 | 608 |
Names | Abbreviations | Range of Value | Formulas | Ecological Interpretation |
---|---|---|---|---|
Largest Patch Index | LPI | 0 < LPI ≤ 100 | Quantifies the percentage of the total landscape area represented by the largest patch. A simple measure of dominance | |
Landscape Shape Index | LSI | LSI ≥ 1 | The shape dispersion and regularity of different patches or landscapes. | |
Interspersion and Juxtaposition Index | IJI | 0 < IJI ≤ 100 | The overall distribution and parallel distribution of different landscape types and the interaction between different types. | |
Aggregation Index | AI | 0 < AI ≤ 100 | The degree of interconnection between patches of the same type. | |
Shannon’s Diversity Index | SHDI | SHDI ≥ 0 | The richness degree of the distribution of different landscape types. |
Ecosystem Classification of Sanjiang Plain | Ecosystem Classification of Xie Gaodi | |
---|---|---|
First Class | Second Class | Second Class |
Cultivated land | Paddy fields | Paddy fields |
Upland crops | Upland crops | |
Forest land | Woodland | Average value of coniferous forest, mixed coniferous, and broad-leaved forest |
Shrub wood | Shrub wood | |
Sparse woods | Average value of forest and bare land | |
Other forest land | The average value of forest | |
Grassland | High and medium coverage grassland | Average value of grassland |
Low coverage grassland | Average value of grassland and bare land | |
Waters | Reservoirs, ponds, tidal flats, beaches, rivers, and lakes. | River system |
Permanent glacier and snow | Glacier and snow | |
Wetland | Wetland | Wetland |
Construction land | Urban, villages, industries, and mines | 4/6 buildings, roads, squares and bare soil, 1/6 forest land, and 1/6 grassland |
Other lands | Bare land, alkali land, sandy land, gobi, and saline bare rock | Desert |
Ecosystem Service Types | Supply | Regulation | Support | Culture | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First Level | Second Level | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
Cultivated land | Paddy fields | 1.36 | 0.09 | −2.63 | 1.11 | 0.57 | 0.17 | 2.72 | 0.01 | 0.19 | 0.21 | 0.09 |
Upland crops | 0.85 | 0.40 | 0.02 | 0.67 | 0.36 | 0.10 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 | |
Forest land | Woodland | 0.27 | 0.63 | 0.33 | 2.07 | 6.20 | 1.80 | 3.86 | 2.52 | 0.19 | 2.30 | 1.01 |
Shrub wood | 0.19 | 0.43 | 0.22 | 1.41 | 4.23 | 1.28 | 3.35 | 1.72 | 0.13 | 1.57 | 0.69 | |
Sparse woods | 0.25 | 0.58 | 0.30 | 1.91 | 5.71 | 1.70 | 3.74 | 2.33 | 0.18 | 2.12 | 0.93 | |
Other forest land | 0.25 | 0.58 | 0.30 | 1.91 | 5.71 | 1.67 | 3.74 | 2.32 | 0.18 | 2.12 | 0.93 | |
Grass land | High-medium density grassland | 0.23 | 0.34 | 0.19 | 1.21 | 3.19 | 1.05 | 2.34 | 1.47 | 0.11 | 1.34 | 0.59 |
Low density grassland | 0.18 | 0.26 | 0.14 | 0.91 | 2.39 | 0.82 | 1.76 | 1.11 | 0.09 | 1.01 | 0.45 | |
Water area | Rivers, lakes, reservoirs, ponds, tidal flats, and beaches | 0.80 | 0.23 | 8.29 | 0.77 | 2.29 | 5.55 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
Permanent glacier and snow | 0.00 | 0.00 | 2.16 | 0.18 | 0.54 | 0.16 | 7.13 | 0.00 | 0.00 | 0.01 | 0.09 | |
Wetland | Wetland | 0.51 | 0.50 | 2.59 | 1.90 | 3.60 | 3.60 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
Construction land | Urban land, rural land, industrial, and mining land | 0.29 | 0.58 | 0.31 | 1.95 | 5.47 | 1.85 | 3.80 | 2.37 | 0.18 | 2.16 | 0.95 |
Otherland | Bare rock land sandy land, bare land, gobi, saline alkali land, and others | 0.01 | 0.03 | 0.02 | 0.13 | 0.10 | 0.41 | 0.24 | 0.15 | 0.01 | 0.14 | 0.06 |
Ecosystem Classification | Supply | Regulation | Support | Cultural | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Second Class | FP | MP | WRS | GR | CR | PE | HR | SC | MNC | BD | AL |
Paddy fields | 1988.49 | 131.59 | -3845.39 | 1622.96 | 833.41 | 248.56 | 3976.98 | 14.62 | 277.80 | 307.05 | 131.59 |
Upland crops | 1242.81 | 584.85 | 29.24 | 979.62 | 526.37 | 146.21 | 394.77 | 1505.99 | 175.46 | 190.08 | 87.73 |
Woodland | 394.77 | 921.14 | 482.50 | 3026.60 | 9065.18 | 2631.83 | 5643.80 | 3684.56 | 277.80 | 3362.89 | 1476.75 |
Shrub wood | 277.80 | 628.71 | 321.67 | 2061.60 | 6184.79 | 1871.52 | 4898.12 | 2514.86 | 190.08 | 2295.54 | 1008.87 |
Sparse woods | 365.53 | 848.03 | 438.64 | 2792.66 | 8348.74 | 2485.61 | 5468.35 | 3406.75 | 263.18 | 3099.71 | 1359.78 |
Other forest land | 365.53 | 848.03 | 438.64 | 2792.66 | 8348.74 | 2441.75 | 5468.35 | 3392.13 | 263.18 | 3099.71 | 1359.78 |
High and medium coverage grassland | 336.29 | 497.12 | 277.80 | 1769.17 | 4664.18 | 1535.23 | 3421.37 | 2149.32 | 160.83 | 1959.25 | 862.65 |
Low coverage grassland | 263.18 | 380.15 | 204.70 | 1330.53 | 3494.48 | 1198.94 | 2573.34 | 1622.96 | 131.59 | 1476.75 | 657.96 |
Rivers, lakes, reservoirs, ponds, tidal flats and beaches | 1169.70 | 336.29 | 12121.02 | 1125.84 | 3348.27 | 8114.80 | 149487.70 | 1359.78 | 102.35 | 3728.42 | 2763.42 |
Permanent glacier and snow | 0.00 | 0.00 | 3158.19 | 263.18 | 789.55 | 233.94 | 10424.95 | 0.00 | 0.00 | 14.62 | 131.59 |
Wetland | 745.68 | 731.06 | 3786.90 | 2778.04 | 5263.65 | 5263.65 | 35427.30 | 3377.51 | 263.18 | 11506.93 | 6915.85 |
Urban, villages, industries and mines Sandy land, Gobi, saline alkali land, bare land, bare rock land, others | 424.02 | 848.03 | 453.26 | 2851.14 | 7997.83 | 2704.93 | 5556.08 | 3465.24 | 263.18 | 3158.19 | 1389.02 |
Sandy land, Gobi, saline alkali land, bare land, bare rock land, others | 14.62 | 43.86 | 29.24 | 190.08 | 146.21 | 599.47 | 350.91 | 219.32 | 14.62 | 204.70 | 87.73 |
Years | Land Types | Ground Truth (GT) Samples (Pixels) | Total Classified Pixels | User’s Accuracy | |||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water Land | Construction Land | Unused Land | ||||
1990 | Cultivated land | 187 | 5 | 3 | 4 | 1 | 2 | 202 | 92.57% |
Forest land | 6 | 197 | 4 | 4 | 1 | 2 | 214 | 92.06% | |
Grassland | 2 | 3 | 44 | 0 | 1 | 1 | 51 | 86.27% | |
Water land | 1 | 0 | 0 | 45 | 0 | 3 | 49 | 91.84% | |
Construction land | 0 | 1 | 0 | 0 | 31 | 0 | 32 | 96.88% | |
Unused lands | 1 | 2 | 2 | 0 | 0 | 47 | 52 | 90.38% | |
Total GT pixels | 197 | 208 | 53 | 53 | 34 | 55 | 551 | OA = 81.83% | |
Producer’s accuracy | 94.92% | 94.71% | 83.02% | 84.91% | 91.18% | 85.45% | 91.83% | Kappa = 0.88 | |
2000 | Cultivated land | 210 | 6 | 2 | 5 | 0 | 3 | 226 | 92.92% |
Forest land | 4 | 194 | 4 | 3 | 1 | 1 | 207 | 93.72% | |
Grassland | 2 | 1 | 36 | 0 | 0 | 2 | 41 | 87.80% | |
Water land | 0 | 1 | 0 | 45 | 0 | 1 | 47 | 95.74% | |
Construction land | 0 | 1 | 0 | 0 | 30 | 0 | 31 | 96.77% | |
Unused land | 1 | 2 | 0 | 1 | 0 | 44 | 48 | 91.67% | |
Total GT pixels | 217 | 205 | 42 | 54 | 31 | 51 | 559 | OA = 93.17% | |
Producer’s accuracy | 96.77% | 94.63% | 85.71% | 83.33% | 96.77% | 86.27% | 93.17% | Kappa = 0.88 | |
2010 | Cultivated land | 231 | 3 | 1 | 3 | 0 | 2 | 240 | 96.25% |
Forest land | 4 | 192 | 2 | 2 | 0 | 1 | 201 | 95.52% | |
Grassland | 1 | 0 | 27 | 0 | 0 | 1 | 29 | 93.10% | |
Waters | 0 | 2 | 0 | 44 | 0 | 1 | 47 | 93.62% | |
Construction land | 1 | 0 | 0 | 0 | 32 | 0 | 33 | 96.97% | |
Unused lands | 1 | 1 | 0 | 0 | 1 | 48 | 51 | 94.12% | |
Total GT pixels | 238 | 198 | 30 | 49 | 33 | 53 | 574 | OA = 95.51% | |
Producer’s accuracy | 97.06% | 96.97% | 90.00% | 89.80% | 96.97% | 90.57% | 95.51 | Kappa = 0.88 | |
2020 | Cultivated land | 233 | 3 | 3 | 2 | 0 | 1 | 242 | 96.28% |
Forest land | 7 | 188 | 2 | 1 | 1 | 0 | 199 | 94.47% | |
Grassland | 0 | 3 | 28 | 0 | 0 | 0 | 31 | 90.32% | |
Waters | 1 | 0 | 1 | 45 | 0 | 0 | 47 | 95.74% | |
Construction land | 0 | 0 | 0 | 0 | 31 | 0 | 31 | 100.00% | |
Unused lands | 2 | 0 | 0 | 1 | 0 | 47 | 50 | 94.00% | |
Total GT pixels | 243 | 194 | 34 | 49 | 32 | 48 | 572 | OA = 95.33% | |
Producer’s accuracy | 95.88% | 96.91% | 82.35% | 91.84% | 96.88% | 97.92% | 95.33% | Kappa = 0.89 |
Time | Land-Use Types | LPI/% | LSI | IJI/% | AI/% | ||||
---|---|---|---|---|---|---|---|---|---|
State-Owned Farms | Private Farms | State-Owned Farms | Private Farms | State-Owned Farms | Private Farms | State-Owned Farms | Private Farms | ||
1990 | P F | 0.49 | 0.34 | 86.93 | 62.53 | 48.90 | 68.99 | 95.62 | 96.87 |
U C | 5.92 | 5.24 | 93.69 | 115.06 | 87.01 | 84.44 | 97.83 | 97.73 | |
F L | 0.68 | 8.72 | 79.09 | 87.66 | 72.55 | 64.38 | 96.32 | 98.54 | |
G L | 2.30 | 0.50 | 66.84 | 115.96 | 73.54 | 55.50 | 96.50 | 95.08 | |
W A | 0.77 | 2.07 | 21.41 | 32.22 | 82.77 | 84.53 | 98.00 | 98.61 | |
C L | 0.02 | 0.10 | 52.21 | 87.46 | 44.86 | 48.45 | 92.29 | 93.74 | |
U L | 2.32 | 2.36 | 62.81 | 57.51 | 73.77 | 80.09 | 97.54 | 97.62 | |
2000 | P F | 1.72 | 0.35 | 80.23 | 54.54 | 43.67 | 44.46 | 96.75 | 97.04 |
U C | 7.86 | 7.99 | 102.81 | 123.79 | 84.47 | 79.07 | 97.70 | 97.77 | |
F L | 0.69 | 8.60 | 80.50 | 94.06 | 61.47 | 55.29 | 96.23 | 98.40 | |
G L | 1.48 | 0.26 | 65.38 | 108.06 | 70.86 | 50.21 | 95.50 | 94.33 | |
W A | 0.73 | 1.82 | 22.60 | 32.22 | 83.73 | 79.51 | 97.79 | 98.58 | |
C L | 0.02 | 0.10 | 52.05 | 87.56 | 42.19 | 37.95 | 92.36 | 93.69 | |
U L | 2.29 | 1.25 | 65.03 | 58.20 | 68.63 | 68.45 | 96.99 | 97.40 | |
2010 | P F | 16.62 | 0.56 | 64.60 | 72.30 | 74.77 | 62.69 | 98.41 | 97.35 |
U C | 3.56 | 12.93 | 92.22 | 152.94 | 79.13 | 74.62 | 97.43 | 97.17 | |
F L | 0.54 | 8.33 | 82.57 | 116.18 | 66.82 | 55.90 | 95.63 | 97.99 | |
G L | 0.23 | 0.03 | 59.08 | 109.50 | 75.33 | 60.90 | 94.57 | 90.77 | |
W A | 0.45 | 2.02 | 41.12 | 42.02 | 74.75 | 81.17 | 95.62 | 98.12 | |
C L | 0.04 | 0.16 | 54.52 | 88.23 | 60.84 | 52.87 | 92.53 | 94.07 | |
U L | 1.16 | 0.41 | 61.10 | 99.32 | 79.05 | 75.27 | 96.69 | 95.81 | |
2020 | P F | 21.50 | 0.92 | 56.60 | 71.35 | 81.14 | 68.17 | 98.73 | 97.82 |
U C | 2.34 | 5.63 | 89.01 | 158.44 | 79.78 | 74.27 | 97.18 | 96.90 | |
F L | 0.54 | 8.33 | 82.16 | 115.72 | 68.38 | 57.81 | 95.65 | 98.00 | |
G L | 0.23 | 0.03 | 58.45 | 109.27 | 75.02 | 61.88 | 94.06 | 90.71 | |
W A | 0.45 | 2.00 | 40.93 | 42.28 | 75.44 | 83.26 | 95.63 | 98.11 | |
C L | 0.04 | 0.16 | 54.22 | 87.75 | 61.62 | 56.60 | 92.74 | 94.23 | |
U L | 1.10 | 0.41 | 60.26 | 99.45 | 79.06 | 76.47 | 96.68 | 95.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, L.; Pan, T.; Zhang, Q.; Zhang, M.; Li, Z.; Hou, Y. Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020. Land 2024, 13, 437. https://doi.org/10.3390/land13040437
Ning L, Pan T, Zhang Q, Zhang M, Li Z, Hou Y. Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020. Land. 2024; 13(4):437. https://doi.org/10.3390/land13040437
Chicago/Turabian StyleNing, Letian, Tao Pan, Quanjing Zhang, Mingli Zhang, Zhi Li, and Yali Hou. 2024. "Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020" Land 13, no. 4: 437. https://doi.org/10.3390/land13040437
APA StyleNing, L., Pan, T., Zhang, Q., Zhang, M., Li, Z., & Hou, Y. (2024). Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020. Land, 13(4), 437. https://doi.org/10.3390/land13040437