Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Methods
2.2.1. Source and Treatment of Recreational Landscape POI
2.2.2. MaxENT Model and Operation
2.2.3. Monetization of Recreational Ecosystem Service Value
2.2.4. Bivariate Moran′s I
2.2.5. Landscape Pattern Index
3. Results
3.1. Verification of Recreational Landscape Type Identification Accuracy
3.2. Spatial Distribution of Recreational Landscape
3.3. Spatial Distribution of Recreational Ecosystem Services
3.4. Monetization of Recreational Ecosystem Services Value
3.5. Recreational Landscape Correlation and Pattern Evaluation
4. Discussion
4.1. Suggestions for the Sustainable Development of QTPNPG
4.2. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
National Parks | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chang Tang | √ | √ | √ | √ | ||||||||
Gaoligongshan | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Giant panda | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Gongga Mountain | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Kangrinboqe | √ | √ | √ | √ | √ | |||||||
Kunlun Mountain | √ | √ | √ | √ | √ | √ | ||||||
Pamir | √ | √ | √ | √ | √ | √ | ||||||
Qilian Mountain | √ | √ | √ | √ | √ | |||||||
Qinghai Lake | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
Qomolangma | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
Ruoergai | √ | √ | √ | √ | √ | |||||||
Shangri-La | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Three-River-Source | √ | √ | √ | √ | √ | √ | √ | |||||
Yarlung Tsangpo Grand Canyon | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
National Parks | Number of POI | Baidu Index |
---|---|---|
Yarlung Tsangpo Grand Canyon | 90 | 702 |
Three-River-Source | 74 | 840 |
Chang Tang | 67 | 272 |
Qomolangma | 57 | 2787 |
Shangri-La | 56 | 4691 |
Giant panda | 50 | 292 |
Kangrinboqe | 47 | 1483 |
Kunlun Mountain | 39 | 2167 |
Qinghai Lake | 39 | 3721 |
Gaoligongshan | 30 | 337 |
Qilian Mountain | 28 | 250 |
Gongga Mountain | 23 | 461 |
Ruoergai | 18 | 577 |
Pamir | 14 | 205 |
National Parks | = 0.3) | = 0.3) | = 0.4) | Weighted Sum (W) |
---|---|---|---|---|
Shangri-La | 1.00 | 0.50 | 1.00 | 1.14 |
Qinghai Lake | 0.78 | 0.75 | 0.71 | 1.00 |
Giant panda | 0.02 | 1.00 | 0.48 | 0.67 |
Qomolangma | 0.58 | 0.75 | 0.16 | 0.62 |
Yarlung Tsangpo Grand Canyon | 0.11 | 1.00 | 0.25 | 0.58 |
Gongga Mountain | 0.06 | 0.75 | 0.33 | 0.50 |
Gaoligongshan | 0.03 | 0.50 | 0.43 | 0.44 |
Kangrinboqe | 0.28 | 0.13 | 0.22 | 0.28 |
Kunlun Mountain | 0.44 | 0.25 | 0.00 | 0.28 |
Ruoergai | 0.08 | 0.13 | 0.28 | 0.23 |
Three-River-Source | 0.14 | 0.37 | 0.01 | 0.21 |
Pamir | 0.00 | 0.25 | 0.00 | 0.10 |
Qilian Mountain | 0.01 | 0.13 | 0.03 | 0.07 |
Chang Tang | 0.01 | 0.00 | 0.02 | 0.02 |
NPs | LPI | PCI | SI |
---|---|---|---|
GPD | 6.93 ** | 87.57 | 116.12 ** |
GGM | 5.13 ** | 83.49 | 360.81 |
GLGS | 5.76 * | 89.53 ** | 249.21 ** |
KRBQ | 8.76 ** | 94.40 ** | 87.68 ** |
KLM | 2.92 | 94.89 ** | 975.66 |
PMR | 3.40 | 84.16 | 518.53 |
QLM | 3.99 | 88.61 | 356.78 |
QHL | 12.01 ** | 92.40 ** | 62.92 ** |
CHT | 2.16 | 87.24 | 1641.33 |
REG | 4.01 | 83.78 | 173.22 ** |
TRS | 13.93 ** | 97.47 ** | 40.85 ** |
SGRL | 1.60 | 65.46 | 2918.99 |
YTGC | 3.54 | 91.99 ** | 728.54 |
QMLM | 2.21 | 88.64 | 958.20 |
References
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES, Version 4.1). Eur. Environ. Agency 2012, 33, 107. [Google Scholar]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Hermes, J.; Van Berkel, D.; Burkhard, B.; Plieninger, T.; Fagerholm, N.; von Haaren, C.; Albert, C. Assessment and Valuation of Recreational Ecosystem Services of Landscapes. Ecosyst. Serv. 2018, 31, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhong, L.; Wang, L.-e. Spatiotemporal Changes in Recreation Potential of Ecosystem Services in Sanjiangyuan, China. J. Spat. Sci. 2018, 63, 359–377. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, Mapping, and Quantifying Cultural Ecosystem Services at Community Level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Dou, Y.; Zhen, L.; Yu, X.; Bakker, M.; Carsjens, G.-J.; Xue, Z. Assessing the Influences of Ecological Restoration on Perceptions of Cultural Ecosystem Services by Residents of Agricultural Landscapes of Western China. Sci. Total Environ. 2019, 646, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J. Spatial Covariance between Aesthetic Value & Other Ecosystem Services. PLoS ONE 2013, 8, e68437. [Google Scholar]
- Yoshimura, N.; Hiura, T. Demand and Supply of Cultural Ecosystem Services: Use of Geotagged Photos to Map the Aesthetic Value of Landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Ancona, Z.H.; Sherrouse, B.C. Evaluating Alternative Methods for Biophysical and Cultural Ecosystem Services Hotspot Mapping in Natural Resource Planning. Landsc. Ecol 2017, 32, 77–97. [Google Scholar] [CrossRef]
- Meng, S.; Huang, Q.; Zhang, L.; He, C.; Inostroza, L.; Bai, Y.; Yin, D. Matches and Mismatches between the Supply of and Demand for Cultural Ecosystem Services in Rapidly Urbanizing Watersheds: A Case Study in the Guanting Reservoir Basin, China. Ecosyst. Serv. 2020, 45, 101156. [Google Scholar] [CrossRef]
- Huang, S.; Tian, T.; Zhai, L.; Deng, L.; Che, Y. Understanding the Dynamic Changes in Wetland Cultural Ecosystem Services: Integrating Annual Social Media Data into the SolVES. Appl. Geogr. 2023, 156, 102992. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and Mapping Cultural Ecosystem Services Supply, Demand and Flow of Farmlands in the Hangzhou Metropolitan Area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zhang, L. Research on Local Ecosystem Cultural Services in the Jiangnan Water Network Rural Areas: A Case Study of the Ecological Green Integration Demonstration Zone in the Yangtze River Delta, China. Land 2023, 12, 1373. [Google Scholar] [CrossRef]
- Clemente, P.; Calvache, M.; Antunes, P.; Santos, R.; Cerdeira, J.O.; Martins, M.J. Combining Social Media Photographs and Species Distribution Models to Map Cultural Ecosystem Services: The Case of a Natural Park in Portugal. Ecol. Indic. 2019, 96, 59–68. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Wang, L.; Huang, L.; Cao, W.; Zhai, J.; Fan, J. Assessing Grassland Cultural Ecosystem Services Supply and Demand for Promoting the Sustainable Realization of Grassland Cultural Values. Sci. Total Environ. 2023, 912, 169255. [Google Scholar] [CrossRef]
- Gutzwiller, K.J.; D’Antonio, A.L.; Monz, C.A. Wildland Recreation Disturbance: Broad-scale Spatial Analysis and Management. Front. Ecol. Environ. 2017, 15, 517–524. [Google Scholar] [CrossRef]
- Mooney, H.A.; Cropper, A.; Reid, W. The Millennium Ecosystem Assessment: What Is It All About? Trends Ecol. Evol. 2004, 19, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Pascual, U.; Muradian, R.; Brander, L.; Christie, M.; Cornelissen, H.; Eppink, F.; Farley, J.; Loomis, J.; Pearson, L.; Perrings, C. Chapter 5 The Economics of Valuing Ecosystem Services and Biodiversity. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK, 2016; pp. 183–255. [Google Scholar]
- Karasov, O.; Heremans, S.; Külvik, M.; Domnich, A.; Burdun, I.; Kull, A.; Helm, A.; Uuemaa, E. Beyond Land Cover: How Integrated Remote Sensing and Social Media Data Analysis Facilitates Assessment of Cultural Ecosystem Services. Ecosyst. Serv. 2022, 53, 101391. [Google Scholar] [CrossRef]
- Ghasemi, M.; Charrahy, Z.; Gonzalez-Garcia, A. Mapping Cultural Ecosystem Services Provision: An Integrated Model of Recreation and Ecotourism Opportunities. Land Use Policy 2023, 131, 106732. [Google Scholar] [CrossRef]
- Sinclair, M.; Ghermandi, A.; Sheela, A.M. A Crowdsourced Valuation of Recreational Ecosystem Services Using Social Media Data: An Application to a Tropical Wetland in India. Sci. Total Environ. 2018, 642, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A. Integrating Social Media Analysis and Revealed Preference Methods to Value the Recreation Services of Ecologically Engineered Wetlands. Ecosyst. Serv. 2018, 31, 351–357. [Google Scholar] [CrossRef]
- Heagney, E.C.; Rose, J.M.; Ardeshiri, A.; Kovač, M. Optimising Recreation Services from Protected Areas—Understanding the Role of Natural Values, Built Infrastructure and Contextual Factors. Ecosyst. Serv. 2018, 31, 358–370. [Google Scholar] [CrossRef]
- Mayer, M.; Woltering, M. Assessing and Valuing the Recreational Ecosystem Services of Germany’s National Parks Using Travel Cost Models. Ecosyst. Serv. 2018, 31, 371–386. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Paracchini, M.L.; Maes, J.; Gollnow, F.; Bertzky, B. Spatial Dimensions of Recreational Ecosystem Service Values: A Review of Meta-Analyses and a Combination of Meta-Analytic Value-Transfer and GIS. Ecosyst. Serv. 2018, 31, 395–409. [Google Scholar] [CrossRef]
- Kane, P.S. Assessing Landscape Attractiveness: A Comparative Test of Two New Methods. Appl. Geogr. 1981, 1, 77–96. [Google Scholar] [CrossRef]
- Velarde, M.D.; Fry, G.; Tveit, M. Health Effects of Viewing Landscapes–Landscape Types in Environmental Psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Kurdoglu, O.; Kurdoglu, B.C. Determining Recreational, Scenic, and Historical–Cultural Potentials of Landscape Features along a Segment of the Ancient Silk Road Using Factor Analyzing. Environ. Monit. Assess. 2010, 170, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Ewald, K.C. The Neglect of Aesthetics in Landscape Planning in Switzerland. Landsc. Urban Plan. 2001, 54, 255–266. [Google Scholar] [CrossRef]
- Hagerhall, C.M. Consensus in Landscape Preference Judgements. J. Environ. Psychol. 2001, 21, 83–92. [Google Scholar] [CrossRef]
- Kalivoda, O.; Vojar, J.; Skřivanová, Z.; Zahradník, D. Consensus in Landscape Preference Judgments: The Effects of Landscape Visual Aesthetic Quality and Respondents’ Characteristics. J. Environ. Manag. 2014, 137, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Wu, L.; Cai, J.; Li, D.; Chen, Q. Construction of Ecological and Recreation Patterns in Rural Landscape Space: A Case Study of the Dujiangyan Irrigation District in Chengdu, China. Land 2022, 11, 383. [Google Scholar] [CrossRef]
- Hull, R.B.; Stewart, W.P.; Yi, Y.K. Experience Patterns: Capturing the Dynamic Nature of a Recreation Experience. J. Leis. Res. 1992, 24, 240–252. [Google Scholar] [CrossRef]
- Kulczyk, S.; Woźniak, E.; Derek, M. Landscape, Facilities and Visitors: An Integrated Model of Recreational Ecosystem Services. Ecosyst. Serv. 2018, 31, 491–501. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, W.; Lu, T. Landscape Characteristics of University Campus in Relation to Aesthetic Quality and Recreational Preference. Urban For. Urban Green. 2021, 66, 127389. [Google Scholar] [CrossRef]
- Casado-Arzuaga, I.; Onaindia, M.; Madariaga, I.; Verburg, P.H. Mapping Recreation and Aesthetic Value of Ecosystems in the Bilbao Metropolitan Greenbelt (Northern Spain) to Support Landscape Planning. Landsc. Ecol. 2014, 29, 1393–1405. [Google Scholar] [CrossRef]
- Su, M.M.; Wall, G. The Qinghai–Tibet Railway and Tibetan Tourism: Travelers’ Perspectives. Tour. Manag. 2009, 30, 650–657. [Google Scholar] [CrossRef]
- Qi, J.; Lu, Y.; Han, F.; Ma, X.; Yang, Z. Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors. Int. J. Environ. Res. Public Health 2022, 19, 9330. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Han, F.; Liu, Q.; Wang, Z.; Wang, T.; Yang, Z. Evaluation of Potential for Nature-Based Recreation in the Qinghai-Tibet Plateau: A Spatial-Temporal Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5753. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; McGlade, J.; Lovins, H.; Kubiszewski, I. An Overarching Goal for the UN Sustainable Development Goals. Solutions 2014, 5, 13–16. [Google Scholar]
- Spenceley, A.; Rylance, A. The Contribution of Tourism to Achieving the United Nations Sustainable Development Goals. In A Research Agenda for Sustainable Tourism; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 107–125. [Google Scholar]
- Woźniak, E.; Kulczyk, S.; Derek, M. From Intrinsic to Service Potential: An Approach to Assess Tourism Landscape Potential. Landsc. Urban Plan. 2018, 170, 209–220. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Zulian, G.; Kopperoinen, L.; Maes, J.; Schägner, J.P.; Termansen, M.; Zandersen, M.; Perez-Soba, M.; Scholefield, P.A.; Bidoglio, G. Mapping Cultural Ecosystem Services: A Framework to Assess the Potential for Outdoor Recreation across the EU. Ecol. Indic. 2014, 45, 371–385. [Google Scholar] [CrossRef]
- Koschke, L.; Fürst, C.; Frank, S.; Makeschin, F. A Multi-Criteria Approach for an Integrated Land-Cover-Based Assessment of Ecosystem Services Provision to Support Landscape Planning. Ecol. Indic. 2012, 21, 54–66. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning—ICML ’04, Banff, AB, Canada, 4–8 July 2004; ACM Press: New York, NY, USA, 2004; p. 83. [Google Scholar]
- Ye, X.; Yu, X.; Yu, C.; Tayibazhaer, A.; Xu, F.; Skidmore, A.K.; Wang, T. Impacts of Future Climate and Land Cover Changes on Threatened Mammals in the Semi-Arid Chinese Altai Mountains. Sci. Total Environ. 2018, 612, 775–787. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Li, J.; Li, Y.; Xu, N.; Gao, Y.; Guo, L.; Huo, T.; Peng, C.; Meng, F. Habitat Protection and Planning for Three Ephedra Using the MaxEnt and Marxan Models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Liu, D.; Yang, J.; Chen, S.; Sun, W. Potential Distribution of Threatened Maples in China under Climate Change: Implications for Conservation. Glob. Ecol. Conserv. 2022, 40, e02337. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, W.; Hua, T.; Pereira, P. Mapping and Assessment of Recreation Services in Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 838, 156432. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic Changes in the Value of China’s Ecosystem Services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in Predicting Tourism Flows–A Case Study of the Forbidden City. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Lausch, A.; Blaschke, T.; Haase, D.; Herzog, F.; Syrbe, R.-U.; Tischendorf, L.; Walz, U. Understanding and Quantifying Landscape Structure—A Review on Relevant Process Characteristics, Data Models and Landscape Metrics. Ecol. Model. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J. Social Values for Ecosystem Services, Version 3.0 (SolVES 3.0): Documentation and User Manual; US Geological Survey: Reston, VA, USA, 2015.
- Kumar, P. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK, 2012. [Google Scholar]
- Polat, A.T.; Akay, A. Relationships between the Visual Preferences of Urban Recreation Area Users and Various Landscape Design Elements. Urban For. Urban Green. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Van Der Zee, D. The Complex Relationship between Landscape and Recreation. Landsc. Ecol. 1990, 4, 225–236. [Google Scholar] [CrossRef]
- Komossa, F.; van der Zanden, E.H.; Schulp, C.J.; Verburg, P.H. Mapping Landscape Potential for Outdoor Recreation Using Different Archetypical Recreation User Groups in the European Union. Ecol. Indic. 2018, 85, 105–116. [Google Scholar] [CrossRef]
- Chan, K.M.; Satterfield, T.; Goldstein, J. Rethinking Ecosystem Services to Better Address and Navigate Cultural Values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.A.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H.; et al. Contributions of Cultural Services to the Ecosystem Services Agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef]
Environmental Data | Source | Resolution | Year | Application |
---|---|---|---|---|
Digital elevation model (DEM) | http://www.gscloud.cn/ | 90 m | 2005 | GRL; HRL; BRL |
Slope | It is obtained by using DEM in ArcGIS10.6. | 90 m | 2023 | GRL; HRL; BRL |
Aspect | It is obtained by using DEM in ArcGIS10.6. | 90 m | 2023 | GRL; HRL; BRL |
Geologic lithology | https://www.resdc.cn/ | 1 km | 2004 | GRL |
Soil type | https://www.resdc.cn/ | 1 km | 2004 | GRL |
Erosion type | https://www.resdc.cn/ | 1 km | 2005 | GRL |
Mean annual precipitation | https://www.resdc.cn/ | 1 km | 1960–2021 | GRL; HRL; BRL |
Mean annual temperature | https://www.resdc.cn/ | 1 km | 1960–2021 | GRL; HRL; BRL |
Average annual evaporation | https://www.resdc.cn/ | 1 km | 1960–2021 | GRL; HRL |
Mean annual wind speed | https://www.resdc.cn/ | 1 km | 1960–2021 | GRL; HRL |
Mean annual sunshine hours | https://www.resdc.cn/ | 1 km | 1960–2021 | BRL |
Land use and cover (LULC) | http://www.globallandcover.com/ | 30 m | 2020 | BRL |
Distance from water source | The types of LULC water and wetland were extracted and Euclidean distance was calculated in ArcGIS 10.6. | 30 m | 2023 | HRL; BRL |
Normalized difference vegetation index (NDVI) | https://www.resdc.cn/ | 30 m | 2020 | BRL |
Net primary productivity (NPP) | https://lpdaac.usgs.gov/ | 500 m | 2020 | BRL |
National Parks | GRL | HRL | BRL |
---|---|---|---|
YTGC | 0.9425 | 0.9748 | 0.8899 |
QMLM | 0.9506 | 0.9530 | 0.9681 |
SGRL | 0.8887 | 0.9879 | 0.9659 |
GPD | 0.7878 | 0.9064 | 0.8735 |
KRBQ | 0.9556 | 0.9759 | 0.9507 |
KLM | 0.9108 | 0.9763 | 0.9713 |
PMR | 0.9753 | 0.9974 | 0.9824 |
GGM | 0.9727 | 0.8366 | 0.9963 |
GLGM | 0.9455 | 0.9854 | 0.8222 |
QLM | 0.9536 | 0.9568 | 0.8846 |
CHT | 0.9307 | 0.9708 | 0.9277 |
REG | 0.8147 | 0.8750 | 0.9434 |
TRS | 0.9590 | 0.9439 | 0.9541 |
QHL | 0.9946 | 0.7908 | 0.9804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Han, F.; Ma, X.; Wang, T.; Liang, Q. Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation. Land 2024, 13, 682. https://doi.org/10.3390/land13050682
Yuan M, Han F, Ma X, Wang T, Liang Q. Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation. Land. 2024; 13(5):682. https://doi.org/10.3390/land13050682
Chicago/Turabian StyleYuan, Mengqi, Fang Han, Xuankai Ma, Tian Wang, and Qixiang Liang. 2024. "Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation" Land 13, no. 5: 682. https://doi.org/10.3390/land13050682
APA StyleYuan, M., Han, F., Ma, X., Wang, T., & Liang, Q. (2024). Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation. Land, 13(5), 682. https://doi.org/10.3390/land13050682