The Impact of High-Standard Farmland Construction Policies on the Carbon Emissions from Agricultural Land Use (CEALU)
Abstract
:1. Introduction
2. Policy Evolution and Theoretical Analysis
2.1. Policy Evolution
2.2. Theoretical Analysis: The Logical Relationship between HSFC and CEALU
2.2.1. Optimization Process
2.2.2. Action Process
2.2.3. Implementation Process
3. Methods and Materials
3.1. Methods
3.2. Data and Variable
3.2.1. Dataset Used
3.2.2. Variable Selection
4. Results and Analysis
4.1. Spatiotemporal Characteristics of CEALU
4.2. Did HSFC Reduce CEALU?
4.2.1. Estimation Results of the Baseline Regression Model
4.2.2. Parallel Test and Dynamic Policy Effect
4.2.3. Robustness Test
4.3. Is the Regional Heterogeneity Effect of HSFC on CEALU?
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haoyue, W.U.; Hanjiao, H.; Yu, H.; Wenkuan, C. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China. Chin. J. Eco-Agric. 2021, 29, 1762–1773. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators: Agricultural Methane Emissions. Available online: http://data.worldbank.org/indicator/En.Atm.Meth.Kt.Ce (accessed on 25 January 2018).
- Huang, S.; Ghazali, S.; Azadi, H.; Movahhed Moghaddam, S.; Viira, A.H.; Janeckova, K.; Sklenicka, P.; Lopez-Carr, D.; Kohl, M.; Kurban, A. Contribution of agricultural land conversion to global GHG emissions: A meta-analysis. Sci. Total Environ. 2023, 876, 162269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hu, B. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ. 2020, 66, 510–518. [Google Scholar] [CrossRef]
- Ruhan, A.; Mu, D.; Sudesuriguge, A. Analysis on land use carbon emissions and influencing factors in Duolun county, Inner Mongolia. J. Arid. Land Resour. Environ. 2019, 33, 17–22. [Google Scholar]
- Huang, W.; Wu, F.; Han, W.; Li, Q.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Yang, B.; Lei, Y.; et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors. Sci. Total Environ. 2022, 821, 153407. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L. Spatial pattern of China’s agricultural carbon emission performance. Ecol. Indic. 2021, 133, 108345. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.-Z.; Lin, W.-X. Influencing factors and spatial patterns of energy-related carbon emissions at the city-scale in Fujian province, Southeastern China. J. Clean. Prod. 2020, 244, 118840. [Google Scholar] [CrossRef]
- Xia, Q.; Liao, M.; Xie, X.; Guo, B.; Lu, X.; Qiu, H. Agricultural carbon emissions in Zhejiang Province, China (2001–2020): Changing trends, influencing factors, and has it achieved synergy with food security and economic development? Environ. Monit. Assess. 2023, 195, 1391. [Google Scholar] [CrossRef] [PubMed]
- Reeve, A.; Aisbett, E. National accounting systems as a foundation for embedded emissions accounting in trade-related climate policies. J. Clean. Prod. 2022, 371, 133678. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Cheng, L. Evaluation of Cultivated Land Use Efficiency with Environmental Constraints in the Dongting Lake Eco-Economic Zone of Hunan Province, China. Land 2020, 9, 440. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Qichen, Z.; Dun, Y.; Jianping, W. Spatial and temporal evolution, influencing factors and trend prediction of carbon emissions from agricultural land use in JiuJiang city. Res. Soil Water Conserv. 2023, 30, 441–451. [Google Scholar] [CrossRef]
- Dumortier, J.; Elobeid, A. Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change. Land Use Policy 2021, 103, 105320. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Xuan, X.; Weng, C.; Huang, X.; Deng, X. Tele-connections, driving forces and scenario simulation of agricultural land, water use and carbon emissions in China’s trade. Resour. Conserv. Recycl. 2024, 203, 107433. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Zhao, C. On building 4 hundred million mu of high-standard basic farmland in the twelfth five-year plan. China Popul. Resour. Environ. 2012, 22, 1–5. [Google Scholar]
- Ma, X.Y.; Shao, J.A.; Cao, F. Comprehensive Performance Evaluation of High Standard Farmland Construction in Mountainous Counties—A Case Study in Dianjiang, Chongqing. J. Nat. Resour. 2018, 33, 2183–2199. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W.; Zhang, X.; Qiu, H. Impact of high standard farmland construction policy on chemical fertilizer reduction: A case study of China. Front. Environ. Sci. 2023, 11, 1256028. [Google Scholar] [CrossRef]
- Ye, F.; Wang, L.; Razzaq, A.; Tong, T.; Zhang, Q.; Abbas, A. Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis. Land 2023, 12, 283. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Fu, Y.; Wang, Y. Analysis of the carbon effect of high-standard basic farmland based on the whole life cycle. Sci Rep. 2024, 14, 3361. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Well-Facilitated Farmland Construction—General Rules. Available online: http://www.moa.gov.cn/ztzl/gdzlbhyjs/mtbd_28775/mtbd/202204/t20220418_6396631.htm (accessed on 9 March 2018).
- Wang, X.; Shi, W.; Sun, X.; Wang, M. Comprehensive benefits evaluation and its spatial simulation for well-facilitated farmland projects in the Huang-Huai-Hai Region of China. Land Degrad. Dev. 2020, 31, 1837–1850. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X.; Zhao, G. Construction scale and spatial distribution of well-facilitated primary farmland of daxian county in sichuan province. China Land Sci. 2014, 28, 30–38. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Yang, X.; Gu, Z.; Han, B.; Li, H.; Zhou, Y. A framework for assessing carbon effect of land consolidation with life cycle assessment: A case study in China. J. Environ. Manag. 2020, 266, 110557. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cao, T. Measurement of carbon effect in land consolidation projects and evaluation of low-carbon promotion paths: A case study of Wudi County, Shandong Province, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 113068–113087. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.; Yang, C.; Yang, Q.; Li, C.; Wei, C. Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 238–249. [Google Scholar]
- Liang, Z.H.; Zhang, L.; Zhang, J.B. Land consolidation and fertilizer reduction: Quasi-natural experimental evidence from china’s well-facilitated capital farmland construction. Chin. Rural. Econ. 2021, 04, 123–144. [Google Scholar]
- Zhang, L.; Liang, Z.H.; Pu, Y.X. Effect and improvement of soil testing and formulated fertilization technology in the Yangtze River Economic Belt. J. Huazhong Agric. Univ. 2021, 40, 30–42. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Y.; Wang, C. Zoning method for well-facilitated farmland construction based on improvement of ecological services. Trans. Chin. Soc. Agric. Eng. 2018, 34, 264–272. [Google Scholar] [CrossRef]
- Tian’en, Z.; Li, Z.; Kun, F.; Xuejie, Z.; Huning, G.; Zhang, M.; Ma, Y. Effects of high-standard farmland construction on farmland quality and contribution of irrigation and drainage index. J. Agric. Resour. Environ. 2022, 39, 978–989. [Google Scholar] [CrossRef]
- Jibin, Z.; Jingan, S.; Deti, X. Dynamic changes of soil organic carbon for basic farmland and non-basic farmland of Dianjiang county in recent 30 years. Trans. Chin. Soc. Agric. Eng. 2016, 32, 254–262. [Google Scholar]
- Soulé, E.; Charbonnier, R.; Schlosser, L.; Michonneau, P.; Michel, N.; Bockstaller, C. A new method to assess sustainability of agricultural systems by integrating ecosystem services and environmental impacts. J. Clean. Prod. 2023, 415, 137784. [Google Scholar] [CrossRef]
- Jiansheng, L.; Wenju, Y.; Xiaomin, Z.; Xinwen, L. Theory and Application of Well-facilitied Capital Farmland Construction: An Analysis Based on the Gap Degree and Investment Intensity. China Popul. Resour. Environ. 2014, 24, 47–53. [Google Scholar]
- Song, W.; Wu, K.; Zhao, H.; Zhao, R.; Li, T. Arrangement of High-standard Basic Farmland Construction Based on Village-region Cultivated Land Quality Uniformity. Chin. Geogr. Sci. 2019, 29, 325–340. [Google Scholar] [CrossRef]
- Středová, H.; Středa, T.; Rožnovský, J. Long-term comparison of climatological variables used for agricultural land appraisement. Contrib. Geophys. Geod. 2013, 43, 179–195. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, M.; Li, Q.; Liu, Z.; Chen, W.; Wang, Y. Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China. Land 2022, 2022, 816. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Veldtman, R.; Shenkute, A.G.; Tesfay, G.B.; Pirk, C.W.W.; Donaldson, J.S.; Nicolson, S.W. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 2011, 14, 251–259. [Google Scholar] [CrossRef]
- Wu, Q.; Xiong, K.; Li, R.; Xiao, J. Farmland hydrology cycle and agronomic measures in agroforestry for the efficient utilization of water resources under karst desertification environments. Forests 2023, 14, 453. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Y.; Zheng, S. Effect of Rural Sewage Irrigation Regime on Water-Nitrogen Utilization and Crop Growth of Paddy Rice in Southern China. Phyton-Int. J. Exp. Bot. 2023, 92, 1215–1233. [Google Scholar] [CrossRef]
- Ke, Z.; Liu, X.; Ma, L.; Dong, Q.G.; Jiao, F.; Wang, Z. Excavated farmland treated with plastic mulching as a strategy for groundwater conservation and the control of soil salinization. Land Degrad. Dev. 2022, 33, 3036–3048. [Google Scholar] [CrossRef]
- Yang, N.; Sun, X.; Qi, Q. Impact of factor quality improvement on agricultural carbon emissions: Evidence from China’s high-standard farmland. Front. Environ. Sci. 2022, 10, 989684. [Google Scholar] [CrossRef]
- Cao, X.; Sun, B.; Chen, H.; Zhou, J.; Song, X.; Liu, X.; Deng, X.; Li, X.; Zhao, Y.; Zhang, J.; et al. Approaches and Research Progresses of Marginal Land Productivity Expansion and Ecological Benefit Improvement in China. Bull. Chin. Acad. Sci. 2021, 36, 336–348. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- The State Council. Trial Measures for the Administration of Recovery of National Land Development and Construction Funds. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=a5583c0a75fcd7235c0f4719edbd893b&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&site=baike (accessed on 27 August 2018).
- Central Government of the People’s Republic of China. China’s No. 1 Central Document: Opinions on Several Policies to Further Strengthen Rural Work and Improve the Overall Agricultural Production Capacity. Available online: https://www.gov.cn/test/2006-02/22/content_207406.htm (accessed on 30 January 2015).
- National Development and Reform Commission. The National High-Standard Farmland Construction Plan (2021–2030). Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/202111/t20211102_1302810.html (accessed on 2 November 2015).
- National Public Service Platform for Standards Information. National Standards Search. Available online: https://std.samr.gov.cn/gb (accessed on 20 March 2024).
- Central People’s Government of the People’s Republic of China. The State Council Policy Document Library. Available online: https://www.gov.cn/zhengce/zhengcewenjianku/index.htm?t=zhengcelibrary (accessed on 20 March 2024).
- Haitao, L. Ocus on the green development of Agriculture and Help achieve the Goal of “Double carbon”—A review of China’s Agricultural Carbon Emission Reduction Path Study. Issues Agric. Econ. 2022, 09, 144. [Google Scholar] [CrossRef]
- Yu, S.; Weiping, L.; Zhen, X. Model evaluation of the impact of high-standard farmland construction policy on planting structure. Trans. Chin. Soc. Agric. Eng. 2023, 39, 227–235. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K. Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture 2021, 11, 583. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Tianjiao, F.; Dong, W.; Ruoshui, W.; Yixin, W.; Zhiming, X.; Fengmin, L.; Yuan, M.; Xing, L.; Huijie, X.; Caballero-Calvo, A.; et al. Spatial-temporal heterogeneity of environmental factors and ecosystem functions in farmland shelterbelt systems in desert oasis ecotones. Agric. Water Manag. 2022, 271, 107790. [Google Scholar] [CrossRef]
- Sang, Z.; Zhang, G.; Wang, H.; Zhang, W.; Chen, Y.; Han, M.; Yang, K. Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources. Sustainability 2023, 15, 16329. [Google Scholar] [CrossRef]
- Penghui, J.; Dengshuai, C.; Manchun, L. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. J. Rural. Stud. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Sardaro, R.; Bozzo, F.; Fucilli, V. High-voltage overhead transmission lines and farmland value: Evidences from the real estate market in Apulia, southern Italy. Energy Policy 2018, 119, 449–457. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Zhu, Y. Does environmental regulation in the form of resource agglomeration decrease agricultural carbon emissions? Quasi-natural experimental on high-standard farmland construction policy. J. Clean. Prod. 2023, 420, 138342. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, S.; Boussemart, J.-P.; Hao, Y. Digital transition and green growth in Chinese agriculture. Technol. Forecast. Soc. Chang. 2022, 181, 121742. [Google Scholar] [CrossRef]
- Coomes, O.T.; Barham, B.L.; MacDonald, G.K.; Ramankutty, N.; Chavas, J.P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2019, 2, 22–28. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.L.; et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Chang. 2019, 9, 66–72. [Google Scholar] [CrossRef]
- Shang, Q.; Ling, N.; Feng, X.; Yang, X.; Wu, P.; Zou, J.; Shen, Q.; Guo, S. Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant Soil 2014, 381, 13–23. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.Y.; Peng, K.; Zhou, S.L.; Shao, L.; Wu, X.F.; Wei, W.D.; Liu, S.Y.; Li, Z.; Li, J.S.; et al. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 2018, 613–614, 931–943. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Tian, M.; Ding, M.; Cao, L.; Zhang, Z.; Chuai, X.; Xiao, L.; Yao, L. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, Z.; Mueller, N.D.; Driscoll, A.W.; Hernandez, R.R.; Grodsky, S.M.; Sloat, L.L.; Chester, M.V.; Zhu, Y.-G.; Lobell, D.B. Sustainable irrigation and climate feedbacks. Nat. Food 2023, 4, 654–663. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Auerswald, K.; Fischer, F.K.; Kistler, M.; Treisch, M.; Maier, H.; Brandhuber, R. Behavior of farmers in regard to erosion by water as reflected by their farming practices. Sci. Total Environ. 2018, 613–614, 1–9. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J.; Fahad, S. Diversified Crop Rotation: An Approach for Sustainable Agriculture Production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [PubMed]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Huang, B.; Zhao, J.; Chen, X.; Sun, C. Impacts on the embodied carbon emissions in China’s building sector and its related energy-intensive industries from energy-saving technologies perspective: A dynamic CGE analysis. Energy Build. 2023, 287, 112926. [Google Scholar] [CrossRef]
- Johansson, E.L.; Brogaard, S.; Brodin, L. Envisioning sustainable carbon sequestration in Swedish farmland. Environ. Sci. Policy 2022, 135, 16–25. [Google Scholar] [CrossRef]
- Weersink, A.; Fraser, E.; Pannell, D.; Duncan, E.; Rotz, S. Opportunities and Challenges for Big Data in Agricultural and Environmental Analysis. Annu. Rev. Resour. Econ. 2018, 10, 19–37. [Google Scholar] [CrossRef]
- Bi, X.; Wen, B.; Zou, W. The Role of Internet Development in China’s Grain Production: Specific Path and Dialectical Perspective. Agriculture 2022, 12, 377. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Ministry of Finance of the People’s Republic of China. Doing a Good Job in the Implementation of the National High-Standard Farmland Construction Plan for Comprehensive Agricultural Development and Vigorously Promoting High-Standard Farmland Construction. Available online: http://nfb.mof.gov.cn/zhengwuxinxi/gongzuotongzhi/201304/t20130410_816024.html (accessed on 16 March 2013).
- Kuang, B.; Lu, X.H.; Zhou, M. Dynamic Evolution of Urban Land Economic Density Distributionin China. China Land Sci. 2016, 30, 47–54. [Google Scholar] [CrossRef]
- Nie, Y.; Li, Q.; Wang, E.; Zhang, T. Study of the nonlinear relations between economic growth and carbon dioxide emissions in the Eastern, Central and Western regions of China. J. Clean. Prod. 2019, 219, 713–722. [Google Scholar] [CrossRef]
- Delgado, M.S.; Florax, R.J.G.M. Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction. Econ. Lett. 2015, 137, 123–126. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, G.Q.; Wang, H.; Hong, J.; Li, Z. Decision support for sustainable urban renewal: A multi-scale model. Land Use Policy 2017, 69, 361–371. [Google Scholar] [CrossRef]
- Stuart, E.A.; Huskamp, H.A.; Duckworth, K.; Simmons, J.; Song, Z.; Chernew, M.; Barry, C.L. Using propensity scores in difference-in-differences models to estimate the effects of a policy change. Health Serv. Outcomes Res. Methodol. 2014, 14, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, J.; Zhang, K.; Xu, D.; Qi, Y.; Deng, X. The impacts of farmer ageing on farmland ecological restoration technology adoption: Empirical evidence from rural China. J. Clean. Prod. 2023, 430, 139648. [Google Scholar] [CrossRef]
- Cao, J.; Li, C.; Gao, X.; Cai, Y.; Song, X.; Siddique, K.H.M.; Zhao, X. Agricultural soil plastic as a hidden carbon source stimulates microbial activity and increases carbon dioxide emissions. Resour. Conserv. Recycl. 2023, 198, 107151. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Han, J.; Zhang, Z. Regional differences and dynamic evolution of cultivated land use efficiency in major grain producing areas in low carbon perspective. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–8. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.-B.; He, Y.-Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S. Coupling and decoupling effects of agricultural carbon emissions in China and their driving factors. Environ. Sci. Pollut. Res. 2018, 25, 25280–25293. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- He, Y.Q.; Chen, R.; Wu, H.Y.; Xu, J.; Song, Y. Spatial dynamics of agricultural carbon emissions in China and the related driving factors. Chin. J. Eco-Agric. 2018, 26, 1269–1282. [Google Scholar] [CrossRef]
- Chen, Y.B.; Wang, S. Evaluation of Agricultural Carbon Emission Reduction Effect of Agricultural Comprehensive Development Investment: Event Analysis Based on High-standard Farmland Construction. J. Agrotech. Econ. 2023, 06, 67–80. [Google Scholar] [CrossRef]
- Tao, L.; Jixia, L.I.; Jingjuan, H. Spatial-temporal pattern and influencing factors of high-quality agricultural development in China. J. Arid. Land Resour. Environ. 2020, 34, 1–8. [Google Scholar] [CrossRef]
Standards | Contents | Zoning | Objectives | Safeguard Measures |
---|---|---|---|---|
GB/T 33130-2016 | Farmland Consolidation | Northeast Region | 1.075 billion Mu (2025) | Government Overall Planning |
GB/T 33469-2016 | Soil Improvement | Huang-Huai-Hai Area | 1.2 billion Mu (2030) | Planning Guidance |
GB/T 21010-2017 | Irrigation And Drainage | The Middle and Lower Reaches of The Yangtze River | Fund Guarantee | |
GB 50288-2018 | Field Road | Southeast Region | Scientific and Technological Support | |
GB 5084-2021 | Agricultural Field Protection Ecological and Environmental Protection | Southwest Region | Supervision and Assessment | |
GB/T 30600-2022 | Farmland Power Transmission and Distribution | Northwest Region | ||
Science and Technology Service | Qinghai-Tibet Region | |||
Management, Protection and Utilization |
Measures | Content | Purpose |
---|---|---|
Agricultural measures | Farmland Consolidation | Optimize the spatial distribution of high-standard farmland |
Soil Improvement | Improve the quality of cultivated land | |
Forestry measures | Protection forest of agriculture and forestry system | Improve soil and water conservation and flood control |
Water conservancy measure | Irrigation project | Improve the guarantee rate of agricultural irrigation |
Drainage works | Improve the ability to withstand storms | |
Infrastructure construction measures | Field road construction | Improve the direct access road network to farmland |
Farmland electricity transmission and distribution | Improve the quality and safety of electricity use | |
Scientific and technological measures | Location monitoring of cultivated land quality | Tracking and monitoring the change of farmland quality |
Digital farmland construction | Improve the level of precision and wisdom |
Carbon Sources | Emission Coefficient | Unit | References |
---|---|---|---|
Chemical fertilizer | 0.8956 | kg C/kg | West and Marland [86] |
Pesticide | 4.9341 | kg C/kg | Lu et al. [87] |
Thin film | 5.180 | kg C/kg | Tian et al. [88] |
Total power of agricultural machinery | 0.18 | kg C/kW | Kuang et al. [84] |
Tillage over | 312.6 | kg C/ha | Han et al. [89] |
Irrigation | 25 | kg C/ha | Dubey et al. [90] |
Variables | Average Value | Standard Deviation | Min. | Max. |
---|---|---|---|---|
CEALU per unit area (C), kg/ha | 482.2 | 182.0 | 170.1 | 1154.4 |
Proportion of land consolidation area (Hrate), % | 0.1 | 0.1 | 0.0 | 0.9 |
Urbanization level (Urban), Urban population as a percentage of total population, % | 0.5 | 0.1 | 0.2 | 0.9 |
Soil quality (Soil), Soil erosion control area, kha | 3490.8 | 2847.1 | 0.0 | 13,600.2 |
Field irrigation condition (Irri), Effective irrigation area, kha | 1991.4 | 1537.7 | 115.5 | 6031.1 |
Per unit area yield of grain (Fyield), Grain output per unit area, kg/ha | 5149.2 | 996.1 | 3045.7 | 7885.9 |
Investment level (Ginves), Investment in fixed assets of the whole society, billion yuan | 37.4 | 21.8 | 14.6 | 267.6 |
The proportion of food crops (Frate), Proportion of grain sown area to total sown area, % | 65.4 | 12.4 | 31.3 | 82.6 |
Labor input (Labor), Headcount in primary industry, thousand people | 9388.3 | 6948.7 | 370.9 | 31,390.3 |
Economic development level (GDP), PGDP, thousand yuan | 28.3 | 17.8 | 5.2 | 107.0 |
Industrial structure (Grate), Proportion of agricultural output value to GDP, % | 10.9 | 5.6 | 0.4 | 32.7 |
Variables | Fixed Effect-Based | Random Effect-Based | Standard Error Based on POLS |
---|---|---|---|
−0.1080 ** (0.0499) | −0.1080 ** (0.0520) | −0.1080 ** (0.0520) | |
−0.4620 (0.4899) | −0.4620 (0.5104) | −0.4620 (0.5104) | |
0.3540 ** (0.1346) | 0.3540 ** (0.1402) | 0.3540 ** (0.1402) | |
−0.5375 ** (0.2098) | −0.5375 ** (0.2186) | −0.5375 ** (0.2186) | |
0.2671 ** (0.1142) | 0.2671 ** (0.1190) | 0.2671 ** (0.1190) | |
−6.27 × 10−12 (2.20 × 10−11) | −6.27 × 10−12 (2.30 × 10−11) | −6.27 × 10−12 (2.30 × 10−11) | |
−0.1373 (0.0937) | 0.0101 (0.0204) | 0.0101 (0.0204) | |
0.0195 (0.0267) | −0.1373 (0.0976) | −0.1373 (0.0976) | |
0.0195 (0.0267) | 0.0195 (0.0278) | 0.0195 (0.0278) | |
0.0025 (0.0063) | 0.0025 (0.0066) | 0.0025 (0.0066) | |
Constant term | 4.4349 ** (1.8696) | 5.6299 *** (1.8341) | 5.6299 *** (1.8341) |
Sample size | 390 | 390 | 390 |
R2 | 0.6349 | — | 0.9701 |
Variable | Parallel Change FE | Parallel Change RE | Parallel Change RE | Parallel Change FE | Parallel Change RE |
---|---|---|---|---|---|
Hrate × 2008 | −0.2367 (0.4503) | −0.1323 (0.4654) | Hrate × 2015 | −1.5235 ** (0.6830) | −1.4123 ** (0.7018) |
Hrate × 2009 | −0.2207 (0.4516) | 0.0391 (0.4639) | Hrate × 2016 | −1.2614 (0.8493) | −1.1504 (0.8668) |
Hrate × 2010 | −0.1524 (0.4578) | 0.0219 (0.4711) | Hrate × 2017 | −2.5768 *** (0.9405) | −2.4910 *** (0.9524) |
Hrate × 2011 | −0.4758 (0.4689) | −0.3641 (0.4834) | Constant term | 2.2557 *** (0.6967) | 2.7613 *** (0.6618) |
Hrate × 2012 | −0.9722 ** (0.4578) | −0.8870 * (0.4721) | Control variable | Controls | Controls |
Hrate × 2013 | −0.0857 (0.0535) | −0.0766 (0.0552) | Observed value | 390 | 390 |
Hrate × 2014 | −0.0872 (0.0673) | −0.0716 (0.0692) | F | 28.2418 | — |
R2 | 0.5567 | — |
Variable | Take 2008 as the Policy Implementation Point | Take 2009 as the Policy Implementation Point | ||||
---|---|---|---|---|---|---|
(1) Fixed Effect | (2) Random Effect | (3) Mixed Effect | (4) Fixed Effect | (5) Random Effect | (6) Mixed Effect | |
−0.7225 (0.5729) | −0.5015 (0.5891) | −0.7225 (0.6315) | ||||
−0.5749 (0.4945) | −0.4214 (0.5042) | −0.5749 (0.5450) | ||||
Constant term | 3.5272 ** (1.4690) | 3.9660 *** (0.8695) | 4.5418 *** (1.5904) | 3.4980 ** (1.5129) | 4.0173 *** (0.8893) | 4.5250 *** (1.6316) |
Control variable | Controls | Controls | Controls | Controls | Controls | Controls |
Sample size | 180 | 180 | 180 | 180 | 180 | 180 |
0.7062 | — | 0.9901 |
Variable | Eastern Region | Central Region | Western Region |
---|---|---|---|
−0.0262 (0.0727) | −0.3667 ** (0.1806) | 0.0364 (0.1527) | |
Constant term | 14.0595 *** (1.8904) | 0.1450 (1.7205) | 3.0510 *** (0.9514) |
Control variable | Controls | Controls | Controls |
Sample size | 130 | 104 | 156 |
R2 | 0.6430 | 0.7796 | 0.8121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Lin, J. The Impact of High-Standard Farmland Construction Policies on the Carbon Emissions from Agricultural Land Use (CEALU). Land 2024, 13, 672. https://doi.org/10.3390/land13050672
Liu F, Lin J. The Impact of High-Standard Farmland Construction Policies on the Carbon Emissions from Agricultural Land Use (CEALU). Land. 2024; 13(5):672. https://doi.org/10.3390/land13050672
Chicago/Turabian StyleLiu, Fangsheng, and Jian Lin. 2024. "The Impact of High-Standard Farmland Construction Policies on the Carbon Emissions from Agricultural Land Use (CEALU)" Land 13, no. 5: 672. https://doi.org/10.3390/land13050672
APA StyleLiu, F., & Lin, J. (2024). The Impact of High-Standard Farmland Construction Policies on the Carbon Emissions from Agricultural Land Use (CEALU). Land, 13(5), 672. https://doi.org/10.3390/land13050672