Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Base Data
2.3. EG Interpretation Method and Quality Control
2.4. Verification of Interpretation Accuracy
2.5. Analysis of Influencing Factors
2.6. Analysis of Influencing Factors
3. Results
3.1. Accuracy of EG Interpretation
3.2. Analysis of Influencing Factors on EG Formation
3.3. Analysis of Influencing Factors of EG Density
4. Discussion
4.1. Value of Google Earth Images in the Regional Study of EGs
4.2. Factors Influencing the Spatial Distribution of EGs
4.3. Implications and Limitations
5. Conclusions
- (1)
- Using sub-meter resolution Google Earth imagery and visual interpretation method, the gully length error remained under 11.66%, averaging 4.99%. The results were not significantly different from the GNSS RTK field measurements.
- (2)
- EGs were widespread across the Loess Plateau region, and the average density reached 3.41 km/km2, with relatively high spatial variability across the region.
- (3)
- The formation of EGs is mainly influenced by natural factors, with Rainfall and S having the greatest influence; the density of EGs is mainly influenced by the combined action of natural and anthropogenic factors, with the area proportion of sloping farmland and soil erodibility having the greatest influence. The influence of two factors on variables is significantly greater than that of a single factor.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhu, X.M.; Zhou, P.H.; Tang, K.L. The Laws of Hillslope Channel Erosion Occurrence and Development on Loess Plateau. Res. Soil Water Conserv. 1988, 9–18. [Google Scholar]
- Zheng, F.; Wu, M.; Zhang, Y.; Ding, J. Ephemeral Gully Development Process at Loess Steep Hillslope. Sci. Geogr. Sin. 2006, 26, 438–442. [Google Scholar] [CrossRef]
- Bennett, S.J.; Alonso, C.V.; Prasad, S.N.; Römkens, M.J.M. Experiments on headcut growth and migration in concentrated flows typical of upland areas. Water Resour. Res. 2000, 36, 1911–1922. [Google Scholar] [CrossRef]
- Capra, A.; La Spada, C. Medium-term evolution of some ephemeral gullies in Sicily (Italy). Soil Tillage Res. 2015, 154, 34–43. [Google Scholar] [CrossRef]
- Poesen, J.; Vandaele, K.; Wesemael, B. Gully Erosion: Importance and Model Implications. In Modelling Soil Erosion by Water; Springer: Berlin/Heidelberg, Germany, 1998; pp. 285–311. [Google Scholar]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Dumbrovsky, M.; Drbal, K.; Sobotková, V.; Uhrová, J. An approach to identifying and evaluating the potential formation of ephemeral gullies in the conditions of the Czech Republic. Soil Water Res. 2019, 15, 38–46. [Google Scholar] [CrossRef]
- Foster, G.R. Understanding ephemeral gully erosion. In Assessing the National Resources Inventory, Board on Agriculture, National Research Council; Committee on Conservation Needs, Opportunities, Soil Conservation, Ed.; National Academy Press: Washington, DC, USA, 1986. [Google Scholar]
- Woodward, D.E. Method to predict cropland ephemeral gully erosion. Catena 1999, 37, 393–399. [Google Scholar] [CrossRef]
- Poesen, J.; Govers, G. Gully Erosion in the Loam Belt of Belgium—Typology and Control Measures. Soil Eros. Agric. Land 1990, 513–530, 687. [Google Scholar]
- Levi, N.N. Modelling of Gully Erosion Site Data in Southeastern Nigeria, Using Poisson and Negative Binomial Regression Models. J. Civ. Constr. Environ. Eng. 2018, 3, 111–117. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Lu, S. Discriminations on common soil erosion terms and their implications for soil and water conservation. Sci. Soil Water Conserv. 2018, 16, 9–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, C.H.; Gong, Y.H.; Zhang, J.H. Investigation on Ephemeral Gully Erosion Rate Based on QuickBird Images in Loess Hilly Region. Trans. Chin. Soc. Agric. Mach. 2017, 48, 239–244. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.; Wilson, G.V. Flow hydraulics in an ephemeral gully system under different slope gradients, rainfall intensities and inflow conditions. Catena 2021, 203, 105359. [Google Scholar] [CrossRef]
- Geng, H.; Zheng, F.; Zhao, L.; Wang, L.; Zhao, T.; Qin, Q.; An, X. An Experimental Study on Effects of Rainfall, Inflow and Slope Gradient on Ephemeral Gully Slope Erosion in Chinese Mollisol Region. J. Soil Water Conserv. 2024, 1–12, accepted. [Google Scholar] [CrossRef]
- Ollobarren Del Barrio, P.; Campo-Bescós, M.A.; Giménez, R.; Casalí, J. Assessment of soil factors controlling ephemeral gully erosion on agricultural fields. Earth Surf. Process. Landf. 2018, 43, 1993–2008. [Google Scholar] [CrossRef]
- Tang, J.; Xie, Y.; Liu, C.; Dong, H.; Liu, G. Effects of rainfall characteristics and contour tillage on ephemeral gully development in a field in Northeastern China. Soil Tillage Res. 2022, 218, 105312. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Wang, X.; Zhao, X.; Yi, L.; Hu, S. The Suitability of Remote Sensing Images at Different Resolutions for Mapping of Gullies in the Black Soil Region, Northeast China. Remote Sens. 2021, 13, 2367. [Google Scholar] [CrossRef]
- Mohamadi, P.; Ahmadi, A.; Fezizadeh, B.; Jafarzadeh, A.; Rahmati, M. A Semi-automated Fuzzy-Object-Based Image Analysis Approach Applied for Gully Erosion Detection and Mapping. J. Indian Soc. Remote Sens. 2021, 49, 1153–1169. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Golzari, S.; Song, Y.; Pradhan, B. Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion. Sci. Total Environ. 2023, 904, 166960. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11, 1609–1620. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Yin, Z.; Hao, B.; Wu, S.; Feng, H.; Siddique, K.H.M. Ephemeral gully development in the hilly and gully region of China’s loess plateau. Land Degrad. Dev. 2024, 35, 128–141. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, W.; Yan, T.; Qin, W.; Miao, X. Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote Sens. 2023, 15, 233. [Google Scholar] [CrossRef]
- Raj, R.; Yunus, A.P.; Pani, P.; Avtar, R. Towards evaluating gully erosion volume and erosion rates in the Chambal badlands, Central India. Land Degrad. Dev. 2022, 33, 1495–1510. [Google Scholar] [CrossRef]
- Reece, D.; Lory, J.; Haithcoat, T.; Gelder, B.; Cruse, R. Using Google Earth Imagery to Target Assessments of Ephemeral Gully Erosion. J. ASABE 2023, 66, 155–166. [Google Scholar] [CrossRef]
- Karydas, C.; Panagos, P. Towards an Assessment of the Ephemeral Gully Erosion Potential in Greece Using Google Earth. Water 2020, 12, 603. [Google Scholar] [CrossRef]
- Huang, L.; Cao, W.; Zhu, P. The regional variation characters of ecological effects of the Grain for Green Project. Acta Ecol. Sin. 2020, 40, 4041–4052. [Google Scholar] [CrossRef]
- Chen, Y. Modern Erosion and Control of the Loess Plateau; Science Press: Beijing, China, 1988. [Google Scholar]
- Liang, Y.; Liu, X.; Cao, L.; Zheng, F.; Zhang, P.; Shi, M.; Cao, Q.; Yuan, J. K Value Calculation of Soil Erodibility of China Water Erosion Areas and Its Macro-Distribution. Soil Water Conserv. China 2013, 10, 35–40+79. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC); Resource and Environment Science Data Platform: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Zhang, K.L.; Tang, K.L.; Wang, B.K. A study on characteristic value of shallow gully erosion genesis on slope farmland in the loess plateau. J. Soil Water Conserv. 1991, 5, 8–13. [Google Scholar] [CrossRef]
- Woolson, R.F. Wilcoxon Signed-Rank Test. In Wiley Encyclopedia of Clinical Trials; John Wiley and Sons: Hoboken, NJ, USA, 2008; pp. 1–3. [Google Scholar]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- McInnes, J.; Vigiak, O.; Roberts, A.M. Using Google Earth to map gully extent in the West Gippsland region (Victoria, Australia). In Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM), Perth, Australia, 12–16 December 2011; pp. 3370–3376. [Google Scholar]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Liu, B.Y. The Harm of Slope Gully Erosion on the Loess Plateau and the Law of Its Occurrence and Development; Chinese Academy of Sciences: Xianyang, China, 1984. [Google Scholar]
- Tuo, D.; Xu, M.; Gao, G. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 2018, 633, 1032–1040. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhou, Q.; Xu, J.; Zhang, P.; Peng, B. Variation in Soil Erosion and Environment-human Interaction at the Center of Loess Plateau during “The Riots of Hui” at the Late Qing Dynasty. Sci. Geogr. Sin. 2022, 42, 303–313. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, N.; Liu, J.; Qi, X.; Cheng, X.; Du, F.; Cui, Q. Soil Water Erosion Changes and Driving Factors in Ecologically Fragile Areas in Northern Shaanxi Province. Res. Soil Water Conserv. 2023, 30, 41–51+60. [Google Scholar] [CrossRef]
- Ma, G.; Li, G.; Mu, X.; Hou, W.; Ren, Y.; Yang, M. Effect of raindrop splashes on topsoil structure and infiltration characteristics. Catena 2022, 212, 106040. [Google Scholar] [CrossRef]
- Xu, X.M.; Zheng, F.L.; Wu, M. Quantification study of rainfall intensity and slope gradient impacts on ephemeral gully morphological characteristic on steep loessial hillslope. Trans. Chin. Soc. Agric. Eng. 2017, 33, 124–132. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, G.; Geng, R.; Wang, H. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology 2015, 248, 264–272. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Wang, R.; Li, P.; Li, Z.; Yu, K.; Han, J.; Zhu, Y.; Su, Y. Effects of gully head height and soil texture on gully headcut erosion in the Loess Plateau of China. Catena 2021, 207, 105674. [Google Scholar] [CrossRef]
- Kariminejad, N.; Rossi, M.; Hosseinalizadeh, M.; Pourghasemi, H.R.; Santosh, M. Gully head modelling in Iranian Loess Plateau under different scenarios. Catena 2020, 194, 104769. [Google Scholar] [CrossRef]
- Li, C.C.; Zeng, Q.C.; Jia, P.L.; An, S.S. Characteristics of soil aggregate stability and corrosion resistance longitude change in the Loess Plateau. Acta Ecol. Sin. 2020, 40, 2039–2048. [Google Scholar] [CrossRef]
- Guo, M.M.; Wang, W.L.; Li, J.M.; Zhu, B.C.; Shi, Q.H.; Kang, H.L.; Li, Y.F.; Li, Y.L. Effect of tillage on runoff and sediment yields and morphology development characteristic of ephemeral gully in loessial region. Trans. Chin. Soc. Agric. Eng. 2015, 31, 114–123. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Gong, J.G.; Jia, Y.W.; Zhou, Z.H.; Wang, Y.; Wang, W.L.; Peng, H. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes. Geomorphology 2011, 125, 203–213. [Google Scholar] [CrossRef]
- Tian, p.; Mao, M.; Pan, C. Research progress and prospect of vegetation control mechanism of soil and water loss. Sci. Soil Water Conserv. 2024, 22, 131–140. [Google Scholar] [CrossRef]
- Zhang, K.L.; Hosoyamada, K. Splash erosion process and its relation to slope gradient. Sci. Geogr. Sin. 1998, 18, 561–566. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S.; Kim, D.G.; Peng, C.; Sweeney, S.; Shangguan, Z. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Change 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, X.; Wang, X.; Zhang, Z. Assessing the impact of land use change on soil erosion on the Loess Plateau of China from the end of the 1980s to 2010. J. Soil Water Conserv. 2017, 72, 452–462. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Z.; Yang, T.; Cheng, L.; Wang, X.; Wei, W.; Ge, Y.; Chen, X.; Lin, K.; Zhao, T.; et al. Land-Use Intensity Reversed the Role of Cropland in Ecological Restoration Over the World’s Most Severe Soil Erosion Region. Earth’s Future 2023, 11, e2022EF003388. [Google Scholar] [CrossRef]
- Pengfei, L.; Dou, L.; Jinfei, H.; Wanqiang, Y.; Yuzhe, Z. Assessing the ability of airborne LiDAR to monitor soil erosion on the Chinese Loess Plateau. Acta Geod. Cartogr. Sin. 2023, 52, 1342–1354. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Stein, A. Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology 2014, 216, 283–294. [Google Scholar] [CrossRef]
- Oleire-Oltmanns, S.; Marzolff, I.; Tiede, D.; Blaschke, T. Detection of Gully-Affected Areas by Applying Object-Based Image Analysis (OBIA) in the Region of Taroudannt, Morocco. Remote Sens. 2014, 6, 8287–8309. [Google Scholar] [CrossRef]
Data Name | Cell Size | Time | Source |
---|---|---|---|
Google Earth image | 0.25–0.49 m | 2015–2020 | https://google.cn/earth/ (accessed on 10 February 2020) |
Shuttle Radar Topography Mission (STRM) | 30 m | 2014 | https://earthexplorer.usgs.gov/ (accessed on 6 June 2020) |
Field Measured data | 2 cm | 2021 | GNSS RTK Field measured |
Land use | 30 m | 2000 | http://www.resdc.cn (accessed on 20 October 2023) |
Soil erodibility (K) | 30 m | 2011 | China National Soil and Water Conservation Census outcome datasets |
Average multi-year rainfall (Rainfall) | 3 km | 1981–2019 | China Meteorological Administration |
Normal Difference Vegetation Index (NDVI) | 30 m | 1990–2019 | Google earth engine |
Criterion | Interaction |
---|---|
q(X1∩X2) < min(q(X1), q(X2)) | Non-linear reduction |
min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2)) | Single-factor non-linear reduction |
q(X1∩X2) > max(q(X1), q(X2)) | Two-factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independence |
q(X1∩X2) > q(X1) + q(X2) | Non-linear enhancement |
Mean | Standard Deviation | Wilcoxon Signed-Rank Test | ||
---|---|---|---|---|
Standardized Test Statistic | Statistical Significance | |||
MR | 23.730 | 16.514 | −0.943 | 0.346 |
VIR | 23.420 | 15.583 |
Rainfall | S | APSF | NDVI | Elevation | K | L | |
---|---|---|---|---|---|---|---|
q statistic | 0.173 | 0.168 | 0.115 | 0.078 | 0.063 | 0.057 | 0.005 |
APSF | K | NDVI | L | S | Elevation | Rainfall | |
---|---|---|---|---|---|---|---|
q statistic | 0.363 | 0.362 | 0.115 | 0.078 | 0.063 | 0.057 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Wang, C.; Zhong, Y.; Pang, G.; Wang, L.; Long, Y.; Yang, Q.; Tang, B. Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density. Land 2024, 13, 553. https://doi.org/10.3390/land13040553
Ma L, Wang C, Zhong Y, Pang G, Wang L, Long Y, Yang Q, Tang B. Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density. Land. 2024; 13(4):553. https://doi.org/10.3390/land13040553
Chicago/Turabian StyleMa, Lei, Chunmei Wang, Yuan Zhong, Guowei Pang, Lei Wang, Yongqing Long, Qinke Yang, and Bingzhe Tang. 2024. "Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density" Land 13, no. 4: 553. https://doi.org/10.3390/land13040553
APA StyleMa, L., Wang, C., Zhong, Y., Pang, G., Wang, L., Long, Y., Yang, Q., & Tang, B. (2024). Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density. Land, 13(4), 553. https://doi.org/10.3390/land13040553