Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis
Abstract
:1. Introduction
- Assessing wildlife and vegetation diversity in the study area.
- Analysing the temporal conditions of vegetation and soil features before and after the installation of the AWP.
2. Materials and Methods
2.1. Study Area
2.2. Field Data and Sampling
2.3. Satellite Imagery
2.4. Image Pre-Processing and Enhancement
2.5. Analysis of Vegetation and Soil Spectral Response Patterns around the AWP over Time
2.6. Land Cover Classification around the AWP
3. Results
3.1. Vegetation and Wildlife Diversity around the AWP
3.2. Vegetation and Soil Conditions
3.2.1. Spectral and Metabolic Changes at 0.5 km Distance from the Water Source
3.2.2. Spectral and Metabolic Changes at a 1 km Distance from the Water Source
3.2.3. Spectral and Metabolic Changes at a 5 km Distance from the AWP
3.2.4. Spectral and Metabolic Changes at a 10 km Distance from the Water Source
3.3. Land Cover Classification and Accuracies
4. Discussion
4.1. Vegetation and Wildlife Diversity around the AWP
4.2. Vegetation and Soil Conditions
4.2.1. Spectral and Metabolic Changes at 0.5 km Distance from the Water Source
4.2.2. Spectral and Metabolic Changes at a 1 km Distance from the Water Source
4.2.3. Spectral and Metabolic Changes at a 5 km Distance from the AWP
4.2.4. Spectral and Metabolic Changes at a 10 km Distance from the Water Source
4.3. Land Cover Changes around the AWP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennitt, E.; Bradley, J.; Bartlam-Brooks, H.L.A.; Hubel, T.Y.; Wilson, A.M. Effects of artificial water provision on migratory blue wildebeest and zebra in the Makgadikgadi Pans ecosystem, Botswana. Biol. Conserv. 2022, 268, 109502. [Google Scholar] [CrossRef]
- Rich, L.N.; Beissinger, S.R.; Brashares, J.S.; Furnas, B.J. Artificial water catchments influence wildlife distribution in the Mojave Desert. J. Wildl. Manag. 2019, 83, 855–865. [Google Scholar] [CrossRef]
- Selebatso, M.; Maude, G.; Fynn, R.W.S. Assessment of quality of water provided for wildlife in the Central Kalahari Game Reserve, Botswana. Phys. Chem. Earth. Parts A/B/C 2018, 105, 191–195. [Google Scholar] [CrossRef]
- Seletlo, Z. Vegetation and Soil Conditions around Water Points in Ranching and Communal Grazing Systems in the Hard Veld and Sandveld of Botswana. Master’s Dissertation, Botswana University of Agriculture & Natural Resources, Gaborone, Botswana, 2017. [Google Scholar]
- Perkins, J.S. Southern Kalahari piospheres: Looking beyond the sacrifice zone. Land Degrad. Dev. 2018, 29, 2778–2784. [Google Scholar] [CrossRef]
- Makhabu, S.W.; Marotsi, B.; Perkins, J. Vegetation gradients around artificial water points in the Central Kalahari Game Reserve of Botswana. Afr. J. Ecol. 2002, 40, 103–109. [Google Scholar] [CrossRef]
- Perkins, J.S. Changing the Scale and Nature of Artificial Water Points (AWP) Use and Adapting to Climate Change in the Kalahari of Southern Africa. In Sustainability in Developing Countries: Case Studies from Botswana’s Journey towards 2030 Agenda; Keitumetse, S.O., Hens, L., Norris, D., Eds.; Springer: Cham, Switzerland, 2020; pp. 51–89. [Google Scholar] [CrossRef]
- Croft, D.B. Walking in Each Other’s Footsteps: Do Animal Trail Makers Confer Resilience against Trampling Tourists? Environments 2019, 6, 83. [Google Scholar] [CrossRef]
- Mpolokang, M.O.; Perkins, J.S.; Saarinen, J.; Moswete, N.N. Environmental Change, Wildlife-Based Tourism and Sustainability in Chobe National Park, Botswana. In Southern African Perspectives on Sustainable Tourism Management. Geographies of Tourism and Global Change; Saarinen, J., Lubbe, B., Moswete, N.N., Eds.; Springer: Cham, Switzerland, 2022; pp. 169–185. [Google Scholar] [CrossRef]
- Krag, C.; Havmøller, L.W.; Swanepoel, L.; Van Zyl, G.; Møller, P.R.; Havmøller, R.W. Impact of artificial waterholes on temporal partitioning in a carnivore guild: A comparison of activity patterns at artificial waterholes to roads and trails. PeerJ 2023, 11, e15253. [Google Scholar] [CrossRef] [PubMed]
- Kasiringua, E.A. The Effects of Artificial Water Holes on the Distribution of Elephants and Other Mammalian Herbivores in Savuti, Northern Botswana. Master’s Dissertation, Hedmark University College, Hedmark, Norway, 2010. [Google Scholar]
- Dzinotizei, Z.; Murwira, A.; Masocha, M. Elephant-induced landscape heterogeneity change around artificial waterholes in a protected savanna woodland ecosystem. Remote Sens. Appl. Soc. Environ. 2019, 13, 97–105. [Google Scholar] [CrossRef]
- Selebatso, M.; Bennitt, E.; Maude, G.; Fynn, R.W.S. Water provision alters wildebeest adaptive habitat selection and resilience in the Central Kalahari. Afr. J. Ecol. 2018, 56, 225–234. [Google Scholar] [CrossRef]
- Chase, M.; Schlossberg, S.; Sutcliffe, R.; Seonyatseng, E. Dry Season Aerial Survey of Elephants and Wildlife in Northern Botswana; Elephants Without Borders: Kasane, Botswana, 2018. [Google Scholar]
- Farrell, M.J.; Govender, D.; Hajibabaei, M.; van der Bank, M.; Davies, T.J. Environmental DNA as a management tool for tracking artificial waterhole use in savanna ecosystems. Biol. Conserv. 2022, 274, 109712. [Google Scholar] [CrossRef]
- Wilson, L.J.; Hoffman, M.T.; Ferguson, A.J.; Cumming, D.H. Elephant browsing impacts in a Zambezian Baikiaea woodland with a high density of pumped waterholes. Glob. Ecol. Conserv. 2021, 31, e01854. [Google Scholar] [CrossRef]
- Kolhoff, A.; Polet, G. The Chobe Enclave: Non-Agricultural Activities, an Analysis; University of Utrecht Geographical Institute: Utrecht, The Netherlands, 1990. [Google Scholar]
- Stone, M.T. Community empowerment through community-based tourism: The case of Chobe Enclave Conservation Trust in Botswana. In Institutional Arrangements for Conservation, Development and Tourism in Eastern and Southern Africa; van der Duim, R., Lamers, M., van Wijk, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 81–100. [Google Scholar] [CrossRef]
- van der Sluis, T.; Cassidy, L.; Brooks, C.; Wolski, P.; VanderPost, C.; Wit, P.; Henkens, R.; van Eupen, M.; Mosepele, K.; Maruapula, O.; et al. Chobe District Integrated Land Use plan; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Mokatse, T.; Diaz, N.; Shemang, E.; Van Thuyne, J.; Vittoz, P.; Vennemann, T.; Verrecchia, E.P. Landscapes and Landforms of the Chobe Enclave, Northern Botswana. In Landscapes and Landforms of Botswana. World Geomorphological Landscapes; Eckardt, F.D., Ed.; Springer: Cham, Switzerland, 2022; pp. 91–116. [Google Scholar] [CrossRef]
- Stone, M.T.; Nyaupane, G.P. Protected areas, wildlife-based community tourism and community livelihoods dynamics: Spiraling up and down of community capitals. J. Sustain. Tour. 2018, 26, 307–324. [Google Scholar] [CrossRef]
- Vittoz, P.; Pellacani, F.; Romanens, R.; Mainga, A.; Verrecchia, E.P.; Fynn, R.W.S. Plant community diversity in the Chobe Enclave, Botswana: Insights for functional habitat heterogeneity for herbivores. Koedoe Afr. Prot. Area Conserv. Sci. 2020, 62, 1–17. [Google Scholar] [CrossRef]
- Kaduyu, I.; Yuyi, G.; Kgosiesele, E. Identification of Areas for Sustainable Settlements in Highly Conflicted Protected Areas Using ArcGIS Spatial Analyst: A Case of Chobe District, Botswana. J. Sustain. Dev. 2021, 14, 84–98. [Google Scholar] [CrossRef]
- Buckland, S.T.; Borchers, D.L.; Johnston, A.; Henrys, P.A.; Marques, T.A. Line Transect Methods for Plant Surveys. Int. J. Biom. 2007, 63, 989–998. [Google Scholar] [CrossRef]
- Stephenson, P. Integrating Remote Sensing into Wildlife Monitoring for Conservation. Environ. Conserv. 2019, 46, 181–183. [Google Scholar] [CrossRef]
- Barnett, D.T.; Stohlgren, T.J. A nested-intensity design for surveying plant diversity. Biodivers. Conserv. 2003, 12, 255–278. [Google Scholar] [CrossRef]
- Jalonen, J.; Vanha-Majamaa, I.; Tonteri, T. Optimal sample and plot size for inventory of field and ground layer vegetation in a mature Myrtillustype boreal spruce forest. Ann. Bot. Fenn. 1998, 35, 191–196. [Google Scholar]
- Ehlers, M. Spectral characteristics preserving image fusion based on Fourier domain filtering. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IV, Canary Islands, Spain, 22 October 2004. [Google Scholar] [CrossRef]
- Ehlers, M.; Klonus, S.; Johan, A.; Rosso, P. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 2010, 1, 25–45. [Google Scholar] [CrossRef]
- Al-Wassai, F.A.; Kalyankar, N.V.; Al-Zuky, A.A. The IHS Transformations Based Image Fusion. arXiv 2011, arXiv:1107.4396. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 12–17. [Google Scholar]
- Tamouk, J.; Lotfi, N.; Farmanbar, M. Satellite image classification methods and Landsat 5TM Bands. arXiv 2013, arXiv:1308.1801. [Google Scholar]
- Mondejar, J.P.; Tongco, A.F. Near infrared band of Landsat 8 as water index: A case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustain. Environ. Res. 2019, 29, 16. [Google Scholar] [CrossRef]
- Hossain, M.S.; Khan, M.A.H.; Oluwajuwon, T.V.; Biswas, J.; Rubaiot, A.S.M.; Tanvir, M.S.S.I.; Munira, S.; Chowdhury, M.N.A. Spatiotemporal change detection of land use land cover (LULC) in Fashiakhali wildlife sanctuary (FKWS) impact area, Bangladesh, employing multispectral images and GIS. Model. Earth Syst. Environ. 2023, 9, 3151–3173. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Henke, M.; Qin, W.; Cao, L.; Li, J.; et al. Using the Negative Soil Adjustment Factor of Soil Adjusted Vegetation Index (SAVI) to Resist Saturation Effects and Estimate Leaf Area Index (LAI) in Dense Vegetation Areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef] [PubMed]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Lowe, B. Random forest algorithm for land cover classification. Int. J. Recent Innov. Trends Comput. Commun. 2016, 4, 58–63. [Google Scholar]
- Gunčar, G.; Kukar, M.; Notar, M.; Brvar, M.; Černelč, P.; Notar, M.; Notar, M. An application of machine learning to haematological diagnosis. Sci. Rep. 2018, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Katariya, R.; Patel, V. A review on random forest: An ensemble classifier. In Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI), Coimbatore, India, 7 August 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Yin, C. Fine crop classification based on UAV hyperspectral images and random forest. ISPRS Int. J. Geo-Inf. 2022, 11, 252. [Google Scholar] [CrossRef]
- Ming, D.; Zhou, T.; Wang, M.; Tan, T. Land cover classification using random forest with genetic algorithm-based parameter optimization. J. Appl. Remote Sens. 2016, 10, 035021. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Ortiz-Burgos, S. Shannon-Weaver Diversity Index. In Encyclopedia of Estuaries, Encyclopedia of Earth Science Series; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 572–573. [Google Scholar] [CrossRef]
- Kashe, K.; Teketay, D.; Mmusi, M.; Kemosedile, T.; Galelebalwe, M.K. Assessment of diversity and composition of tree species in residential areas of Chobe district, northern Botswana. Agric. For. 2022, 68, 233–245. [Google Scholar] [CrossRef]
- Herrero, H.V.; Southworth, J.; Bunting, E. Utilizing Multiple Lines of Evidence to Determine Landscape Degradation within Protected Area Landscapes: A Case Study of Chobe National Park, Botswana from 1982 to 2011. Remote Sens. 2016, 8, 623. [Google Scholar] [CrossRef]
- Jiang, T.; Su, X.; Singh, V.P.; Zhang, G. Spatio-temporal pattern of ecological droughts and their impacts on health of vegetation in Northwestern China. J. Environ. Manag. 2022, 305, 114356. [Google Scholar] [CrossRef]
- Taiwo, B.E.; Kafy, A.A.; Samuel, A.A.; Rahaman, Z.A.; Ayowole, O.E.; Shahrier, M.; Duti, B.M.; Rahman, M.T.; Peter, O.T.; Abosede, O.O. Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environ. Sustain. Indic. 2023, 18, 100248. [Google Scholar] [CrossRef]
- Sterk, M.; Cubas, F.S.; Reinhard, B.; Reinhard, F.; Kleopas, K.; Jewell, Z. The importance of large pans and surrounding bushveld for black rhino (Diceros bicornis ssp. bicornis) habitat use in the Kalahari: Implications for reintroduction and range expansion. Namib. J. Environ. 2023, 7, 1–13. [Google Scholar]
- Åldemo, C. Effects of Elephants and Other Browsers on Woody Vegetation around Artificial Waterholes in Savuti, Northern Botswana. Master’s Dissertation, Uppsala University, Uppsala, Sweden, 2011. [Google Scholar]
- Mukwashi, K.; Gandiwa, E.; Kativu, S. Impact of African elephants on Baikiaea plurijuga woodland around natural and artificial watering points in northern Hwange National Park, Zimbabwe. Int. J. Environ. Sci. 2012, 2, 1355. [Google Scholar] [CrossRef]
- Thornley, R.; Spencer, M.; Zitzer, H.R.; Parr, C.L. Woody vegetation damage by the African elephant during severe drought at Pongola Game Reserve, South Africa. Afr. J. Ecol. 2020, 58, 658–673. [Google Scholar] [CrossRef]
- Graz, F.P.; Westbrooke, M.E.; Florentine, S.K. Modelling the effects of water-point closure and fencing removal: A GIS approach. J. Environ. Manag. 2012, 104, 186–194. [Google Scholar] [CrossRef]
- Sianga, K.; Fynn, R. The vegetation and wildlife habitats of the Savuti-Mababe-Linyanti ecosystem, northern Botswana. Koedoe Afr. Prot. Area Conserv. Sci. 2017, 59, 1–16. [Google Scholar] [CrossRef]
- Kalema, V.N. Diversity, use and resilience of woody species in a multiple land use Equatorial African Savanna, Central Uganda. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2010. [Google Scholar]
- Archibald, S.; Twine, W.; Mthabini, C.; Stevens, N. Browsing is a strong filter for savanna tree seedlings in their first growing season. J. Ecol. 2021, 109, 3685–3698. [Google Scholar] [CrossRef]
- Tabares, X.; Zimmermann, H.; Dietze, E.; Ratzmann, G.; Belz, L.; Vieth-Hillebrand, A.; Dupont, L.; Wilkes, H.; Mapani, B.; Herzschuh, U. Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers. Ecol. Evol. 2020, 10, 962–979. [Google Scholar] [CrossRef] [PubMed]
Animal | Order | Family | English Name | Categories of Protection | ||
---|---|---|---|---|---|---|
International | Regional | National | ||||
Equus quagga Boddaert, 1785 | Perissodactyla | Equidae | Plains zebra | Near threatened | Least concern | Not evaluated |
Struthio camelus Linnaeus, 1758 | Struthioniformes | Struthionidae | Ostrich | Least concern | Least concern | Not evaluated |
Giraffa camelopardalis Linnaeus, 1758 | Artiodactyla | Giraffidae | Giraffe | Vulnerable | Least concern | Not evaluated |
Tragelaphus oryx Pallas, 1766 | Artiodactyla | Bovidae | Common eland | Least concern | Least concern | Not evaluated |
Helogale parvula Sundevall, 1847 | Carnivora | Herpestidae | Common dwarf mongoose | Least concern | Least concern | Not evaluated |
Mungos mungo Gmelin, 1788 | Carnivora | Herpestidae | Banded mongoose | Least concern | Least concern | Not evaluated |
Cynictis penicillata Cuvier, 1829 | Carnivora | Herpestidae | Yellow mongoose | Least concern | Least concern | Not evaluated |
Aepyceros melampus Lichtenstein, 1812 | Artiodactyla | Bovidae | Impala | Least concern | Least concern | Not evaluated |
Syncerus caffer Sparrman, 1779 | Artiodactyla | Bovidae | African buffalo | Near threatened | Least concern | Not evaluated |
Connochaetes taurinus Lichtenstein, 1812 | Artiodactyla | Bovidae | Common wildebeest | Least concern | Least concern | Not evaluated |
Loxodonta africana Blumenbach, 1797 | Proboscidea | Elephantidae | African savanna elephant | Endangered | Least concern | Vulnerable |
Phacochoerus africanus Gmelin, 1788 | Artiodactyla | Suidae | African warthog | Least concern | Least concern | Not evaluated |
Hippotragus equinus Desmarest, 1804 | Artiodactyla | Bovidae | Roan antelope | Least concern | Endangered | Not evaluated |
Tragelaphus strepsiceros Pallas, 1766 | Artiodactyla | Bovidae | Greater kudu | Least concern | Least concern | Not evaluated |
Canis mesomelas Schreber, 1775 | Carnivora | Canidae | Black-backed jackal | Least concern | Least concern | Not evaluated |
Crocuta crocuta Erxleben, 1777 | Carnivora | Hyaenidae | Spotted hyena | Least concern | Least concern | Not evaluated |
Panthera leo Linnaeus, 1758 | Carnivora | Felidae | Lion | Vulnerable | Least concern | Vulnerable |
Plants | ||||||
Eragrostis rigidior Pilg, 1912 | Poales | Poaceae | Broad curly leaf | Not evaluated | Least concern | Not evaluated |
Aristida junciformis Trin & Rupr, 1842 | Poales | Poaceae | Wiregrass | Not evaluated | Least concern | Not evaluated |
Heteropogon contortus (L) P.Beauv. ex Roem. & Schult 1817 | Poales | Poaceae | Black spear grass | Not evaluated | Least concern | Not evaluated |
Eragrostis pallens Hack, 1895 | Poales | Poaceae | Broom love grass | Not evaluated | Least concern | Not evaluated |
Cynodon dactylon Pers, 1805 | Poales | Poaceae | Couch grass | Not evaluated | Least concern | Not evaluated |
Megathyrsus maximus (Jacq.) B.K.Simon & S.W.L.Jacobs, 2003 | Poales | Poaceae | Guinea grass | Not evaluated | Not evaluated | Not evaluated |
Digitaria eriantha Steud, 1829 | Poales | Poaceae | Common finger grass | Not evaluated | Least concern | Not evaluated |
Ocimum americanum L, 1755 | Lamiales | Lamiaceae | American basil | Not evaluated | Least concern | Not evaluated |
Brachiaria dura Stapf, 1919 | Poales | Poaceae | Signal grass | Not evaluated | Data-deficient | Not evaluated |
Urochloa trichopus (Hochst.) Stapf, 1920 | Poales | Poaceae | Bushveld signal grass | Not evaluated | Least concern | Not evaluated |
Chloris virgata Sw, 1797 | Poales | Poaceae | Feather finger grass | Not evaluated | Least concern | Not evaluated |
Euclea divinorum Hiern, 1873 | Ericales | Ebenaceae | Diamond-leaved Euclea | Not evaluated | Least concern | Not evaluated |
Cyanthillium cinereum (L.) H.Rob, 1990 | Asterales | Asteraceae | Little ironweed | Not evaluated | Not evaluated | Not evaluated |
Geigeria alata (Hochst. & Steud. ex DC.) Benth. & Hook.fil. ex Oliv. & Hiern, 1877 | Asterales | Asteraceae | Wing vomit daisy | Not evaluated | Not evaluated | Not evaluated |
Dicoma tomentosa Cass, 1818 | Asterales | Asteraceae | Woolly dicoma | Not evaluated | Least concern | Not evaluated |
Cymbopogon caesius (Hook. & Arn.) Stapf, 1906 | Poales | Poaceae | Kachi grass | Not evaluated | Least concern | Not evaluated |
Rhus tenuinervis Engl, nd | Sapindales | Anacardiaceae | Commiphora rhus | Not evaluated | Not evaluated | Not evaluated |
Croton gratissimus Burch, 1824 | Malpighiales | Euphorbiaceae | Lavender croton | Least concern | Least concern | Not evaluated |
Aristida adscensionis L, 1753 | Poales | Poaceae | Six weeks threeawn | Not evaluated | Least concern | Not evaluated |
Leonotis nepetifolia (L.) R.Br, 1811 | Lamiales | Lamiaceae | Christmas candlestick | Not evaluated | Least concern | Not evaluated |
Sesamum triphyllum Welw. ex Asch, 1889 | Lamiales | Pedaliaceae | Wild sesame | Not evaluated | Least concern | Not evaluated |
Schmidtia pappophoroides Steud. ex J.A.Schmidt, 1852 | Poales | Poaceae | Kalahari sand quick | Not evaluated | Least concern | Not evaluated |
Vachellia tortilis (Forssk.) Galasso & Banfi, 2008 | Fabales | Fabaceae | Umbrella thorn | Least concern | Least concern | Not evaluated |
Colophospermum mopane (J.Kirk ex Benth.) J.Léonard, 1949 | Fabales | Fabaceae | Mopane | Least concern | Least concern | Not evaluated |
Combretum elaeagnoides Klotzsch, 1861 | Myrtales | Combretaceae | Large-fruited jesse-bush combretum | Least concern | Not evaluated | Not evaluated |
Boscia albitrunca (Burch.) Gilg & Gilg-Ben, 1915 | Brassicales | Capparaceae | Shepherd’s tree | Least concern | Least concern | Not evaluated |
Dichrostachys cinerea (L.) Wight & Arn 1834 | Fabales | Fabaceae | Sickle bush | Least concern | Least concern | Not evaluated |
Ziziphus mucronata Willd, 1809 | Rosales | Rhamnaceae | Buffalo thorn | Least concern | Least concern | Not evaluated |
Vachellia erioloba (E.Mey.) P.J.H.Hurter, 2008 | Fabales | Fabaceae | Camel thorn | Least concern | Least concern | Not evaluated |
Combretum hereroense Schinz, 1888 | Myrtales | Combretaceae | Russet bushwillow | Least concern | Not evaluated | Not evaluated |
Senegalia mellifera (Vahl) Seigler & Ebinger, 2010 | Fabales | Fabaceae | Blackthorn | Least concern | Least concern | Not evaluated |
Combretum imberbe Wawra, 1860 | Myrtales | Combretaceae | Leadwood | Least concern | Least concern | Not evaluated |
Vachellia hebeclada (DC.) Kyal. & Boatwr, 2013 | Fabales | Fabaceae | Candle thorn | Least concern | Least concern | Data-deficient |
Vachellia luederitzii (Engl.) Kyal & Boatwr, 2013 | Fabales | Fabaceae | False umbrella thorn | Least concern | Least concern | Not evaluated |
Senegalia galpinii (Burtt Davy) Seigler & Ebinger, 2010 | Fabales | Fabaceae | Monkey-thorn | Least concern | Least concern | Not evaluated |
Philenoptera violacea (Klotzsch) Schrire, 2000 | Fabales | Fabaceae | Apple-leaf/ rain-tree | Least concern | Least concern | Not evaluated |
Senegalia nigrescens (Oliv.) P.J.H.Hurter, 2008 | Fabales | Fabaceae | Knob thorn | Not evaluated | Least concern | Not evaluated |
Image Date | Sensor | Spectral Bands | Wavelengths (µm) | Spatial Resolution (m) |
---|---|---|---|---|
2002 and 2012 | Landsat 7 Enhanced Thematic Mapper Plus (ETM+) | Band 1—Blue | 0.45–0.52 | 30 |
Band 2—Green | 0.53–0.61 | 30 | ||
Band 3—Red | 0.63–0.69 | 30 | ||
Band 4—Near-Infrared (NIR) | 0.78–0.90 | 30 | ||
Band 5—Shortwave Infrared (SWIR) 1 | 1.55–1.75 | 30 | ||
Band 6—Thermal | 10.40–12.50 | 60 * (30) | ||
Band 7—Shortwave Infrared (SWIR) 2 | 2.08–2.35 | 30 | ||
Band 8—Panchromatic | 0.52–0.90 | 30 | ||
2018, 2020, and 2022 | Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) | Band 2—Blue | 0.45–0.51 | 30 |
Band 3—Green | 0.53–0.59 | 30 | ||
Band 4—Red | 0.64–0.67 | 30 | ||
Band 5—Near-Infrared (NIR) | 0.85–0.88 | 30 | ||
Band 6—Shortwave Infrared (SWIR) 1 | 1.57–1.65 | 30 | ||
Band 7—Shortwave Infrared (SWIR) 2 | 2.11–2.29 | 30 | ||
Band 8—Panchromatic | 0.50–0.68 | 15 |
Wildlife Species | Frequency (0.5 km) | Abundance (%) | Frequency (1 km) | Abundance (%) | Frequency (5 km) | Abundance (%) | Frequency (10 km) | Abundance (%) |
---|---|---|---|---|---|---|---|---|
Zebra | 75 | 58.1 | 26 | 29.5 | 6 | 22.2 | 0 | 0.0 |
Ostrich | 2 | 1.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Giraffe | 2 | 1.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Eland | 4 | 3.1 | 2 | 2.3 | 0 | 0.0 | 0 | 0.0 |
Dwarf mongoose | 3 | 2.3 | 2 | 2.3 | 3 | 11.1 | 4 | 16.7 |
Banded mongoose | 1 | 0.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Yellow mongoose | 2 | 1.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Impala | 9 | 7.0 | 23 | 26.1 | 4 | 14.8 | 2 | 8.3 |
African buffalo | 7 | 5.4 | 3 | 3.4 | 0 | 0.0 | 0 | 0.0 |
Wildebeest | 5 | 3.9 | 1 | 1.1 | 0 | 0.0 | 0 | 0.0 |
Elephant | 8 | 6.2 | 15 | 17.0 | 7 | 25.9 | 5 | 20.8 |
Warthog | 1 | 0.8 | 5 | 5.7 | 0 | 0.0 | 4 | 16.7 |
Roan | 6 | 4.7 | 11 | 12.5 | 6 | 22.2 | 9 | 37.5 |
Kudu | 1 | 0.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Jackal | 1 | 0.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Hyena | 1 | 0.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Lion | 1 | 0.8 | 0 | 0.0 | 1 | 3.7 | 0 | 0.0 |
Plant Communities | Large-Fruited Jesse-Bush Combretum Communities | Mopane Communities | Barren Land | False Umbrella Thorn Communities | Russet Bushwillow | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|
Large-fruited jesse-bush combretum communities | 8 | 2 | 0 | 0 | 0 | 80 | 53.3 |
Mopane communities | 5 | 13 | 0 | 0 | 1 | 68.4 | 81.3 |
Barren land | 0 | 0 | 8 | 0 | 0 | 100 | 100 |
False umbrella thorn communities | 1 | 1 | 0 | 14 | 1 | 82.4 | 100 |
Russet bushwillow | 1 | 0 | 0 | 0 | 7 | 87.5 | 77.8 |
Area (in km2) | ||||
---|---|---|---|---|
Land Cover | 0–0.5 km | 0.5–1 km | 1–5 km | 5–10 km |
Large-fruited jesse-bush combretum communities before AWP | 0.01 ± 0.01 | 0.03 ± 0.03 | 0.64 ± 0.16 | 2.61 ± 0.95 |
Large-fruited jesse-bush combretum communities after AWP | 0.08 ± 0.06 | 0.25 ± 0.10 | 9.03 ± 0.49 | 22.30 ± 2.85 |
Mopane communities before AWP | 0.80 ± 0.08 | 1.55 ± 0.04 | 38.04 ± 0.74 | 86.74 ± 0.25 |
Mopane communities after AWP | 0.25 ± 0.21 | 0.51 ± 0.33 | 14.82 ± 4.54 | 24.30 ± 12.55 |
Barren land before AWP | 0.04 ± 0.02 | 0.10 ± 0.02 | 0.54 ± 0.10 | 7.58 ± 0.92 |
Barren land after AWP | 0.15 ± 0.18 | 0.28 ± 0.30 | 1.66 ± 0.60 | 13.30 ± 2.05 |
False umbrella thorn communities before AWP | 0.02 ± 0.001 | 0.03 ± 0.02 | 1.14 ± 0.49 | 6.26 ± 0.54 |
False umbrella thorn communities after AWP | 0.04 ± 0.04 | 0.06 ± 0.07 | 3.87 ± 2.10 | 12.16 ± 1.28 |
Russet bushwillow communities before AWP | 0 | 0 | 0.01 ± 0.02 | 0.19 ± 0.26 |
Russet bushwillow communities after AWP | 0.19 ± 0.04 | 0.62 ± 0.07 | 10.97 ± 2.33 | 31.30 ± 16.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpalo, M.; Basupi, L.V.; Tsidu, G.M. Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis. Land 2024, 13, 690. https://doi.org/10.3390/land13050690
Mpalo M, Basupi LV, Tsidu GM. Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis. Land. 2024; 13(5):690. https://doi.org/10.3390/land13050690
Chicago/Turabian StyleMpalo, Morati, Lenyeletse Vincent Basupi, and Gizaw Mengistu Tsidu. 2024. "Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis" Land 13, no. 5: 690. https://doi.org/10.3390/land13050690
APA StyleMpalo, M., Basupi, L. V., & Tsidu, G. M. (2024). Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis. Land, 13(5), 690. https://doi.org/10.3390/land13050690