Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price
Abstract
:1. Introduction
2. Literature Review
2.1. The Effects of Urban Regeneration on Economic Vitality in Different Scope
2.2. The Correlation between Urban Regeneration Characteristics and Economic Effects
3. Methodology
3.1. Study Area
3.2. Data
3.2.1. Information of Urban Regeneration Projects
3.2.2. Information of Housing Transactions
3.3. The Difference-in-Difference Method
4. Results
4.1. Results of Benchmark Regression
4.2. The Effects on Economic Vitality Considering Different Percentiles of Housing Price Levels
4.3. The Effects on Economic Vitality Considering Distance Gradient
4.4. The Effects on Economic Vitality Considering Regeneration Approach
4.5. The Effects on Economic Vitality Considering Investment Scale
4.6. The Effects on Economic Vitality Considering Location Values
5. Discussion
5.1. The Reflections on the Effects of Urban Regeneration on Surrounding Economic Vitality
5.2. The Comparison between Different Regeneration Approaches
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Calculation of Urban Regeneration Projects’ Location Value
Type | Facility | Entropy Weight |
---|---|---|
Transportation | Subway station | 10.40% |
Bus station | 17.71% | |
Administration | Government agency | 15.35% |
Culture and Sports | Gym, museum, library, gallery, and so on | 12.95% |
Commerce | Shopping mall | 11.84% |
Finance and Post | Bank and post office | 11.55% |
Education | College | 7.82% |
Health care | General Hospital | 12.37% |
Projects | Rank | |||
---|---|---|---|---|
LJC | 578.067 | 52.614 | 0.083 | 28 |
TSGC | 535.868 | 102.426 | 0.160 | 23 |
NRC | 376.980 | 428.854 | 0.532 | 2 |
CSC | 542.945 | 105.148 | 0.162 | 22 |
QC | 374.235 | 314.128 | 0.456 | 8 |
TFYC | 590.108 | 48.970 | 0.077 | 32 |
TFJC | 559.131 | 77.582 | 0.122 | 25 |
TTJC | 568.947 | 71.779 | 0.112 | 26 |
RC | 443.622 | 244.253 | 0.355 | 11 |
FRC | 446.902 | 212.961 | 0.323 | 12 |
LC | 455.027 | 202.828 | 0.308 | 13 |
SC | 587.838 | 46.844 | 0.074 | 34 |
JC | 580.933 | 52.635 | 0.083 | 30 |
KNC | 566.508 | 60.518 | 0.097 | 27 |
KC | 523.984 | 108.351 | 0.171 | 21 |
ZLC | 536.616 | 118.147 | 0.180 | 20 |
SRC | 515.576 | 145.624 | 0.220 | 18 |
DC | 602.737 | 45.820 | 0.071 | 35 |
KLC | 590.200 | 40.955 | 0.065 | 36 |
XQRC | 474.501 | 185.038 | 0.281 | 15 |
WC | 403.300 | 353.288 | 0.467 | 6 |
YC | 390.742 | 343.010 | 0.467 | 5 |
CVS | 499.283 | 147.892 | 0.229 | 17 |
FDSS | 601.515 | 49.976 | 0.077 | 31 |
SHSS | 234.076 | 533.323 | 0.695 | 1 |
YSS | 350.695 | 359.533 | 0.506 | 3 |
YJSS | 581.257 | 52.771 | 0.083 | 29 |
SRSS | 413.009 | 289.126 | 0.412 | 9 |
SFSS | 585.109 | 47.098 | 0.074 | 33 |
LSS | 407.090 | 355.406 | 0.466 | 7 |
XMSS | 588.248 | 102.701 | 0.149 | 24 |
SHD | 488.914 | 192.699 | 0.283 | 14 |
MCLHD | 487.284 | 173.486 | 0.263 | 16 |
IMP | 607.649 | 30.843 | 0.048 | 37 |
RTC | 364.861 | 331.060 | 0.476 | 4 |
ICCIP | 511.663 | 118.770 | 0.188 | 19 |
IM | 403.938 | 251.933 | 0.384 | 10 |
Appendix B. Premised Test
(1) | (2) | (33) | (4) | |
---|---|---|---|---|
Price | 0.066 (0.081) | 0.064 (0.270) | 0.111 (0.110) | −0.168 (0.123) |
Floor area | −0.006 (0.010) | 0.005 (0.009) | ||
Accessibility of Public Facilities | 209.7 (265.600) | 350.600 *** (86.85) | ||
Equity of Public Facilities | −8.377 (8.227) | −87.760 *** (15.71) | ||
Population Density | −27.460 (27.740) | 311.200 *** (60.700) | ||
Development Intensity | 0.181 (0.311) | −0.756 ** (0.301) | ||
Observations | 149 | 114 | 149 | 114 |
Appendix C. Robustness Test
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Excluding the Influence of COVID-19 | Excluding the Influence of 4 Projects | |||
DD | −0.325 *** (0.046) | −0.220 *** (0.042) | −0.265 *** (0.044) | −0.167 *** (0.042) |
POST | 0.003 (0.035) | −0.031 (0.032) | −0.006 (0.033) | −0.042 (0.031) |
TREATED | −1.498 *** (0.062) | −1.464 *** (0.237) | −0.679 (0.694) | −1.585 *** (0.207) |
Area | −0.017 *** (0.002) | −0.004 (0.002) | ||
Dec | 0.658 *** (0.022) | 0.695 *** (0.022) | ||
Bed | 0.408 *** (0.046) | 0.000 (0.074) | ||
Ele | 0.308 *** (0.096) | 0.265 *** (0.097) | ||
Age | −0.047 *** (0.004) | −0.045 *** (0.004) | ||
Pr | 4.415 *** (1.288) | 3.082 ** (1.361) | ||
Gr | −44.230 (37.140) | −5.710 (33.250) | ||
Dissub | −3.161 (3.193) | −1.264 *** (0.201) | ||
Dise | 0.092 (1.265) | −0.539 * (0.317) | ||
Disc | −0.257 (1.339) | −0.217 (0.915) | ||
Dispro | −0.148 (0.261) | −0.150 (0.236) | ||
House FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Control Variables | No | Yes | No | Yes |
R-squared | 0.915 | 0.927 | 0.911 | 0.921 |
Observations | 19095 | 19095 | 20026 | 20026 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
With Outliers | Excluding Percentiles | |||
1st | 99th | 1st and 99th | ||
DD | −0.182 *** (0.041) | −0.167 *** (0.041) | −0.145 *** (0.039) | −0.130 *** (0.039) |
POST | −0.041 (0.030) | −0.036 (0.030) | −0.060 ** (0.028) | −0.055 * (0.028) |
TREATED | −1.461 *** (0.075) | −1.600 *** (0.207) | −1.626 *** (0.201) | −1.666 *** (0.202) |
Area | −0.004 (0.002) | −0.004 (0.002) | −0.003 * (0.002) | −0.003 * (0.002) |
Dec | 0.687 *** (0.022) | 0.692 *** (0.022) | 0.657 *** (0.019) | 0.662 *** (0.020) |
Bed | 0.009 (0.076) | 0.013 (0.075) | −0.007 (0.064) | −0.003 (0.064) |
Ele | 0.337 *** (0.093) | 0.345 *** (0.095) | 0.343 *** (0.089) | 0.350 *** (0.091) |
Age | −0.045 *** (0.004) | −0.043 *** (0.004) | −0.037 *** (0.003) | −0.036 *** (0.003) |
Pr | 0.829 (1.224) | 3.025 ** (1.368) | 2.811 ** (1.333) | 2.796 ** (1.343) |
Gr | 28.770 *** (9.199) | −5.678 (33.300) | −3.138 (32.500) | −3.035 (32.650) |
Dissub | −0.454 (0.690) | −1.302 *** (0.206) | −1.338 *** (0.199) | −1.367 *** (0.204) |
Dise | −0.634 ** (0.299) | −0.512 (0.319) | −0.477 (0.311) | −0.463 (0.313) |
Disc | 0.311 (0.491) | −0.195 (0.918) | −0.098 (0.896) | −0.089 (0.902) |
Dispro | −0.080 *** (0.029) | −0.147 (0.236) | −0.142 (0.231) | −0.140 (0.232) |
House FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes |
R-squared | 0.924 | 0.921 | 0.927 | 0.926 |
Observations | 21316 | 21104 | 21103 | 20891 |
All | 0–3 km | 0–4 km | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
DD | −0.253 *** (0.041) | −0.158 *** (0.038) | −0.146 *** (0.056) | −0.115 ** (0.053) | −0.239 *** (0.050) | −0.176 *** (0.046) |
POST | 0.0723 * (0.037) | 0.002 (0.034) | 0.024 (0.056) | −0.027 (0.052) | 0.075 (0.048) | 0.011 (0.044) |
TREATED | −4.602 *** (0.592) | −20.820 ** (10.500) | −0.181 (0.506) | −24.030 (21.620) | −0.296 (0.619) | −12.190 (15.390) |
Treatment Groups | 0–2 km | 0–2 km | 0–2 km | |||
Control Groups | >2 km | 2–3 km | 2–4 km | |||
House FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Control Variables | No | Yes | No | Yes | No | Yes |
R-squared | 0.912 | 0.923 | 0.926 | 0.915 | 0.924 | 0.912 |
Observations | 21316 | 21316 | 15510 | 15510 | 17577 | 17577 |
Variable | Unmatched Matched | Mean | %Reduct | t-Test | |||
---|---|---|---|---|---|---|---|
Treated | Control | %Bias | Bias | t | p > t | ||
Age | U M | 0.409 0.409 | 0.274 0.364 | 28.300 9.500 | 1.170 66.300 | 0.245 0.300 | . 0.764 |
Buildings | U M | 14.727 14.727 | 23.887 16.500 | −29.100 −5.600 | −0.990 80.600 | 0.327 −0.360 | 0.080 * 0.717 |
DISSS | U M | 535.600 535.600 | 1721.900 589.910 | −47.200 −3.500 | −1.570 92.600 | 0.121 −0.630 | 0.010 * 0.532 |
DISC | U M | 207.340 207.340 | 943.560 278.070 | −75.900 −7.300 | −2.510 90.400 | 0.014 −1.630 | 0.010 * 0.111 |
DISE | U M | 807.740 807.740 | 3003.200 1651.400 | −111.700 −42.900 | −3.850 61.600 | 0.000 −2.600 | 0.140 * 0.013 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
DD | −0.098 (0.106) | 0.036 (0.101) | −0.278 *** (0.043) | −0.181 *** (0.041) |
POST | 1.483 *** (0.056) | 1.658 *** (0.056) | 0.001 (0.032) | −0.041 (0.030) |
TREATED | −0.927 *** (0.075) | −0.813 *** (0.077) | −0.652 (0.688) | −1.561 *** (0.206) |
Area | −0.002 (0.001) | −0.004 (0.002) | ||
Dec | −0.020 (0.043) | 0.687 *** (0.022) | ||
Bed | 0.481 *** (0.059) | 0.008 (0.076) | ||
Ele | 2.534 *** (0.079) | 0.337 *** (0.093) | ||
Age | −0.030 *** (0.004) | −0.045 *** (0.004) | ||
Pr | 0.017 (0.016) | 3.039 ** (1.358) | ||
Gr | 3.775 *** (0.351) | −5.775 (33.150) | ||
Dissub | −0.371 *** (0.059) | −1.274 *** (0.201) | ||
Dise | 0.176 *** (0.016) | −0.526 * (0.316) | ||
Disc | −0.244 *** (0.041) | −0.204 (0.913) | ||
Dispro | −0.070 *** (0.010) | −0.148 (0.235) | ||
House FE | No | No | Yes | Yes |
Time FE | No | No | Yes | Yes |
Control Variables | No | Yes | No | Yes |
R-squared | 0.056 | 0.138 | 0.912 | 0.923 |
Observations | 21316 | 21316 | 21315 | 21316 |
References
- UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Shen, L.Y.; Peng, Y.; Zhang, X.L.; Wu, Y.Z. An alternative model for evaluating sustainable urbanization. Cities 2012, 29, 32–39. [Google Scholar] [CrossRef]
- Yang, B.; Xu, T.; Shi, L.Y. Analysis on sustainable urban development levels and trends in China’s cities. J. Clean. Prod. 2017, 141, 868–880. [Google Scholar] [CrossRef]
- La Rosa, D.; Privitera, R.; Barbarossa, L.; La Greca, P. Assessing spatial benefits of urban regeneration programs in a highly vulnerable urban context: A case study in Catania, Italy. Landsc. Urban Plan. 2017, 157, 180–192. [Google Scholar] [CrossRef]
- Zheng, H.W.; Shen, G.Q.; Wang, H. A review of recent studies on sustainable urban renewal. Habitat Int. 2014, 41, 272–279. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Maennig, W.; Richter, F.J. Urban renewal after the Berlin Wall: A place-based policy evaluation. J. Econ. Geogr. 2017, 17, 129–156. [Google Scholar] [CrossRef]
- Rossi-Hansberg, E.; Sarte, P.D.; Owens, R. Housing Externalities. J. Polit. Econ. 2010, 118, 485–535. [Google Scholar] [CrossRef]
- The Central Urban Work Conference Was Held in Beijing; Xinhua News Agency: Beijing, China, 2015.
- The Outline of the 14th Five-Year Plan for Economic and Social Development and Long-Range Objectives through Year 2035 of the People’s Republic of China. 2021. Available online: https://en.ndrc.gov.cn/policies/202203/P020220315511326748336.pdf (accessed on 13 April 2023).
- Chongqing Housing and Urban-Rural Development Commission. Chongqing Urban Renewal Technical Guidance; Chongqing Housing and Urban-Rural Development Commission: Chongqing, China, 2022. [Google Scholar]
- Zhuang, T.Z.; Qian, Q.K.; Visscher, H.J.; Elsinga, M.G. Stakeholders’ Expectations in Urban Renewal Projects in China: A Key Step towards Sustainability. Sustainability 2017, 9, 21. [Google Scholar] [CrossRef]
- Bade, D.; Castillo, J.G.; Fernandez, M.A.; Aguilar-Bohorquez, J. The price premium of heritage in the housing market: Evidence from Auckland, New Zealand. Land Use Pol. 2020, 99, 13. [Google Scholar] [CrossRef]
- Peng, Y.; Tian, C.H. Removal and reconstruction: Multi-period price effects on nearby housing from urban village redevelopment. Land Use Pol. 2022, 113, 13. [Google Scholar] [CrossRef]
- Nordahl, B.I.; Sommervoll, D.E. Reaping the premium in urban redevelopment. Cities 2023, 141, 10. [Google Scholar] [CrossRef]
- Chan, E.H.W.; Lee, G.K.L. Contribution of Urban Design to Economic Sustainability of Urban Renewal Projects in Hong Kong. Sustain. Dev. 2008, 16, 353–364. [Google Scholar] [CrossRef]
- Chen, Y.W. Financialising urban redevelopment: Transforming Shanghai's waterfront. Land Use Pol. 2022, 112, 10. [Google Scholar] [CrossRef]
- Huang, L.X.; Luo, P.S.; Chen, Z. Urban Renewal Mode Based on Value Capture and Financially Sustainability: A Case Study of Tianjin City. China Land Sci. 2021, 35, 35–44. [Google Scholar]
- Wang, Y.S.; Li, J.F.; Zhang, G.L.; Li, Y.K.; Asare, M.H. Fuzzy evaluation of comprehensive benefit in urban renewal based on the perspective of core stakeholders. Habitat Int. 2017, 66, 163–170. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Li, D.Z.; Feng, H.B.; Gu, T.T.; Zhu, J.W. AHP-TOPSIS-Based Evaluation of the Relative Performance of Multiple Neighborhood Renewal Projects: A Case Study in Nanjing, China. Sustainability 2019, 11, 17. [Google Scholar] [CrossRef]
- Wilson, B.; Bin Kashem, S. Spatially concentrated renovation activity and housing appreciation in the city of Milwaukee, Wisconsin. J. Urban Aff. 2017, 39, 1085–1102. [Google Scholar] [CrossRef]
- Ploegmakers, H.; Beckers, P. Evaluating urban regeneration: An assessment of the effectiveness of physical regeneration initiatives on run-down industrial sites in the Netherlands. Urban Stud. 2015, 52, 2151–2169. [Google Scholar] [CrossRef]
- Noonan, D.S.; Krupka, D.J. Making-or Picking-Winners: Evidence of Internal and External Price Effects in Historic Preservation Policies. Real Estate Econ. 2011, 39, 379–407. [Google Scholar] [CrossRef]
- Shi, J.A.; Miao, W.; Si, H.Y.; Liu, T. Urban Vitality Evaluation and Spatial Correlation Research: A Case Study from Shanghai, China. Land 2021, 10, 15. [Google Scholar] [CrossRef]
- Tyler, P.; Warnock, C.; Provins, A.; Lanz, B. Valuing the Benefits of Urban Regeneration. Urban Stud. 2013, 50, 169–190. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, S. An Analytic Hierarchy Process (AHP) Approach for Sustainable Assessment of Economy-Based and Community-Based Urban Regeneration: The Case of South Korea. Sustainability 2018, 10, 14. [Google Scholar] [CrossRef]
- Korkmaz, C.; Balaban, O. Sustainability of urban regeneration in Turkey: Assessing the performance of the North Ankara Urban Regeneration Project. Habitat Int. 2020, 95, 14. [Google Scholar] [CrossRef]
- Bottero, M.; Bragaglia, F.; Caruso, N.; Datola, G.; Dell’Anna, F. Experimenting community impact evaluation (CIE) for assessing urban regeneration programmes: The case study of the area 22@ Barcelona. Cities 2020, 99, 16. [Google Scholar] [CrossRef]
- Mohan, G.; Longo, A.; Kee, F. Post-conflict area-based regeneration policy in deprived urban neighbourhoods. Reg. Stud. 2020, 54, 789–801. [Google Scholar] [CrossRef]
- Peng, Y.; Lai, Y.N.; Li, X.W.; Zhang, X.L. An alternative model for measuring the sustainability of urban regeneration: The way forward. J. Clean. Prod. 2015, 109, 76–83. [Google Scholar] [CrossRef]
- Ribeiro, F.L. Urban Regeneration Economics: The Case of Lisbon’s Old Downtown. Int. J. Strateg. Prop. Manag. 2008, 12, 203–213. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Zhang, W.X.; He, C.H. The Performance Evaluation of Urban Renewal Based on DEA Method: Example in Xicheng District, Beijing. Urban Dev. Stud. 2011, 18, 90–96. [Google Scholar]
- Della Spina, L.; Calabrò, F.; Rugolo, A. Social Housing: An Appraisal Model of the Economic Benefits in Urban Regeneration Programs. Sustainability 2020, 12, 19. [Google Scholar] [CrossRef]
- Liu, G.W.; Chong, C.; Hong, J.K.; Xie, F.Y. Analysis of the Economic Effect of Urban Regeneration Industry in China. Constr. Econ. 2019, 40, 5–12. [Google Scholar]
- Albanese, G.; Ciani, E.; de Blasio, G. Anything new in town? The local effects of urban regeneration policies in Italy. Reg. Sci. Urban Econ. 2021, 86, 16. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Liu, Q.; Cao, S.X. Real estate supports rapid development of China's urbanization. Land Use Pol. 2020, 95, 8. [Google Scholar] [CrossRef]
- Rabiei-Dastjerdi, H.; McArdle, G. Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin. Land 2021, 10, 16. [Google Scholar] [CrossRef]
- Rérat, P.; Söderström, O.; Piguet, E. New Forms of Gentrification: Issues and Debates. Popul. Space Place 2010, 16, 335–343. [Google Scholar] [CrossRef]
- Vicario, L.; Monje, P.M.M. Another 'Guggenheim effect'? The generation of a potentially gentrifiable neighbourhood in Bilbao. Urban Stud. 2003, 40, 2383–2400. [Google Scholar] [CrossRef]
- van Duijn, M.; Rouwendal, J.; Boersema, R. Redevelopment of industrial heritage: Insights into external effects on house prices. Reg. Sci. Urban Econ. 2016, 57, 91–107. [Google Scholar] [CrossRef]
- Lee, C.C.; Liang, C.M.; Chen, C.Y. The impact of urban renewal on neighborhood housing prices in Taipei: An application of the difference-in-difference method. J. Hous. Built Environ. 2017, 32, 407–428. [Google Scholar] [CrossRef]
- Been, V.; Ellen, I.G.; Gedal, M.; Glaeser, E.; McCabe, B.J. Preserving history or restricting development? The heterogeneous effects of historic districts on local housing markets in New York City. J. Urban Econ. 2016, 92, 16–30. [Google Scholar] [CrossRef]
- Jayantha, W.M.; Yung, E.H.K. Effect of Revitalisation of Historic Buildings on Retail Shop Values in Urban Renewal: An Empirical Analysis. Sustainability 2018, 10, 18. [Google Scholar] [CrossRef]
- Mateos-Mora, C.; Herrera-Gutiérrez, M.R.; González-Benítez, C. The Impacts of Area-Based Policies on Essential Retail in Vulnerable Areas. Sustainability 2021, 13, 17. [Google Scholar] [CrossRef]
- Hatz, G. Can public subsidized urban renewal solve the gentrification issue? Dissecting the Viennese example. Cities 2021, 115, 12. [Google Scholar] [CrossRef]
- Hussain, T.; Abbas, J.; Wei, Z.; Nurunnabi, M. The Effect of Sustainable Urban Planning and Slum Disamenity on The Value of Neighboring Residential Property: Application of The Hedonic Pricing Model in Rent Price Appraisal. Sustainability 2019, 11, 20. [Google Scholar] [CrossRef]
- Yang, Z.S.; Pan, Y.H. Human capital, housing prices, and regional economic development: Will “vying for talent” through policy succeed? Cities 2020, 98, 13. [Google Scholar] [CrossRef]
- Wu, W.J.; Wang, J.H. Gentrification effects of China’s urban village renewals. Urban Stud. 2017, 54, 214–229. [Google Scholar] [CrossRef]
- Hall, P. Regeneration policies for peripheral housing estates: Inward- and outward-looking approaches. Urban Stud. 1997, 34, 873–890. [Google Scholar] [CrossRef]
- Saiu, V. Evaluating Outwards Regeneration Effects (OREs) in Neighborhood-Based Projects: A Reversal of Perspective and the Proposal for a New Tool. Sustainability 2020, 12, 16. [Google Scholar] [CrossRef]
- Ogas-Mendez, A.F.; Isoda, Y.; Nakaya, T. Strong, weak, or reversed: The spatial heterogeneities in the effects of squatter settlements on house prices. Cities 2021, 117, 12. [Google Scholar] [CrossRef]
- Chen, Y.; Chau, K.W.; Zhang, M.Z.; Yang, L.C. Institutional innovations from state-dominated to market-oriented: Price premium differentials of urban redevelopment projects in Shenzhen, China. Cities 2022, 131, 20. [Google Scholar] [CrossRef]
- Wu, S.M.; Deng, Y. Typological differentiation and time-series effects of urban renewal on housing prices. Cities 2024, 145, 13. [Google Scholar] [CrossRef]
- Liu, G.W.; Yi, Z.Y.; Zhang, X.L.; Shrestha, A.; Martek, I.; Wei, L.Z. An Evaluation of Urban Renewal Policies of Shenzhen, China. Sustainability 2017, 9, 17. [Google Scholar] [CrossRef]
- Mesthrige, J.W.; Wong, J.K.W.; Yuk, L.N. Conversion or redevelopment? Effects of revitalization of old industrial buildings on property values. Habitat Int. 2018, 73, 53–64. [Google Scholar] [CrossRef]
- Zheng, X.; Li, J.X.; Zheng, L.Z.; Lv, J.Y. Multi-owned property, urban renewal and neighborhood property value externalities: Revisiting the Hong Kong case. Cities 2020, 107, 9. [Google Scholar] [CrossRef]
- Liu, C.X.; Liu, X.L. Adaptive Reuse of Religious Heritage and Its Impact on House Prices. J. Real Estate Financ. Econ. 2022, 64, 71–92. [Google Scholar] [CrossRef]
- Koster, H.R.A.; Rouwendal, J. Historic Amenities And Housing Externalities: Evidence from The Netherlands. Econ. J. 2017, 127, F396–F420. [Google Scholar] [CrossRef]
- Ding, C.; Simons, R.; Baku, E. The Effect of Residential Investment on Nearby Property Values: Evidence from Cleveland, Ohio. J. Real Estate Res. 2000, 19, 23–48. [Google Scholar] [CrossRef]
- Waltl, S.R. Variation Across Price Segments and Locations: A Comprehensive Quantile Regression Analysis of the Sydney Housing Market. Real Estate Econ. 2019, 47, 723–756. [Google Scholar] [CrossRef]
- Diamond, R.; McQuade, T. Who Wants Affordable Housing in Their Backyard? An Equilibrium Analysis of Low-Income Property Development. J. Polit. Econ. 2019, 127, 1063–1117. [Google Scholar] [CrossRef]
- Wang, Y.R.; Wang, Z.Y.; Yi, C.D.; Wang, H.; Gao, R. The Spillover Effects of Urban Renewal Projects on Local Housing Prices: Empirical Evidences Based on Shanty Town Reconstruction in Beijing. Urban Dev. Stud. 2020, 27, 106–113+131. [Google Scholar]
- Liu, Y.A.; Tang, Y.G. Epidemic shocks and housing price responses: Evidence from China's urban residential communities. Reg. Sci. Urban Econ. 2021, 89, 12. [Google Scholar] [CrossRef]
- Schirmer, P.M.; van Eggermond, M.A.B.; Axhausen, K.W. The role of location in residential location choice models: A review of literature. J. Transp. Land Use 2014, 7, 3–21. [Google Scholar] [CrossRef]
- Zamri, Z.; Tarmidi, Z.; Maimun, N.H.A. Review of Spatial Model to Assess Suitability of Affordable Housing Based on Demand Criteria. In Proceedings of the 10th Institution-of-Geospatial-and-Remote-Sensing-Malaysia (IGRSM) International Conference and Exhibition on Geospatial and Remote Sensing (IGRSM), Electr Network, Kuala Lumpur, Malaysia, 20–21 October 2020. [Google Scholar]
- Xue, C.; Ju, Y.F.; Li, S.G.; Zhou, Q.L. Research on the Sustainable Development of Urban Housing Price Based on Transport Accessibility: A Case Study of Xi'an, China. Sustainability 2020, 12, 15. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.L.; Liu, G.W. Key Variables for Decision-Making on Urban Renewal in China: A Case Study of Chongqing. Sustainability 2017, 9, 19. [Google Scholar] [CrossRef]
- Wang, D.K.; Li, V.J.; Yu, H.Y. Mass Appraisal Modeling of Real Estate in Urban Centers by Geographically and Temporally Weighted Regression: A Case Study of Beijing's Core Area. Land 2020, 9, 18. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xue, Y.G.; Qiu, D.H.; Xu, Z.H.; Zhang, X.L.; Zhou, B.H.; Wang, X.T. AHP-Ideal Point Model for Large Underground Petroleum Storage Site Selection: An Engineering Application. Sustainability 2017, 9, 12. [Google Scholar] [CrossRef]
- Lv, T.; Wang, L.; Zhang, X.; Xie, H.; Lu, H.; Li, H.; Liu, W.; Zhang, Y. Coupling Coordinated Development and Exploring Its Influencing Factors in Nanchang, China: From the Perspectives of Land Urbanization and Population Urbanization. Land 2019, 8, 178. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y.Y.; Tian, G. Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure. Cities 2019, 91, 165–179. [Google Scholar]
- Fesselmeyer, E.; Seah, K.Y.S.; Kwok, J.C.Y. The effect of localized density on housing prices in Singapore. Reg. Sci. Urban Econ. 2018, 68, 304–315. [Google Scholar]
- Hu, L.R.; He, S.J.; Han, Z.X.; Xiao, H.; Su, S.L.; Weng, M.; Cai, Z.L. Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Pol. 2019, 82, 657–673. [Google Scholar] [CrossRef]
- Chau, K.W.; Wong, S.K. Externalities of Urban Renewal: A Real Option Perspective. J. Real Estate Financ. Econ. 2014, 48, 546–560. [Google Scholar] [CrossRef]
- Liang, C.M.; Lee, C.C.; Yong, L.R. Impacts of urban renewal on neighborhood housing prices: Predicting response to psychological effects. J. Hous. Built Environ. 2020, 35, 191–213. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.J.; Chen, T.T.; Li, V. Where will China's real estate market go under the economy's new normal? Cities 2016, 55, 42–48. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhou, T.; Mao, C. Does the Difference in Urban Public Facility Allocation Cause Spatial Inequality in Housing Prices? Evidence from Chongqing, China. Sustainability 2019, 11, 20. [Google Scholar] [CrossRef]
- Hromada, E.; Heralová, R.S.; Cermáková, K.; Piecha, M.; Kaderábková, B. Impacts of Crisis on the Real Estate Market Depending on the Development of the Region. Buildings 2023, 13, 15. [Google Scholar] [CrossRef]
- Cao, K.X.; Deng, Y.; Song, C. Exploring the drivers of urban renewal through comparative modeling of multiple types in Shenzhen, China. Cities 2023, 137, 16. [Google Scholar] [CrossRef]
- Mesthrige, J.W.; Poon, H.L. Assessing the impact of revitalized old industrial buildings on the value of surrounding properties An empirical study. Facilities 2015, 33, 245–261. [Google Scholar] [CrossRef]
- Irwin, N.B. Keeping up appearances: Spatial spillovers and housing renovations. Pap. Reg. Sci. 2019, 98, 2115–2134. [Google Scholar] [CrossRef]
- Helms, A.C. Keeping up with the Joneses: Neighborhood effects in housing renovation. Reg. Sci. Urban Econ. 2012, 42, 303–313. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yao, Y.; Zhang, Y.B.; Xiang, L.J. A Framework of Stakeholder Relationship Analysis for an Urban Regeneration Project Based on Social Network Analysis: A Dynamic Perspective. J. Urban Plan. Dev. 2022, 148, 14. [Google Scholar] [CrossRef]
- Pojar, J.; Macek, D.; Heralová, R.S.; Vitásek, S. Advances in Costs Optimization Methods-Key Study of Maintenance and Restoration of Cultural Heritage. Int. J. Econ. Sci. 2022, 11, 163–177. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Qian, X.H.; Qiu, S.Y.; Zhang, G.L. The impact of COVID-19 on housing price: Evidence from China. Financ. Res. Lett. 2021, 43, 7. [Google Scholar] [CrossRef]
- Heckman, J.J.; Ichimura, H.; Todd, P. Matching as an econometric evaluation estimator. Rev. Econ. Stud. 1998, 65, 261–294. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef]
Variables | Definition | Mean | Sd | Min | Max | |
---|---|---|---|---|---|---|
Dependent Variable | ||||||
Price | The average price of house (1 thousand yuan/m2) | 11.290 | 3.585 | 1.638 | 38.690 | |
Independent Variable | ||||||
Physical Structure | Area | The floor area of house (m2) | 93.820 | 51.00 | 16.050 | 4324.000 |
Dec | Whether it is decorated: Undecorated (0), simple-decorated (1), well-decorated (2) | 1.350 | 0.629 | 0.000 | 2.000 | |
Bed | The number of bedrooms | 2.442 | 0.831 | 1.000 | 14.000 | |
Ele | Whether it has elevator: no (0), yes (1) | 0.882 | 0.311 | 0.000 | 1.000 | |
Age | The number of years between built and sale | 3.427 | 4.989 | 0.000 | 57.000 | |
Neighborhood | Pr | The plot ratio of the community | 3.277 | 1.608 | 0.020 | 10.000 |
Gr | The greening rate of the community | 0.328 | 0.073 | 0.100 | 0.700 | |
Location | Dissub | The distance to nearest subway station (km) | 0.712 | 0.706 | 0.029 | 23.220 |
Dise | The distance to nearest college (km) | 2.661 | 2.026 | 0.044 | 12.460 | |
Disc | The distance to nearest commercial area (km) | 0.614 | 0.837 | 0.000 | 22.280 | |
Dispro | The distance to nearest regeneration project (km) | 2.723 | 3.034 | 0.000 | 21.410 | |
Projects | Method | The regeneration method of projects: rehabilitation (0), revitalization (1), redevelopment (2) | 0.479 | 0.758 | 0.000 | 2.000 |
Investment | The investment on projects (one hundred million) | 2.199 | 4.416 | 0.001 | 20.000 | |
Location | The location value of the projects | 0.416 | 0.139 | 0.048 | 0.695 |
Project | Period | Investment (One Hundred Million) | Regeneration Approach | Location Value |
---|---|---|---|---|
LJC | 2019.4–2019.7 | 0.030 | Rehabilitation | 0.083 |
TSGC | 2017.2–2017.9 | 0.076 | Rehabilitation | 0.160 |
NRC | 2017.8–2019.11 | 1.300 | Rehabilitation | 0.532 |
CSC | 2018.10–2019.4 | 0.029 | Rehabilitation | 0.162 |
QC | 2020.4–2020.8 | 0.060 | Rehabilitation | 0.456 |
TFYC | 2020.9–2021.2 | 0.053 | Rehabilitation | 0.077 |
TFJC | 2020.9–2021.2 | 0.081 | Rehabilitation | 0.122 |
TTJC | 2020.9–2021.2 | 0.219 | Rehabilitation | 0.112 |
RC | 2019.1–2019.12 | 0.014 | Rehabilitation | 0.355 |
FRC | 2019.1–2019.12 | 0.010 | Rehabilitation | 0.323 |
LC | 2019.1–2019.12 | 0.002 | Rehabilitation | 0.308 |
SC | 2019.1–2019.12 | 0.005 | Rehabilitation | 0.074 |
JC | 2019.1–2019.12 | 0.003 | Rehabilitation | 0.083 |
KNC | 2019.1–2019.12 | 0.001 | Rehabilitation | 0.097 |
KC | 2020.1–2020.11 | 0.870 | Rehabilitation | 0.171 |
ZLC | 2020.10–2021.3 | 0.096 | Rehabilitation | 0.180 |
SRC | 2020.3–2020.6 | 0.182 | Rehabilitation | 0.220 |
DC | 2018.3–2019.12 | 0.120 | Rehabilitation | 0.071 |
KLC | 2019.1–2019.12 | 0.078 | Rehabilitation | 0.065 |
XQRC | 2019.3–2020.1 | 1.300 | Rehabilitation | 0.281 |
WC | 2020.1–2020.6 | 0.020 | Rehabilitation | 0.467 |
YC | 2020.10–2021.1 | 0.030 | Rehabilitation | 0.467 |
CVS | 2019.9–2019.12 | 0.120 | Rehabilitation | 0.229 |
FDSS | 2019.6–2020.12 | 0.046 | Redevelopment | 0.077 |
SHSS | 2020.1–2020.5 | 1.100 | Redevelopment | 0.695 |
YSS | 2015.12–2017.12 | 8.884 | Redevelopment | 0.506 |
YJSS | 2017.12–2019.12 | 0.060 | Redevelopment | 0.083 |
SRSS | 2019.2–2021.9 | 12.000 | Redevelopment | 0.412 |
SFSS | 2015.6–2021.1 | 6.300 | Redevelopment | 0.074 |
LSS | 2017.7–2020.8 | 2.700 | Redevelopment | 0.466 |
XMSS | 2019.12–2020.8 | 11.810 | Redevelopment | 0.149 |
SHD | 2017.5–2021.9 | 20.000 | Revitalization | 0.283 |
MCLHD | 2017.11–2019.9 | 1.200 | Revitalization | 0.263 |
IMP | 2015.12–2016.12 | 1.700 | Revitalization | 0.048 |
RTC | 2018.3–2020.3 | 0.300 | Revitalization | 0.476 |
ICCIP | 2015.9–2016.10 | 5.000 | Revitalization | 0.188 |
IM | 2015.1–2016.12 | 6.800 | Revitalization | 0.384 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
DD | −0.100 (0.106) | 0.034 (0.101) | −0.278 *** (0.043) | −0.182 *** (0.041) |
POST | 1.484 *** (0.056) | 1.659 *** (0.056) | 0.001 (0.032) | −0.041 (0.030) |
TREATED | −0.927 *** (0.075) | −0.813 *** (0.077) | −1.443 *** (0.096) | −1.461 *** (0.075) |
Area | −0.002 (0.001) | −0.004 (0.002) | ||
Dec | −0.020 (0.043) | 0.687 *** (0.022) | ||
Bed | 0.482 *** (0.059) | 0.009 (0.076) | ||
Ele | 2.534 *** (0.079) | 0.337 *** (0.093) | ||
Age | −0.030 *** (0.004) | −0.045 *** (0.004) | ||
Pr | 0.017 (0.016) | 0.829 (1.224) | ||
Gr | 3.773 *** (0.351) | 28.770 *** (9.199) | ||
Dissub | −0.371 *** (0.059) | −0.454 (0.690) | ||
Dise | 0.176 *** (0.016) | −0.634 ** (0.299) | ||
Disc | −0.244 *** (0.041) | 0.311 (0.491) | ||
Dispro | −0.070 *** (0.010) | −0.080 *** (0.029) | ||
House FE | No | No | Yes | Yes |
Time FE | No | No | Yes | Yes |
Control Variables | No | Yes | No | Yes |
R-squared | 0.056 | 0.138 | 0.912 | 0.923 |
Observations | 21316 | 21316 | 21316 | 21316 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
15% | 25% | 35% | 45% | 55% | 65% | 75% | 85% | |
DD | 0.234 *** (3.894) | −0.017 (−0.087) | −0.010 (−0.072) | 0.032 (0.124) | −0.084 ** (−2.268) | −0.779 *** (−8.218) | −0.933 *** (−5.869) | −1.570 *** (−67.885) |
POST | 1.790 *** (88.562) | 1.401 *** (24.354) | 1.202 *** (27.695) | 1.136 *** (9.107) | 0.766 *** (25.321) | 1.199 *** (113.926) | 0.099 (0.746) | 0.895 *** (257.018) |
TREATED | −0.473 *** (−20.807) | 0.104 ** (2.179) | −0.070 * (−1.920) | 0.107 (0.388) | −0.844 *** (−96.431) | −0.851 *** (−44.687) | 2.068 *** (7.021) | 0.707 *** (37.022) |
House FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 21316 | 21316 | 21316 | 21316 | 21316 | 21316 | 21316 | 21316 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
0–200 m | 200–400 m | 400–600 m | 600–800 m | 800–1000 m | |
−0.038 (0.092) | |||||
−0.137 (0.085) | |||||
−0.403 *** (0.066) | |||||
−0.177 ** (0.073) | |||||
0.127 (0.084) | |||||
POST | −0.083 *** (0.028) | −0.079 *** (0.028) | −0.060 ** (0.029) | −0.077 *** (0.029) | −0.092 *** (0.028) |
House FE | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.923 | 0.923 | 0.923 | 0.923 | 0.923 |
Observations | 21316 | 21316 | 21316 | 21316 | 21316 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
0~2 km | 0~3 km | 0~4 km | ||||
DD | −0.174 *** (0.052) | −0.123 ** (0.049) | −0.236 *** (0.062) | −0.204 *** (0.056) | −0.502 *** (0.085) | −0.413 *** (0.076) |
POST | −0.012 (0.049) | −0.061 (0.046) | 0.082 (0.060) | 0.042 (0.055) | 0.308 *** (0.083) | 0.233 *** (0.074) |
TREATED | −0.725 (0.692) | −9.784 (19.510) | 1.644 *** (0.268) | −57.780 *** (5.594) | 1.709 *** (0.449) | −7.796 *** (2.982) |
Treatment Groups | 0~1 km | 0~1 km | 0~1 km | |||
Control Groups | 1~2 km | 2~3 km | 3~4 km | |||
House FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Control Variables | No | Yes | No | Yes | No | Yes |
R-squared | 0.919 | 0.928 | 0.919 | 0.930 | 0.917 | 0.929 |
Observations | 11816 | 11816 | 9008 | 9008 | 7381 | 7381 |
(1) | (2) | (3) | |
---|---|---|---|
Rehabilitation | Revitalization | Redevelopment | |
Panel A: Average effects | |||
DD×Method1 | −0.191 *** (0.044) | ||
DD×Method2 | −0.293 ** (0.120) | ||
DD×Method3 | −0.184 ** (0.076) | ||
House FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes |
R-squared | 0.923 | 0.923 | 0.923 |
Observations | 21316 | 21316 | 21316 |
Panel B: Effects within different distance gradient | |||
0–200 m | −0.036 (0.109) | −0.171 (0.307) | −0.125 (0.176) |
200–400 m | −0.081 (0.099) | −0.489 ** (0.243) | −0.336 * (0.184) |
400–600 m | −0.345 *** (0.080) | −0.474 ** (0.206) | −0.548 *** (0.122) |
600–800 m | −0.235 *** (0.083) | −0.323 (0.228) | 0.105 (0.198) |
800–1000 m | 0.022 (0.104) | 0.152 (0.276) | 0.269 * (0.152) |
House FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes |
R-squared | 0.923 | 0.923 | 0.923 |
Observations | 21316 | 21316 | 21316 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
All | Rehabilitation | Revitalization | Redevelopment | |
DD×Investment | −0.024 * (0.012) | 0.129 (0.093) | −0.043 *** (0.013) | 0.006 (0.023) |
DD | −0.174 *** (0.040) | −0.224 *** (0.041) | −0.180 *** (0.039) | −0.202 *** (0.039) |
Investment | −0.413 *** (0.045) | −0.252 (0.219) | −0.330 ** (0.138) | −0.419 *** (0.053) |
House FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes |
R-squared | 0.923 | 0.923 | 0.923 | 0.923 |
Observations | 21316 | 21316 | 21316 | 21316 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
All | Rehabilitation | Revitalization | Redevelopment | |
DD×Location | −0.191 * (0.3.19) | −0.174 (0.299) | −1.131 *** (0.403) | −0.596 *** (0.390) |
DD | −0.176 *** (0.069) | −0.177 *** (0.049) | −0.177 *** (0.039) | −0.178 *** (0.041) |
Location | 6.024 (17.700) | 1.602 (15.650) | 5.022 (17.440) | 0.235 (15.300) |
At the 25th percentile | −0.190 *** (0.051) | −0.192 *** (0.039) | −0.264 *** (0.044) | −0.224 *** (0.041) |
At the 50th percentile | −0.206 *** (0.041) | −0.209 *** (0.042) | −0.360 *** (0.067) | −0.275 *** (0.062) |
At the 75th percentile | −0.229 *** (0.055) | −0.232 *** (0.065) | −0.495 *** (0.110) | −0.346 *** (0.103) |
House FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes |
R-squared | 0.923 | 0.923 | 0.923 | 0.923 |
Observations | 21316 | 21316 | 21316 | 21316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Wu, H. Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price. Land 2024, 13, 652. https://doi.org/10.3390/land13050652
Yuan M, Wu H. Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price. Land. 2024; 13(5):652. https://doi.org/10.3390/land13050652
Chicago/Turabian StyleYuan, Meng, and Hongjuan Wu. 2024. "Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price" Land 13, no. 5: 652. https://doi.org/10.3390/land13050652
APA StyleYuan, M., & Wu, H. (2024). Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price. Land, 13(5), 652. https://doi.org/10.3390/land13050652