A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Area and Flux Sites
2.2. Eddy Covariance and Ancillary Data
2.3. Eddy Covariance Data Processing, Gap Filling and Flux Partitioning
2.4. Response Curves for Photosynthesis
2.5. Path Analysis
3. Results
3.1. Environmental Conditions
3.2. Variations in Carbon Fluxes
3.2.1. Diurnal Variations
3.2.2. Seasonal and Annual Carbon Fluxes
3.3. Carbon Fluxes in Relation to Environmental Factors
3.3.1. Drivers of Carbon Fluxes in Different Ecosystems
3.3.2. Responses of Carbon Fluxes to PAR, SVWC and Tair
3.4. Total Annual Carbon Fluxes in the Three Ecosystems in the Reshuihe River Watershed
4. Discussion
4.1. Effects of Environmental Factors on Carbon Fluxes
4.2. Carbon Flux Variability
4.3. Carbon Sink Functions in the Reshuihe River Watershed
4.4. Uncertainty in Carbon Sink Estimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; ODell, C.W.; Tang, X.; Yang, D.; Liu, L. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- IPCC AR. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Casas-Ruiz, J.P.; Bodmer, P.; Bona, K.A.; Butman, D.; Couturier, M.; Emilson, E.J.; Finlay, K.; Genet, H.; Hayes, D.; Karlsson, J. Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nat. Commun. 2023, 14, 1571. [Google Scholar] [CrossRef]
- Ciais, P.; Bastos, A.; Chevallier, F.; Lauerwald, R.; Poulter, B.; Canadell, P.; Hugelius, G.; Jackson, R.B.; Jain, A.; Jones, M. Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geosci. Model Dev. Discuss. 2020, 15, 1289–1316. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Z.; Wang, T.; Chen, A.; Wang, X.; Du, M.; Jia, G.; Li, Y.; Li, H.; Luo, W. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 2018, 253, 84–93. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, J.M.; Zhou, L.; Ju, W.; Zhang, H.; Machida, T.; Ciais, P.; Peters, W.; Wang, H.; Chen, B. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep. 2016, 6, 22130. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C. Understanding of coupled terrestrial carbon, nitrogen and water dynamics—An overview. Sensors 2009, 9, 8624–8657. [Google Scholar] [CrossRef] [PubMed]
- Aurela, M.; Lohila, A.; Tuovinen, J.; Hatakka, J.; Penttilä, T.; Laurila, T. Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas. Boreal Environ. Res. 2015, 20, 455–473. [Google Scholar]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef]
- Fei, X.; Jin, Y.; Zhang, Y.; Sha, L.; Liu, Y.; Song, Q.; Zhou, W.; Liang, N.; Yu, G.; Zhang, L. Eddy covariance and biometric measurement s show that a savanna ecosystem in Southwest China is a carbon sink. Sci. Rep. 2017, 7, 41025. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; Da Silva, L.L.; Mutti, P.R.; Ferreira, R.R.; Medeiros, S.S.; Perez-Marin, A.M.; Marques, T.V.; Ramos, T.M.; de Lima Vieira, M.M. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 2020, 10, 9454. [Google Scholar] [CrossRef]
- Fei, X.; Song, Q.; Zhang, Y.; Liu, Y.; Sha, L.; Yu, G.; Zhang, L.; Duan, C.; Deng, Y.; Wu, C. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China. Sci. Total Environ. 2018, 616, 824–840. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lai, D.Y. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agric. For. Meteorol. 2019, 278, 107644. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound. Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; LI-Cor Biosciences: Lincoln, NE, USA, 2013. [Google Scholar]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Kim, K.; Daly, E.J.; Flesch, T.K.; Coates, T.W.; Hernandez-Ramirez, G. Carbon and water dynamics of a perennial versus an annual grain crop in temperate agroecosystems. Agric. For. Meteorol. 2022, 314, 108805. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Leverenz, J.W.; Jarvis, P.G. Photosynthesis in Sitka spruce. VIII. The effects of light flux density and direction on the rate of net photosynthesis and the stomatal conductance of needles. J. Appl. Ecol. 1979, 16, 919–932. [Google Scholar] [CrossRef]
- Knox, S.H.; Windham Myers, L.; Anderson, F.; Sturtevant, C.; Bergamaschi, B. Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a brackish tidal marsh in Northern California. J. Geophys. Res. Biogeosci. 2018, 123, 787–806. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Pan, N.; Ma, Y.; Liu, W. Growth stage-dependent responses of carbon fixation process of alpine grasslands to climate change over the Tibetan Plateau, China. Agric. For. Meteorol. 2020, 291, 108085. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Xu, M.; Zhu, J.; Chen, N.; Jiang, Y.; Huang, K.; Zu, J.; Liu, Y.; Yu, G. Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agric. For. Meteorol. 2018, 256–257, 22–31. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Montagnani, L.; Zanotelli, D.; Tagliavini, M.; Tomelleri, E. Timescale effects on the environmental control of carbon and water fluxes of an apple orchard. Ecol. Evol. 2018, 8, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Z.; Zhang, F.; Lu, Y.; Duan, C.; Xu, Y. Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China. Agric. Water Manag. 2023, 275, 107992. [Google Scholar] [CrossRef]
- Xie, J.; Jia, X.; He, G.; Zhou, C.; Yu, H.; Wu, Y.; Bourque, C.P.; Liu, H.; Zha, T. Environmental control over seasonal variation in carbon fluxes of an urban temperate forest ecosystem. Landsc. Urban Plan 2015, 142, 63–70. [Google Scholar] [CrossRef]
- Xing, W.; Yang, L.; Wang, W.; Yu, Z.; Shao, Q.; Xu, S.; Fu, J. Environmental controls on carbon and water fluxes of a wheat-maize rotation cropland over the Huaibei Plain of China. Agric. Water Manag. 2023, 283, 108310. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Wei, Q.; Wang, W.; Wang, S.; Huo, Z.; Lei, H. Coupling of net ecosystem CO2 exchange and evapotranspiration of irrigated maize field in arid areas. J. Hydrol. 2021, 603, 127140. [Google Scholar] [CrossRef]
- Liu, Z.; Li, K.; Xiong, K.; Li, Y.; Wang, J.; Sun, J.; Cai, L. Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area. Agric. Water Manag. 2021, 257, 107125. [Google Scholar] [CrossRef]
- Wang, C.; Fu, B.; Zhang, L.; Xu, Z. Soil moisture–plant interactions: An ecohydrological review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Yuste, J.C.; Janssens, I.A.; Carrara, A.; Meiresonne, L.; Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 2003, 23, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Tenhunen, J.D.; Roupsard, O.; Ourcival, J.M.; Rambal, S.; Dore, S.; Valentini, R. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Funct. Ecol. 2002, 16, 27–39. [Google Scholar] [CrossRef]
- Niu, S.; Wu, M.; Han, Y.; Xia, J.; Li, L.; Wan, S. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol. 2008, 177, 209–219. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, G.; Sun, X.; Li, Y.; Wen, X.; Zhang, L.; Li, Z.; Zhao, L.; Hao, Y. Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agric. For. Meteorol. 2006, 137, 234–244. [Google Scholar] [CrossRef]
- Pingintha, N.; Leclerc, M.Y.; Beasley, J.P.; Durden, D.; Zhang, G.; Senthong, C.; Rowland, D. Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences 2010, 7, 1159–1170. [Google Scholar] [CrossRef]
- Janssens, I.A.; Lankreijer, H.; Matteucci, G.; Kowalski, A.S.; Buchmann, N.; Epron, D.; Pilegaard, K.; Kutsch, W.; Longdoz, B.; Grünwald, T. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Chang. Biol. 2001, 7, 269–278. [Google Scholar] [CrossRef]
- Ensminger, I.; Busch, F.; Huner, N.P.A. Photostasis and cold acclimation: Sensing low temperature through photosynthesis. Physiol. Plant. 2006, 126, 28–44. [Google Scholar] [CrossRef]
- Hudson, J.; Henry, G.; Cornwell, W.K. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Chang. Biol. 2011, 17, 1013–1021. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Yu, G.; Zhou, G.; Zhang, L.; Li, K.; Tan, Z.; Sha, L. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agric. For. Meteorol. 2013, 182, 257–265. [Google Scholar] [CrossRef]
- Guan, D.; Wu, J.; Zhao, X.; Han, S.; Yu, G.; Sun, X.; Jin, C. CO2 fluxes over an old, temperate mixed forest in northeastern China. Agric. For. Meteorol. 2006, 137, 138–149. [Google Scholar] [CrossRef]
- Ilvesniemi, H.; Levula, J.; Ojansuu, R.; Kolari, P.; Kulmala, L.; Pumpanen, J.; Launiainen, S.; Vesala, T.; Nikinmaa, E. Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Environ. Res. 2009, 14, 731–753. [Google Scholar]
- Maseyk, K.S.; Lin, T.; Rotenberg, E.; Grunzweig, J.M.; Schwartz, A.; Yakir, D. Physiology-phenology interactions in a productive semi-arid pine forest. New Phytol. 2008, 178, 603–616. [Google Scholar] [CrossRef]
- Dore, S.; Montes Helu, M.; Hart, S.C.; Hungate, B.A.; Koch, G.W.; Moon, J.B.; Finkral, A.J.; Kolb, T.E. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Glob. Chang. Biol. 2012, 18, 3171–3185. [Google Scholar] [CrossRef]
- Wharton, S.; Falk, M. Climate indices strongly influence old-growth forest carbon exchange. Environ. Res. Lett. 2016, 11, 44016. [Google Scholar] [CrossRef]
- Noormets, A.; Gavazzi, M.J.; McNulty, S.G.; Domecj, C.; Sun, G.E.; King, J.S.; Chen, J. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Glob. Chang. Biol. 2010, 16, 272–287. [Google Scholar] [CrossRef]
- Bracho, R.; Starr, G.; Gholz, H.L.; Martin, T.A.; Cropper, W.P.; Loescher, H.W. Controls on carbon dynamics by ecosystem structure and climate for southeastern US slash pine plantations. Ecol. Monogr. 2012, 82, 101–128. [Google Scholar] [CrossRef]
- Dolman, A.J.; Moors, E.J.; Elbers, J.A. The carbon uptake of a mid latitude pine forest growing on sandy soil. Agric. For. Meteorol. 2002, 111, 157–170. [Google Scholar] [CrossRef]
- Zeri, M.; Sa, L.D.; Manzi, A.O.; Araujo, A.C.; Aguiar, R.G.; von Randow, C.; Sampaio, G.; Cardoso, F.L.; Nobre, C.A. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE 2014, 9, e88130. [Google Scholar] [CrossRef] [PubMed]
- Barr, A.G.; Black, T.A.; Hogg, E.H.; Griffis, T.J.; Morgenstern, K.; Kljun, N.; Theede, A.; Nesic, Z. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob. Chang. Biol. 2007, 13, 561–576. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Ma, J.; Liu, X.; Gu, X.; Cai, H. Seasonal variation and controlling factors of carbon balance over dry semi-humid cropland in Guanzhong Plain. Eur. J. Agron. 2023, 149, 126912. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Xiao, J.; Ma, M.; Tan, J.; Wang, X.; Geng, L. Carbon fluxes across alpine, oasis, and desert ecosystems in northwestern China: The importance of water availability. Sci. Total Environ. 2019, 697, 133978. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Sun, X.; Tong, X.; Ren, C.; Wang, J.; Liu, E.; Zhu, Z.; Yu, G. Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain. Sci. China Ser. D Earth Sci. 2006, 49, 226–240. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.D. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Suyker, A.E.; Verma, S.B. Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity. Agric. For. Meteorol. 2010, 150, 553–563. [Google Scholar] [CrossRef]
- Anthoni, P.M.; Freibauer, A.; Kolle, O.; Schulze, E. Winter wheat carbon exchange in Thuringia, Germany. Agric. For. Meteorol. 2004, 121, 55–67. [Google Scholar] [CrossRef]
- Menefee, D.; Rajan, N.; Cui, S.; Bagavathiannan, M.; Schnell, R.; West, J. Carbon exchange of a dryland cotton field and its relationship with PlanetScope remote sensing data. Agric. For. Meteorol. 2020, 294, 108130. [Google Scholar] [CrossRef]
- Chamizo, S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Sánchez-Cañete, E.P.; Vicente-Vicente, J.L.; Kowalski, A.S. Net ecosystem CO2 exchange in an irrigated olive orchard of SE Spain: Influence of weed cover. Agric. Ecosyst. Environ. 2017, 239, 51–64. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Hu, Z.; Zhang, T.; Huang, K.; Chen, X.; Li, Y. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale. Agric. For. Meteorol. 2020, 290, 108021. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Sun, J.; Feng, J. Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. Int. J. Biometeorol. 2016, 60, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Butman, D.; Stackpoole, S.; Stets, E.; McDonald, C.P.; Clow, D.W.; Striegl, R.G. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl. Acad. Sci. USA 2016, 113, 58–63. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Pu, J.; Yuan, D. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China. J. Hydrol. 2019, 578, 124073. [Google Scholar] [CrossRef]
- Webb, J.R.; Santos, I.R.; Maher, D.T.; Finlay, K. The importance of aquatic carbon fluxes in net ecosystem carbon budgets: A catchment-scale review. Ecosystems 2019, 22, 508–527. [Google Scholar] [CrossRef]
- Ruehr, S.; Keenan, T.F.; Williams, C.; Zhou, Y.; Lu, X.; Bastos, A.; Canadell, J.G.; Prentice, I.C.; Sitch, S.; Terrer, C. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 2023, 4, 518–534. [Google Scholar] [CrossRef]
- Sun, Q.; Meyer, W.S.; Koerber, G.R.; Marschner, P. Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agric. For. Meteorol. 2020, 291, 108099. [Google Scholar] [CrossRef]
- Xiong, Q.; Luo, X.; Liang, P.; Xiao, Y.; Xiao, Q.; Sun, H.; Pan, K.; Wang, L.; Li, L.; Pang, X. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For. Ecol. Manag. 2020, 474, 118381. [Google Scholar] [CrossRef]
- Ren, G.; Young, S.S.; Wang, L.; Wang, W.; Long, Y.; Wu, R.; Li, J.; Zhu, J.; Yu, D.W. Effectiveness of China’s national forest protection program and nature reserves. Conserv. Biol. 2015, 29, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Brandt, M.; Yue, Y.M.; Tong, X.W.; Wang, K.L.; Fensholt, R. The carbon sink potential of southern China after two decades of afforestation. Earth’s Future 2022, 10, e2022E–e2674E. [Google Scholar] [CrossRef] [PubMed]
- Kira, T.; Shidei, T. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn. J. Ecol. 1967, 17, 70–87. [Google Scholar]
- Tan, Z.; Zhang, Y.; Schaefer, D.; Yu, G.; Liang, N.; Song, Q. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos. Environ. 2011, 45, 1548–1554. [Google Scholar] [CrossRef]
- Luyssaert, S.; Schulze, E.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Shu, S.; Zhu, W.; Wang, W.; Jia, M.; Zhang, Y.; Sheng, Z. Effects of tree size heterogeneity on carbon sink in old forests. For. Ecol. Manag. 2019, 432, 637–648. [Google Scholar] [CrossRef]
Sites | Geographical Location | Altitude (m) | Vegetation Types | Observation Height (m) | Observation Time |
---|---|---|---|---|---|
Forest | 28°8′18.4″ N, 102°19′20.2″ E | 2343 | Pinus yunnanensis dominates | 12 | October 2021–September 2023 |
Cropland | 28°8′36.0″ N, 102°20′53.9″ E | 2359 | Potatoes and maize | 6 | October 2021–September 2023 |
Non-timber forest | 28°7′55.6″ N, 102°17′20.6″ E | 2218 | Zanthoxylum bungeanum Maxim | 6 | October 2021–September 2023 |
Sites | October 2021 to September 2022 (%) | October 2022 to September 2023 (%) | Averaged-Gaps (%) |
---|---|---|---|
Forest | 41.8 | 25.9 | 33.9 |
Cropland | 37.2 | 32.7 | 35.0 |
Non-timber forest | 46.8 | 42.4 | 39.6 |
Sites | ε (μmol CO2 μmol−1 PAR) | Amax (μmol CO2 m−2 s−1) | Re (μmol CO2 m−2 s−1) | R2 | |
---|---|---|---|---|---|
Forest | SVWC < 22% | 0.0200 ± 0.0002 a | 19.96 ± 3.02 a | 2.43 ± 1.94 a | 0.94 |
22% < SVWC < 29% | 0.0485 ± 0.0125 a | 23.80 ± 3.04 a | 4.56 ± 2.09 a | 0.98 | |
SVWC > 29% | 0.0608 ± 0.0307 a | 33.41 ± 1.99 b | 6.38 ± 0.21 a | 0.95 | |
Cropland | SVWC < 27% | 0.0091 ± 0.0011 a | 10.38 ± 0.39 a | 1.77 ± 1.43 a | 0.95 |
27% < SVWC < 33% | 0.0258 ± 0.0067 ab | 16.48 ± 3.83 a | 3.51 ± 1.45 ab | 0.88 | |
SVWC > 33% | 0.0527 ± 0.0148 b | 28.49 ± 3.48 b | 6.66 ± 1.02 b | 0.97 | |
Non-timber forest | SVWC < 11% | 0.0050 ± 0.0017 a | 17.42 ± 2.12 a | 0.49 ± 0.38 a | 0.98 |
11% < SVWC < 26% | 0.0256 ± 0.0039 ab | 15.96 ± 4.18 a | 2.57 ± 1.98 ab | 0.85 | |
SVWC > 26% | 0.0455 ± 0.0163 b | 18.50 ± 3.59 a | 4.47 ± 0.32 b | 0.96 |
Country | Area | Functional Type | Mean Annual NEE (gC m−2) | Mean Annual GPP (gC m−2) | Mean Annual Re (gC m−2) | Reference |
---|---|---|---|---|---|---|
China | Liangshan | Subtropical, coniferous forest | −540 | 1845 | 1304 | This study |
China | Changbai Mountain | Temperate, coniferous forest | −169~−187 | − | - | [51] |
China | Lijiang | Cold-temperate, coniferous forest | −405 | 1392 | 987 | [17] |
Finland | Hyytiälä | Boreal, coniferous forest | −206 | 1,031 | 826 | [52] |
Israel | Yatir | Semi-arid, coniferous forest | −211 | 830 | 620 | [53] |
US | Arizona | Temperate, coniferous forest | −112 | 935 | 844 | [54] |
US | Washington | Temperate, coniferous forest | −32 | 1382 | 1350 | [55] |
US | North Carolina | Coastal plain, coniferous forest | −640 | 2719 | 2082 | [56] |
US | Florida | Subtropical, coniferous forest | −669 | 2490 | 1821 | [57] |
Netherlands | centre | Temperate, coniferous forest | −338 | 1221 | 1559 | [58] |
Brazil | semiarid lands | Dry tropical, deciduous and semi-deciduous forest | −169 | 415 | 246 | [16] |
Brazil | Jaru Biological Reserve | Tropical, broadleaved forest | −450 | 3413 | 2963 | [59] |
Canada | Saskatchewan | Boreal, broadleaved forest | −168 | 1252 | 1084 | [60] |
Country | Area | Functional Type | Mean Annual NEE (gC m−2) | Mean Annual GPP (gC m−2) | Mean Annual Re (gC m−2) | Reference |
---|---|---|---|---|---|---|
China | Liangshan | Potatoes and maize | −82 | 1437 | 1354 | This study |
China | Heihe river basin | maize | −536 | - | - | [62] |
China | North Plain | wheat and maize | −258 | - | - | [63] |
Canada | Breton | secale | −89 | 1242 | 1153 | [25] |
US | Ponca | wheat | −155 | 1395 | 1240 | [64] |
US | Nebraska | maize and soybean | −225 | 1201 | 976 | [65] |
Germany | Thuringia | wheat | −185~−245 | - | - | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Lu, Y.; Yin, H.; Zhou, X.; Li, Z.; Liu, Y. A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink. Land 2024, 13, 458. https://doi.org/10.3390/land13040458
Chen W, Lu Y, Yin H, Zhou X, Li Z, Liu Y. A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink. Land. 2024; 13(4):458. https://doi.org/10.3390/land13040458
Chicago/Turabian StyleChen, Wenguang, Yafeng Lu, He Yin, Xiaokang Zhou, Zhengyang Li, and Yanguo Liu. 2024. "A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink" Land 13, no. 4: 458. https://doi.org/10.3390/land13040458
APA StyleChen, W., Lu, Y., Yin, H., Zhou, X., Li, Z., & Liu, Y. (2024). A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink. Land, 13(4), 458. https://doi.org/10.3390/land13040458