Spatial Distribution and Influencing Factors of Daylily Cultivation in the Farming–Pastoral Ecotone of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition and Processing
2.2.1. Optical Image Data Acquisition and Processing
2.2.2. Radar Data Acquisition and Processing
2.2.3. Field Survey Data
2.3. Methodology
3. Results
3.1. Classification Results
3.2. Spatial Distribution of Daylilies
3.3. Drivers
4. Discussion
4.1. Spatial Distribution of Daylilies
4.2. Drivers of Daylily Cultivation
4.3. Advantages and Limitations of Classification and Identification
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Chen, Y.; Shi, X.; Li, W.; Liu, J. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone. CATENA 2020, 194, 104722. [Google Scholar] [CrossRef]
- Xiang, D.; Verbruggen, E.; Hu, Y.; Veresoglou, S.D.; Rillig, M.C.; Zhou, W.; Xu, T.; Li, H.; Hao, Z.; Chen, Y.; et al. Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol. 2014, 204, 968–978. [Google Scholar] [CrossRef]
- The State Council. Farming-Pastoral Ecotone: China’s Optimized Layout of New Space for Agricultural Development. Available online: https://www.gov.cn/xinwen/2016-12/02/content_5142230.htm (accessed on 14 August 2023). (In Chinese)
- Qing, Z.; Liu, J.; Yi, X.; Liu, X.; Hu, G.; Lao, J.; He, W.; Yang, Z.; Zou, X.; Sun, M.; et al. The chromosome-level Hemerocallis citrina Borani genome provides new insights into the rutin biosynthesis and the lack of colchicine. Hortic. Res. 2021, 8, 89. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.A.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Sitokonstantinou, V.; Papoutsis, I.; Charalabos, K.; Arnal, A.; Andrés, A.; Zurbano, J. Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy. Remote Sens. 2018, 10, 911. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Mapping crop cover using multi-temporal Landsat 8 OLI imagery. Int. J. Remote Sens. 2017, 38, 4348–4361. [Google Scholar] [CrossRef]
- Adrian, J.; Sagan, V.; Maimaitijiang, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 2018, 39, 1042–1067. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Taymans, M.; Lemoine, G.; Ceglar, A.; Yordanov, M.; van der Velde, M. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series. Remote Sens. Environ. 2020, 239, 111660. [Google Scholar] [CrossRef]
- Di, Y.; Dong, J.; Zhu, F.; Fu, P. A robust but straightforward phenology-based ginger mapping algorithm by using unique phenology features, and time-series Sentinel-2 images. Comput. Electron. Agric. 2022, 198, 107066. [Google Scholar] [CrossRef]
- Popescu, A.; Alecu, I.N.; Dinu, T.A.; Stoian, E.; Condei, R.; Ciocan, H. Farm Structure and Land Concentration in Romania and the European Union’s Agriculture. Agric. Agric. Sci. Procedia 2016, 10, 566–577. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Marley, B.; Liu, W. The Factors Affecting Farmers’ Soybean Planting Behavior in Heilongjiang Province, China. Agriculture 2019, 9, 188. [Google Scholar] [CrossRef]
- Xia, T.; Wu, W.; Tang, H.; Zhou, Q.; Yang, P.; Li, Z.; Liu, Z.; Yu, Q. Influencing Mechanism of Family Attributes on Choosing Crops—A Case Study in Binxian County of Heilongjiang Province. Agric. Food Sci. 2013, 46, 3257–3265. [Google Scholar]
- Wang, S.; Liu, C.; Han, L.; Li, T.; Yang, G.; Chen, T. Corn Grain or Corn Silage: Effects of the Grain-to-Fodder Crop Conversion Program on Farmers’ Income in China. Agriculture 2022, 12, 976. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, M. Analysis on the characteristics of the structural changes of agricultural products in China before and after land transfer. Jiangxi Soc. Sci. 2017, 37, 81–89. [Google Scholar]
- Peng, J.; Chen, J.; Su, C.; Wu, Z.; Yang, L.; Liu, W. Will land circulation sway “grain orientation”? The impact of rural land circulation on farmers’ agricultural planting structures. PLoS ONE 2021, 16, e0253158. [Google Scholar] [CrossRef]
- Strasberg, P.J. Smallholder Cash Cropping, Food Cropping, and Food Security in Northern Mozambique: Research Methods; Michigan State University, Department of Agricultural, Food, and Resource Economics: East Lansing, MI, USA, 1996. [Google Scholar]
- Klasen, S.; Priebe, J.; Rudolf, R. Cash crop choice and income dynamics in rural areas: Evidence for post-crisis Indonesia. Agric. Econ. 2013, 44, 349–364. [Google Scholar] [CrossRef]
- Lee, H.; Bogner, C.; Lee, S.; Koellner, T. Crop selection under price and yield fluctuation: Analysis of agro-economic time series from South Korea. Agric. Syst. 2016, 148, 1–11. [Google Scholar] [CrossRef]
- Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land 2021, 10, 107. [Google Scholar] [CrossRef]
- Datong Municipal People’s Government. Daylily Industry Bigger Farmers Better Days Datong Yunzhou District all-round Promotion of High-Quality Development of Industry Rich People Paths. Available online: https://www.dt.gov.cn/dtszf/bumdtpd/202205/7155edc00e3c40a2b1c91f2757e7dbe6.shtml#:~:text=2021%E5%B9%B4%E8%AF%A5%E5%8C%BA%E9%BB%84,%E8%8F%9C1680%E4%B8%87%E6%96%A4%E3%80%82 (accessed on 14 March 2023). (In Chinese)
- Jaramillo, F.; Orchard, M.; Muñoz, C.; Antileo, C.; Sáez, D.; Espinoza, P. Online estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification. Chem. Eng. J. 2018, 331, 114–123. [Google Scholar] [CrossRef]
- Yi, Z.; Jia, L.; Chen, Q. Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China. Remote Sens. 2020, 12, 4052. [Google Scholar] [CrossRef]
- Fafchamps, M.; Shilpi, F. The spatial division of labour in Nepal. J. Dev. Stud. 2003, 39, 23–66. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, G.; Wei, J. Analysis of spatial changes and influencing factors of cotton production layout in Xinjiang under the background of supply-side reforms. J. Arid. Land Resour. Environ. 2019, 33, 74–80. (In Chinese) [Google Scholar]
- Ren, J.; Li, F.; Yin, C.; Zhang, J. Uncovering the Deviation of Farmers’ Green Manure Planting Willingness and Behavior. Sustainability 2022, 14, 14315. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, H.; Wei, S.; Yang, L. Design of DayLily Robot Recognition System Based on ZYNQ. In Proceedings of the 2021 International Conference on Networking, Communications and Information Technology (NetCIT), Manchester, UK, 26–27 December 2021; pp. 154–157. [Google Scholar]
- Feng, J.; Zhao, X.; Zhu, T.; Li, T.; Qiu, Z.; Li, Z. Detection Mature Bud for Daylily Based on Faster R-CNN Integrated With CBAM. IEEE Access 2023, 11, 81646–81655. [Google Scholar] [CrossRef]
- The State Council. Rich Flowers Bloom, Small Daylily into Big Industries. Available online: http://www.yunzhou.gov.cn/yzqrmzf/tpxw/202105/4a7b6d9bc3424677af4dc8260cdd8c94.shtml (accessed on 10 August 2023). (In Chinese)
- Govereh, J.; Jayne, T.S. Cash cropping and food crop productivity: Synergies or trade-offs? Agric. Econ. 2003, 28, 39–50. [Google Scholar]
- Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954. [Google Scholar] [CrossRef]
- Li, L.; Jing, W.; Wang, H. Extracting the Forest Type From Remote Sensing Images by Random Forest. IEEE Sens. J. 2021, 21, 17447–17454. [Google Scholar]
- Fang, W.; Zhu, H.; Li, S.; Ding, H.; Bi, R. Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices. Sensors 2023, 23, 659. [Google Scholar] [CrossRef]
- Sumner, Z.; Varco, J.J.; Dhillon, J.S.; Fox, A.A.A.; Czarnecki, J.; Henry, W.B. Ground versus aerial canopy reflectance of corn: Red-edge and non-red edge vegetation indices. Agron. J. 2021, 113, 2782–2797. [Google Scholar] [CrossRef]
- Liu, P.; Choo, K.-K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing image classification. Soft Comput. 2017, 21, 7053–7065. [Google Scholar] [CrossRef]
- The State Council. Xi Jinping: Hold High the Great Banner of Socialism with Chinese Characteristics and Unite for Building a Modern Socialist Country in All Aspects—Report at the 20th National Congress of the Communist Party of China. Available online: https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm (accessed on 10 August 2023). (In Chinese)
- Wang, M.; Sun, Y. Fruit trees and vegetables for arid and semi-arid areas in north-west China. J. Arid. Environ. 1986, 11, 3–16. [Google Scholar]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Seager, S.; Turner, E.L.; Schafer, J.; Ford, E.B. Vegetation’s red edge: A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 2005, 5, 372–390. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivard, B.; Feng, J. Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts; NASA: Washington, DC, USA, 1974; p. 351. [Google Scholar]
- Cui, B.; Huang, W.; Ye, H.; Chen, Q. The Suitability of PlanetScope Imagery for Mapping Rubber Plantations. Remote Sens. 2022, 14, 1061. [Google Scholar] [CrossRef]
Band | Central Wavelength/nm | Resolution/m |
---|---|---|
B2 (Blue) | 490 | 10 |
B3 (Green) | 560 | 10 |
B4 (Red) | 665 | 10 |
B5 (Red Edge 1) | 705 | 20 |
B6 (Red Edge 2) | 740 | 20 |
B7 (Red Edge 3) | 783 | 20 |
B8 (NIR) | 842 | 10 |
B8A (Red Edge 4) | 865 | 20 |
B11 (SWIR 1) | 1610 | 20 |
B12 (SWIR 2) | 2190 | 20 |
Acquisition Date | Polarization | Product Type | Resolution |
---|---|---|---|
22 April–19 October on 2021 | VV + VH | GRD | 5 × 10 |
Type | Input Data |
---|---|
A | August spectral data and May vegetation indices such as OSAVI, IRECI, NDVI |
B | September spectral data and May vegetation indices such as OSAVI, IRECI, NDVI |
C | October spectral data and May vegetation indices such as OSAVI, IRECI, NDVI |
D | August spectral data and May vegetation indices such as OSAVI, IRECI, NDVI, and SAR |
E | NSP |
F | August spectral data and May vegetation indices such as OSAVI, IRECI, NDVI, and NSP |
G | August spectral data and May vegetation indices such as OSAVI, IRECI, NDVI, NSP, and MTCI |
H | August spectral data and May vegetation indices such as OSAVI, IRECI, NDVI, NSP, MTCI, and SAR |
OA (%) | Kappa (%) | UA (%) | PA (%) | F1 Score | |
---|---|---|---|---|---|
SVM classified images | |||||
A | 94.8 | 92.46 | 88.27 | 91.47 | 89.84 |
B | 92.2 | 88.75 | 85.53 | 85.71 | 85.62 |
C | 89.5 | 84.67 | 78.63 | 78.46 | 78.54 |
D | 93.8 | 91.25 | 90.45 | 93.09 | 91.75 |
E | 72.9 | 58.94 | 83.37 | 75.91 | 79.47 |
F | 94.7 | 92.30 | 87.27 | 90.62 | 88.91 |
G | 94.7 | 92.30 | 87.09 | 90.62 | 88.82 |
H | 94.9 | 92.74 | 88.95 | 92.78 | 90.82 |
RF classified images | |||||
A | 95.9 | 93.91 | 93.79 | 90.19 | 91.95 |
B | 95.1 | 92.75 | 88.35 | 85.71 | 87.01 |
C | 91.4 | 87.18 | 82.67 | 71.22 | 76.52 |
D | 96.5 | 95.04 | 94.26 | 93.39 | 93.82 |
E | 71.5 | 54.66 | 87.82 | 89.32 | 88.56 |
F | 94.5 | 91.91 | 93.09 | 91.9 | 92.49 |
G | 96.4 | 94.69 | 94.14 | 92.54 | 93.33 |
H | 94.6 | 92.35 | 95.19 | 94.32 | 94.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Li, S.; Ma, X.; Ding, H.; Fang, W.; Bi, R. Spatial Distribution and Influencing Factors of Daylily Cultivation in the Farming–Pastoral Ecotone of Northern China. Land 2024, 13, 439. https://doi.org/10.3390/land13040439
Peng J, Li S, Ma X, Ding H, Fang W, Bi R. Spatial Distribution and Influencing Factors of Daylily Cultivation in the Farming–Pastoral Ecotone of Northern China. Land. 2024; 13(4):439. https://doi.org/10.3390/land13040439
Chicago/Turabian StylePeng, Jingjing, Shuai Li, Xingrong Ma, Haoxi Ding, Wenjing Fang, and Rutian Bi. 2024. "Spatial Distribution and Influencing Factors of Daylily Cultivation in the Farming–Pastoral Ecotone of Northern China" Land 13, no. 4: 439. https://doi.org/10.3390/land13040439
APA StylePeng, J., Li, S., Ma, X., Ding, H., Fang, W., & Bi, R. (2024). Spatial Distribution and Influencing Factors of Daylily Cultivation in the Farming–Pastoral Ecotone of Northern China. Land, 13(4), 439. https://doi.org/10.3390/land13040439