Can the Establishment of National Parks Promote the Coordinated Development of Land, the Environment, and Residents’ Livelihoods?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Natural Geographical Conditions
2.1.2. Social and Economic Conditions
2.2. Data Collection
2.2.1. Land-Use Data Acquisition
2.2.2. Collection of Socio-Economic Data
2.3. Research Methods
2.3.1. Construction of the PLES Classification and the LEL System
2.3.2. Dynamic Attitude toward Land Use
2.3.3. Land Transfer Matrix
2.3.4. Entropy Weight Method
2.3.5. Coupling Coordination Degree Model
2.3.6. Panel Data Multiple Linear Regression Model
2.3.7. Indicator System Construction
3. Results and Analysis
3.1. Evolution of the PLES in Wuyishan National Park
3.1.1. Characteristics of the Spatial Distribution of PLES
3.1.2. Characteristics of Land Transfer in the PLES
3.1.3. Dynamic Evolution Characteristics of PLES
3.2. Calculation Results and Analysis of Coupling Coordination
3.2.1. Temporal Evolution Characteristics of the Coupling Coordination Degree of the LEL System in Wuyishan National Park
3.2.2. Spatial Evolution Characteristics of the Coupling Coordination Degree of the LEL System in Wuyishan National Park
3.3. How Establishing National Parks Affects the Coordination of Regional Connections
4. Discussion
4.1. Changes in the PLES Pattern of Wuyishan National Park
4.2. Changes in the Coupling Coordination Degree of the LEL System in Nanping City
4.3. How Establishing National Parks Affects the Level of Coordination in Regional LEL Systems
5. Conclusions
6. Suggestions
6.1. How to Enhance the Efficiency of the Production–Living–Ecological Functions of Land
6.2. How to Improve the Quality of the Ecological Environment
6.3. How to Promote Sustainable Livelihood Development for Residents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Alberto, R.; Zavalloni, M.; Pagliacci, F. The environmental and socioeconomic impacts of the Italian National Parks: Time and spillover effects across different geographical contexts. Glob. Environ. Chang. 2024, 86, 102838. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Zhang, D.H. The Impact of the Establishment of the Mount Wuyi National Park on the Livelihood of Farmers. Agriculture 2023, 13, 1619. [Google Scholar] [CrossRef]
- Emma, A.P.; Ernan, R.; Ardy, R.P.; Alfin, M.; Ahmad, A.K.; Pratika, S.M.; Izuru, S. Spatiotemporal Distribution Patterns and Local Driving Factors of Regional Development in Java. ISPRS Int. J. Geo-Inf. 2021, 10, 812. [Google Scholar] [CrossRef]
- Xu, M.Y.; Chen, C.T.; Deng, X.Y. Systematic analysis of the coordination degree of China’s economy-ecological environment system and its influencing factor. Environ. Sci. Pollut. Res. Int. 2019, 26, 29722–29735. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cheng, C.; Pan, Y.; Yang, T. Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration. Water 2022, 14, 1083. [Google Scholar] [CrossRef]
- Shi, J.H.; Yang, H.; Wang, F.Q.; Sun, D.; Run, Y.S. Comprehensive Evaluation and Coupled Coordinated Development Study of Water–Economic–Ecological Systems in the Five Northwestern Provinces of China. Water 2023, 15, 4260. [Google Scholar] [CrossRef]
- Chang, Q.L.; Sha, Y.Y.; Chen, Y. The Coupling Coordination and Influencing Factors of Urbanization and Ecological Resilience in the Yangtze River Delta Urban Agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Yuan, M.K.; Xiao, Y.; Yang, Y.; Liu, C. Coupling coordination analysis of the economy-ecology-society complex systems in China’s Wenchuan earthquake disaster area. Ecol. Indic. 2023, 156, 111145. [Google Scholar] [CrossRef]
- Hossein, A.; Farnaz, S.; Mahdis, B. Coupling coordination analysis between urbanization and ecology in Iran. Front. Urban Rural. Plan. 2024, 2, 5. [Google Scholar]
- He, L.Y.; Du, X.Q.; Zhao, J.H.; Chen, H. Exploring the coupling coordination relationship of water resources, socio-economy and eco-environment in China. Sci. Total Environ. 2024, 918, 170705. [Google Scholar] [CrossRef]
- Zou, S.H.; Liao, Z.; Liu, Y.C.; Fan, X.B. Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective. Sustainability 2024, 16, 818. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.L.; Gao, C.; Tang, X.P. Coupling coordination and driving mechanisms of water resources carrying capacity under the dynamic interaction of the water-social-economic-ecological environment system. Sci. Total Environ. 2024, 920, 171011. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Sun, Q.; Zou, L.L. Spatial-temporal evolution and driving mechanism of rural production-living-ecological space in Pingtan islands, China. Habitat Int. 2023, 137, 102833. [Google Scholar] [CrossRef]
- Qin, Y.J.; Wang, L.Z.; Yu, M.; Meng, X.W.; Fan, Y.T.; Huang, Z.Q.; Luo, E.G.; Pijanowski, B.Y. The spatio-temporal evolution and transformation mode of human settlement quality from the perspective of “production-living-ecological spaces—A case study of Jilin Province. Habitat Int. 2024, 145, 103021. [Google Scholar] [CrossRef]
- Li, W.Y.; Tao, L.X.; Wen, C.H. Study on function evolution and coupling coordination degree of Three Lives Space in the upper reaches of Yangtze River in China. Environ. Sci. Pollut. Res. Int. 2024, 31, 13026–13045. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Xiao, H.; Jiang, L.L.; Jin, C.X. Empirical study on comparative analysis of dynamic degree differences of land use based on the optimization model. Geocarto Int. 2022, 37, 9847–9864. [Google Scholar] [CrossRef]
- Huang, B.Q.; Huang, J.L.; Pontius, G.R.; Tu, Z.S. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Ayub, B.W.; Ravindra, S.G. Dam-triggered Land Use Land Cover change detection and comparison (transition matrix method) of Urmodi River Watershed of Maharashtra, India: A Remote Sensing and GIS approach. Geol. Ecol. Landsc. 2023, 7, 189–197. [Google Scholar]
- Wang, C. Study on the statistical measure of green development in China based on entropy weight method and TOPSIS method. Environ. Resour. Ecol. J. 2023, 7, 1–8. [Google Scholar]
- Du, F.; Zhou, Y.; Wang, Z.H.; Feng, X.; Wang, Y.Z. Study on the risk level assessment of light pollution based on entropy power method. Int. J. Front. Eng. Technol. 2023, 5, 5. [Google Scholar]
- Xu, P.; Xu, Q.Q.; Bao, C.K. A Study on the Synergy of Renewable Energy Policies in Shandong Province: Based on the Coupling Coordination Model. Energies 2023, 16, 6759. [Google Scholar] [CrossRef]
- Yang, Z.J.; Hu, J.X.; Wang, Z.; Chen, S.L. A new model based on coupling coordination analysis incorporates the development rate for urbanization and ecosystem services assessment: A case of the Yangtze River Delta. Ecol. Indic. 2024, 159, 111596. [Google Scholar] [CrossRef]
- Dong, G.L.; Ge, Y.B.; Liu, J.J.; Kong, X.K.; Zhai, R.X. Evaluation of coupling relationship between urbanization and air quality based on improved coupling coordination degree model in Shandong Province, China. Ecol. Indic. 2023, 154, 110578. [Google Scholar] [CrossRef]
- Zhao, C.S.; Geng, R.; Chi, T.H.; Khiewngamdee, C.; Liu, J.X. Agricultural Technology Innovation and Food Security in China: An Empirical Study on Coupling Coordination and Its Influencing Factors. Agronomy 2024, 14, 123. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Geng, S.B.; Zhu, W.R.; Shi, P.L. A functional land use classification for ecological, production and living spaces in the Taihang Mountains. J. Resour. Ecol. 2019, 10, 246–255. [Google Scholar]
- Li, J.X.; Li, C.Y.; Liu, C.Y.; Ge, H.L.; Hu, Z.N.; Zhang, Z.Y.; Tang, X.Q. Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions. Sustainability 2023, 15, 9664. [Google Scholar] [CrossRef]
- Li, T.; Chen, T.Y.; Mi, F.; Ma, L.B. Evaluation of forest ecological security in China based on the theory of variable weights and DPSIRM. Chin. J. Environ. Sci. 2021, 41, 2411–2422. (In Chinese) [Google Scholar]
- Li, S.J.; Liu, C.L.; Ge, C.Z.; Yang, J.; Liang, Z.L.; Li, X.; Cao, X.Y. Ecosystem health assessment using PSR model and obstacle factor diagnosis for Haizhou Bay, China. Ocean. Coast. Manag. 2024, 250, 107024. [Google Scholar] [CrossRef]
- Ma, J.Y.; Wang, M.J. The pathway for implementing sustainable livelihood capital among community residents within the “Three Parallel Rivers” World Natural Heritage Site. Int. J. Geoheritage Parks 2023, 11, 527–534. [Google Scholar] [CrossRef]
- Natarajan, N.; Newsham, A.; Rigg, G.; Suhardiman, D. A sustainable livelihoods framework for the 21st century. World Dev. 2022, 155, 105898. [Google Scholar] [CrossRef]
- Sun, K.A.; Moon, J. Relationship between Subjective Health, the Engel Coefficient, Employment, Personal Assets, and Quality of Life for Korean People with Disabilities. Healthcare 2023, 11, 2994. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.P.; Wang, G.Y.; Dong, J.W. Correlation Analysis between Land Use/Cover Change and Air Pollutants—A Case Study in Wuyishan City. Energies 2019, 12, 2545. [Google Scholar] [CrossRef]
- Liao, L.Y.; Lu, B.; Cao, Y. Spatial and temporal dynamics and spatial correlation analyses of landscape pattern and habitat quality in the Wuyi Mountain Rim National Park. Chin. Landsc. Archit. 2023, 39, 21–27. (In Chinese) [Google Scholar]
- Chen, L.; Yang, Z.F.; Chen, B. Landscape ecology planning of a scenery district based on a characteristic evaluation index system—A case study of the Wuyishan scenery district. Procedia Environ. Sci. 2012, 13, 30–42. [Google Scholar] [CrossRef]
- Hou, S.F.; Liao, L.Y.; Liu, K.Y.; Teng, L.X.; Shen, S.Y. Analysis of livelihood capital differences and influencing factors in Wuyishan National Park communities. Nat. Reserves 2024, 4, 1–14. (In Chinese) [Google Scholar]
- Liu, Y.Y.; Liu, X.Y.; Zhao, C.Y.; Wang, H.; Zang, F. The trade-offs and synergies of the ecological-production-living functions of grassland in the Qilian mountains by ecological priority. J. Environ. Manag. 2023, 327, 116883. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhou, D.Y.; An, P.L.; Jiang, G.H. Impacts of nature reserve policy on regional ecological environment quality: A case study of Sanjiangyuan region. J. Appl. Ecol. 2023, 34, 1349–1359. [Google Scholar]
- Dou, Y.Q.; Wu, C.H.; He, Y.J. Public Concern and Awareness of National Parks in China: Evidence from Social Media Big Data and Questionnaire Data. Sustainability 2023, 15, 2653. [Google Scholar] [CrossRef]
- Cumming, K.; Tavares, T. Using strategic environmental assessment and project environmental impact assessment to assess ecological connectivity at multiple scales in a national park context. Impact Assess. Proj. Apprais. 2022, 40, 507–516. [Google Scholar] [CrossRef]
- Sheng, C.L.; Wang, Y.X.; Ye, S.W. Overview of the progress of Wuyishan National Park System Pilot Area. Int. J. Geoheritage Parks 2020, 8, 230–234. [Google Scholar] [CrossRef]
- Obeten, B.U.; Ayua, B.A.; Aneshie, L.N.; Etta, A.C.; Obun, E.M.; Ojong, A.A.; Edet, I.S.; Etim, A.E.; Onnoghen, U.S. Wildlife conservation society’s activities and biodiversity conservation in protected areas in cross river state, Nigeria. J. Nat. Conserv. 2024, 78, 126575. [Google Scholar] [CrossRef]
- Jiang, W.J.; Guo, P.P.; Lin, Z.M.; Fu, Y.Y.; Li, Y.; Kasperkiewicz, K.; Gaafar, A.Z. Factors influencing the spatiotemporal variation in the value of ecosystem services in Anxi county. Heliyon 2023, 9, 19182. [Google Scholar] [CrossRef] [PubMed]
Coordination Degree | Coordination Level | Coordination Degree | Coordination Level |
---|---|---|---|
[0, 0.1) | Extreme imbalance | [0.5, 0.6) | Slight coordination |
[0.1, 0.2) | Severe imbalance | [0.6, 0.7) | Primary coordination |
[0.2, 0.3) | Moderate imbalance | [0.7, 0.8) | Intermediate coordination |
[0.3, 0.4) | Mild imbalance | [0.8, 0.9) | Good coordination |
[0.4, 0.5) | Near imbalance | [0.9, 1.0] | High-quality coordination |
System Layer | Criterion Layer | Indicator Layer | Unit | Indicator Attributes | Weight |
---|---|---|---|---|---|
The utilization of the land’s production–living–ecological functions (A) | Production function (A1) | Average crop yield per plot (A11) | kg/hm2 | + | 0.219 |
Economic density (A12) | 10,000 RMB/hm2 | + | 0.135 | ||
Living function (A2) | Per capita construction land area (A21) | hm2 | + | 0.203 | |
Population density (A22) | persons/km2 | + | 0.211 | ||
Ecological function (A3) | Ecological space proportion (A31) | % | + | 0.113 | |
Ecological environment quality (A32) | + | 0.119 | |||
Ecological environment quality (B) | Ecological environment pressure (P) | Per capita urban sewage discharge (P1) | 10,000 m3 | − | 0.064 |
Per capita urban domestic waste removal volume (P2) | 10,000 t | − | 0.068 | ||
Ecological environment state (S) | Forest coverage rate (S1) | % | + | 0.189 | |
Daily excellent air rate (S2) | % | + | 0.243 | ||
Per capita park green space area (S3) | m2 | + | 0.063 | ||
Ecological environment response (R) | Afforestation area (R1) | acre | + | 0.083 | |
Sewage treatment rate (R2) | % | + | 0.063 | ||
Urban solid waste treatment rate (R3) | % | + | 0.228 | ||
Residents’ sustainable livelihoods (C) | Human capital (C1) | Proportion of the rural labor force (C11) | % | + | 0.075 |
Proportion of the labor force with a college degree or above (C12) | % | + | 0.085 | ||
Proportion of healthcare-related expenses (C13) | % | − | 0.072 | ||
Natural capital (C2) | Actual irrigated area of farmland per household in rural areas (C21) | 10,000 acres/household | + | 0.082 | |
Physical capital (C3) | Per capita housing construction area of households (C31) | m2 | + | 0.104 | |
Proportion of households with toilets in their housing (C32) | % | + | 0.069 | ||
Financial capital (C4) | Per capita disposable income of rural residents (C41) | RMB | + | 0.090 | |
Social capital (C5) | The proportion of rural collective economic income (C51) | % | + | 0.072 | |
Participation rate of medical insurance for urban and rural residents (C52) | % | 0.074 | |||
Environmental resource dependency (C6) | Proportion of agricultural income (C61) | % | + | 0.087 | |
Government institutional dependence (C7) | Rural household average subsistence allowance amount (C71) | 10,000 RMB/household | + | 0.115 | |
Transportation accessibility (C8) | Proportion of land used for road traffic facilities (C81) | % | + | 0.075 |
Year | Wuyishan | Jianyang | Guangze | Shaowu | Yanping | Shunchang | Pucheng | Songxi | Zhenghe | Jian’ou |
---|---|---|---|---|---|---|---|---|---|---|
2008 | 0.491 | 0.448 | 0.474 | 0.392 | 0.478 | 0.415 | 0.440 | 0.470 | 0.470 | 0.463 |
2009 | 0.529 | 0.451 | 0.496 | 0.357 | 0.456 | 0.385 | 0.424 | 0.411 | 0.475 | 0.471 |
2010 | 0.509 | 0.441 | 0.460 | 0.359 | 0.424 | 0.412 | 0.395 | 0.398 | 0.455 | 0.434 |
2011 | 0.460 | 0.496 | 0.492 | 0.376 | 0.441 | 0.403 | 0.398 | 0.348 | 0.466 | 0.429 |
2012 | 0.418 | 0.478 | 0.463 | 0.369 | 0.403 | 0.393 | 0.407 | 0.359 | 0.425 | 0.381 |
2013 | 0.424 | 0.494 | 0.452 | 0.462 | 0.421 | 0.479 | 0.353 | 0.381 | 0.411 | 0.481 |
2014 | 0.422 | 0.520 | 0.431 | 0.535 | 0.418 | 0.499 | 0.366 | 0.519 | 0.472 | 0.437 |
2015 | 0.514 | 0.495 | 0.472 | 0.414 | 0.454 | 0.556 | 0.442 | 0.564 | 0.502 | 0.529 |
2016 | 0.416 | 0.483 | 0.473 | 0.41 | 0.404 | 0.537 | 0.387 | 0.507 | 0.404 | 0.521 |
2017 | 0.408 | 0.509 | 0.468 | 0.389 | 0.415 | 0.561 | 0.401 | 0.494 | 0.497 | 0.561 |
2018 | 0.498 | 0.517 | 0.402 | 0.393 | 0.384 | 0.512 | 0.464 | 0.435 | 0.503 | 0.484 |
2019 | 0.464 | 0.450 | 0.373 | 0.402 | 0.404 | 0.450 | 0.448 | 0.408 | 0.526 | 0.438 |
2020 | 0.467 | 0.499 | 0.393 | 0.431 | 0.406 | 0.529 | 0.426 | 0.448 | 0.480 | 0.495 |
2021 | 0.478 | 0.505 | 0.409 | 0.405 | 0.409 | 0.501 | 0.491 | 0.395 | 0.503 | 0.441 |
2022 | 0.709 | 0.626 | 0.478 | 0.556 | 0.546 | 0.530 | 0.490 | 0.488 | 0.465 | 0.470 |
Variable | Coefficient | Standard Error | t-Test | p | Coefficient 95% Confidence Interval | |
---|---|---|---|---|---|---|
Upper Limit | Lower Limit | |||||
Constant | 0.506 | 0.027 | 19.040 | 0.000 *** | 0.454 | 0.559 |
National park established or not | 0.038 | 0.010 | 3.720 | 0.000 *** | 0.018 | 0.059 |
GDP | 0.001 | 0.001 | 2.050 | 0.042 ** | 0.000 | 0.003 |
Regional permanent population | −0.008 | 0.005 | −1.680 | 0.094 * | −0.017 | 0.001 |
Urbanization rate | −0.118 | 0.060 | −1.970 | 0.050 * | −0.236 | 0.000 |
Engel’s coefficient | 0.001 | 0.001 | 2.390 | 0.018 ** | 0.000 | 0.002 |
Variable | “Near National Park” Group | “Far from National Park” Group |
---|---|---|
National park established or not | 0.000 *** | 0.062 * |
GDP | 0.331 | 0.071 * |
Regional permanent population | 0.085 * | 0.238 |
Urbanization rate | 0.013 ** | 0.003 ** |
Engel’s coefficient | 0.268 | 0.081 * |
Constant | 0.994 | 0.000 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Chen, T.; Xu, Y.; Mi, F. Can the Establishment of National Parks Promote the Coordinated Development of Land, the Environment, and Residents’ Livelihoods? Land 2024, 13, 704. https://doi.org/10.3390/land13050704
Zhou M, Chen T, Xu Y, Mi F. Can the Establishment of National Parks Promote the Coordinated Development of Land, the Environment, and Residents’ Livelihoods? Land. 2024; 13(5):704. https://doi.org/10.3390/land13050704
Chicago/Turabian StyleZhou, Mingwei, Tianyu Chen, Yi Xu, and Feng Mi. 2024. "Can the Establishment of National Parks Promote the Coordinated Development of Land, the Environment, and Residents’ Livelihoods?" Land 13, no. 5: 704. https://doi.org/10.3390/land13050704
APA StyleZhou, M., Chen, T., Xu, Y., & Mi, F. (2024). Can the Establishment of National Parks Promote the Coordinated Development of Land, the Environment, and Residents’ Livelihoods? Land, 13(5), 704. https://doi.org/10.3390/land13050704