Investigating Endemic Species Conservation Hotspots Based on Species Distribution Models in Swat Region, Hindu Kush Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Occurrence Data
2.3. Ecological Predictors
2.4. Model Assessment and Climate Change
3. Results
Species Distribution Mapping
4. Discussion
4.1. Present Day Climate Change Impact on Species Distribution
4.2. Role of Climate Change on Environmental Suitability
5. Conclusions
Practical Outcomes for Management
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rawat, U.; Agarwal, N. Biodiversity: Concept, threats and conservation. Environ. Conserv. J. 2015, 16, 19–28. [Google Scholar] [CrossRef]
- Usman, A.B.; Abubakar, S.; Alaku, C.; Nnadi, O. Plant: A necessity of life. Int. Lett. Nat. Sci. 2014, 15, 151–159. [Google Scholar] [CrossRef]
- Sekercioglu, C.H. Ecosystem functions and services. Conserv. Biol. All 2010, 2010, 45–72. [Google Scholar]
- Gebreyohannes, D.T. Ecology of Medicinal Plants and Their Integration into Primary Healthcare in Kajiado County; University of Nairobi: Nairobi, Kenya, 2013. [Google Scholar]
- Walters, M.; Hamilton, A. The Vital Wealth of Plants: WWF and the Conservation of Plants; WWF: Gland, Switzerland, 1993. [Google Scholar]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar]
- Zeb, A.; Iqbal, Z.; Khan, S.M.; Rahman, I.U.; Haq, F.; Afzal, A.; Gadir, G.; Ijaz, F. Species diversity, biological spectrum and phenological behaviour of vegetation of Biha Valley (Swat), Pakistan. Acta Ecol. Sin. 2020, 40, 190–196. [Google Scholar] [CrossRef]
- Börjeson, L.; Ango, T.G. The production and destruction of forests through the lens of landesque capital accumulation. Hum. Ecol. 2021, 49, 259–269. [Google Scholar] [CrossRef]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic plant species conservation: Biotechnological approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- Burlakova, L.E.; Karatayev, A.Y.; Karatayev, V.A.; May, M.E.; Bennett, D.L.; Cook, M.J. Endemic species: Contribution to community uniqueness, effect of habitat alteration, and conservation priorities. Biol. Conserv. 2011, 144, 155–165. [Google Scholar] [CrossRef]
- Anderson, S. Area and endemism. Q. Rev. Biol. 1994, 69, 451–471. [Google Scholar] [CrossRef]
- Foggi, B.; Viciani, D.; Baldini, R.M.; Carta, A.; Guidi, T. Conservation assessment of the endemic plants of the Tuscan Archipelago, Italy. Oryx 2015, 49, 118–126. [Google Scholar] [CrossRef]
- Işik, K. Rare and endemic species: Why are they prone to extinction? Turk. J. Bot. 2011, 35, 411–417. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.J.; Hijmans, R.; Huettmann, F.R.; Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Taylor, C.; Cadenhead, N.; Lindenmayer, D.B.; Wintle, B.A. Improving the design of a conservation reserve for a critically endangered species. PLoS ONE 2017, 12, e0169629. [Google Scholar] [CrossRef]
- Peterman, W.E.; Crawford, J.A.; Kuhns, A.R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 2013, 21, 114–121. [Google Scholar] [CrossRef]
- Deka, K.; Baruah, P.S.; Sarma, B.; Borthakur, S.K.; Tanti, B. Preventing extinction and improving conservation status of Vanilla borneensis Rolfe—A rare, endemic and threatened orchid of Assam, India. J. Nat. Conserv. 2017, 37, 39–46. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Marchese, C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015, 3, 297–309. [Google Scholar] [CrossRef]
- Major, J. Endemism: A Botanical Perspective. In Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions; Springer: Berlin/Heidelberg, Germany, 1988; pp. 117–146. [Google Scholar]
- Alarcón, D.; Santos, D.; Arroyo, M.T. Population-Based Evidence of Climate Change Adaptation in an Endangered Plant Endemic to a Biodiversity Hotspot. Plants 2023, 12, 2017. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Courchamp, F. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Da Fonseca, G.A.; Rylands, A.B.; Brandon, K. A brief history of biodiversity conservation in Brazil. Conserv. Biol. 2005, 601–607. [Google Scholar] [CrossRef]
- Ali, S. Significance of flora with special reference to Pakistan. Pak. J. Bot 2008, 40, 967–971. [Google Scholar]
- Ali, S.I.; Qaiser, M. A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 1986, 89, 89–101. [Google Scholar] [CrossRef]
- Stewart, R.R. Check list of the plants of Swat State, Northwest Pakistan. Pak. J. For. 1967, 17, 457–528. [Google Scholar]
- Hussain, F.; Shah, S.M.; Badshah, L.; Durrani, M.J. Diversity and ecological characteristics of flora of Mastuj valley, district Chitral, Hindukush range, Pakistan. Pak. J. Bot 2015, 47, 495–510. [Google Scholar]
- Ahmad, M.; Sultana, S.; Fazl-i-Hadi, S.; Ben Hadda, T.; Rashid, S.; Zafar, M.; Khan, M.A.; Khan, M.P.; Yaseen, G. An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). J. Ethnobiol. Ethnomedicine 2014, 10, 1–18. [Google Scholar] [CrossRef]
- Ahmad, I.; Khan, N.; Anjum, F. Medicinal plant resources for economic development of rural community in Mankial, District Swat. World Environ. Day 2011. [Google Scholar]
- Iqbal, I.; Hamayun, M. Studies on the traditional uses of plants of Malam Jabba valley, District Swat, Pakistan. Ethnobot. Leafl. 2004, 2004, 15. [Google Scholar]
- Ali, A.; Badshah, L.; Hussain, F.; Shinwari, Z.K. Floristic composition and ecological characteristics of plants of chail valley, district Swat, Pakistan. Pak. J. Bot 2016, 48, 1013–1026. [Google Scholar]
- Sher, H.; Al_yemeni, M. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan. Saudi J. Biol. Sci. 2011, 18, 53–61. [Google Scholar] [CrossRef]
- Hassan, N.; Din, M.U.; Hassan, F.U.; Abdullah, I.; Zhu, Y.; Jinlong, W.; Nisar, M.; Iqbal, I.; Wadood, S.F.; Iqbal, S.S.; et al. Identification and quantitative analyses of medicinal plants in Shahgram valley, district swat, Pakistan. Acta Ecol. Sin. 2020, 40, 44–51. [Google Scholar] [CrossRef]
- Majeed, H.; Bokhari, T.Z.; Sherwani, S.K.; Younis, U.; Shah, M.H.R.; Khaliq, B. An overview of biological, phytochemical, and pharmacological values of Abies pindrow. J. Pharmacogn. Phytochem. 2013, 2, 182–187. [Google Scholar]
- Jan, S.; Hamayun, M.; Khan, S.A.; Ahmad, N.; Ahmad, I.; Wali, S. Plant diversity of Hindu Kush mountain region of Utror and Gabral, Northern Pakistan. Pak. J. Weed Sci. Res. 2015, 21. [Google Scholar]
- Khan, M.; Khan, A.-U.; Gilani, A.-H. Pharmacological explanation for the medicinal use of Juniperus excelsa in hyperactive gastrointestinal and respiratory disorders. J. Nat. Med. 2012, 66, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Handjieva, N.; Mitova, M.; Ancev, M.; Popov, S. Iridoid glucosides from Galium album and G. lovcense. Phytochemistry 1996, 43, 625–628. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic role of functional components in alliums for preventive chronic disease in human being. Evid. Based Complement. Altern. Med. 2017, 2017, 9402849. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaran, N.; Samarakoon, S.R.; Adhikari, A.; Ediriweera, M.K.; Tennekoon, K.H.; Malavige, N.; Thabrew, I.; Shrestha, R.L. Cytotoxic and apoptotic effects of govaniadine isolated from corydalis govaniana wall. Roots on human breast cancer (mcf-7) cells. BioMed Res. Int. 2018, 2018, 3171348. [Google Scholar] [CrossRef] [PubMed]
- Frawley, E.S.; Ciotir, C.; Micke, B.; Rubin, M.J.; Miller, A.J. An ethnobotanical study of the genus Elymus. Econ. Bot. 2020, 74, 159–177. [Google Scholar] [CrossRef]
- Ali, K.; Ahmad, H.; Khan, N.; Jury, S. Future of Abies pindrow in Swat district, northern Pakistan. J. For. Res. 2014, 25, 211–214. [Google Scholar] [CrossRef]
- Khan, M.N.; Ali, S.; RAZAK, S.A.; Zaman, A.; Iqbal, M.; Shah, S.N. Assessment of floristic diversity in the mountain ecosystem of Marghazar Valley, Hindukush Range, Swat, Pakistan. Biodiversitas J. Biol. Divers. 2022, 23. [Google Scholar] [CrossRef]
- Stephenson, N.L. Climatic control of vegetation distribution: The role of the water balance. Am. Nat. 1990, 135, 649–670. [Google Scholar] [CrossRef]
- Bridson, D.; Forman, L. The Herbarium Handbook; rev. ed. Kew: Royal Botanic Gardens: Richmond, UK, 1992. [Google Scholar]
- Brenskelle, L.; Guralnick, R.P.; Denslow, M.; Stucky, B.J. Maximizing human effort for analyzing scientific images: A case study using digitized herbarium sheets. Appl. Plant Sci. 2020, 8, e11370. [Google Scholar] [CrossRef]
- Nasir, E.; Ali, S. Flora of Pakistan National Herbarium; NARC: Islamabad, Pakistan; Department of Botany University of Karachi: Karachi, Pakistan, 1972. [Google Scholar]
- Rechinger, K. Flora des Iranischen Hochlandes und der Umrahmenden Gebirge; no. 160; Akademische Druck-u. Verlagsanstalt: Graz, Austria, 1986. [Google Scholar]
- Brummitt, R.; Powell, C. Authors of Plant Names–Royal Botanic Gardens; Kew, Edinburgh, UK, 1992.
- Engler, R.; Randin, C.F.; Vittoz, P.; Czáka, T.; Beniston, M.; Zimmermann, N.E.; Guisan, A. Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? Ecography 2009, 32, 34–45. [Google Scholar] [CrossRef]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of temperature extremes on European vegetation during the growing season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Foster, G.; Cazenave, A. Comparing climate projections to observations up to 2011. Environ. Res. Lett. 2012, 7, 044035. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Mendes, de.; Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Stanley, D.L.; Boozer, T.M.; Schroder, L. Summary of the US Geological Survey National Field Quality Assurance Program from 1979 through 1989; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1998. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Greenham, S.; Jones, S.; Ferranti, E.; Zhong, J.; Acton, J.; MacKenzie, R.; Grayson, N. Mapping Climate Risk and Vulnerability with Publicly Available Data; A guidance document produced by the WM-Air project; University of Birmingham: Birmingham, UK, 2023. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Dryflor.; Banda-R., K.; Delgado-Salinas, A.; Dexter, K.G.; Linares-Palomino, R.; Oliveira-Filho, A.; Prado, D.; Pullan, M.; Quintana, C.; Riina, R.; et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 2016, 353, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Schröter, D.; Zebisch, M.; Grothmann, T. Climate change in Germany-vulnerability and adaptation of climate-sensitive sectors. Klimastatusbericht Des DWD 2005, 2005, 44–56. [Google Scholar]
- Brotons, L. Species distribution models and impact factor growth in environmental journals: Methodological fashion or the attraction of global change science. PLoS ONE 2014, 9, e111996. [Google Scholar] [CrossRef]
- Hart, R.; Salick, J.; Ranjitkar, S.; Xu, J. Herbarium specimens show contrasting phenological responses to Himalayan climate. Proc. Natl. Acad. Sci. USA 2014, 111, 10615–10619. [Google Scholar] [CrossRef]
- Bobrowski, M.; Gerlitz, L.; Schickhoff, U. Modelling the potential distribution of Betula utilis in the Himalaya. Glob. Ecol. Conserv. 2017, 11, 69–83. [Google Scholar] [CrossRef]
- Gómez-Hinostrosa, C.; Hernández, H.M. Diversity, geographical distribution, and conservation of Cactaceae in the Mier y Noriega region, Mexico. Biodivers. Conserv. 2000, 9, 403–418. [Google Scholar] [CrossRef]
- Hernández, H.M.; Gómez-Hinostrosa, C.; Bárcenas, R.T. Diversity, spatial arrangement, and endemism of Cactaceae in the Huizache area, a hot-spot in the Chihuahuan Desert. Biodivers. Conserv. 2001, 10, 1097–1112. [Google Scholar] [CrossRef]
- Martínez-Avalos, J.G.; Jurado, E. Geographic distribution and conservation of Cactaceae from Tamaulipas Mexico. Biodivers. Conserv. 2005, 14, 2483–2506. [Google Scholar] [CrossRef]
- Dagher-Kharrat, M.B.; El Zein, H.; Rouhan, G. Setting conservation priorities for Lebanese flora—Identification of important plant areas. J. Nat. Conserv. 2018, 43, 85–94. [Google Scholar] [CrossRef]
- Agakhanjanz, O.; Breckle, S.-W. Origin and evolution of the mountain flora in Middle Asia and neighbouring mountain regions. In Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences; Springer: Berlin/Heidelberg, Germany, 1995; pp. 63–80. [Google Scholar]
- Agakbanjanz, O.; Breckle, S.-W. Plant diversity and endemism in high mountains of Central Asia, the Caucasus and Siberia. In Mountain Biodiversity; Routledge: London, UK, 2019; pp. 117–127. [Google Scholar]
- Noroozi, J.; Akhani, H.; Breckle, S.-W. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv. 2008, 17, 493–521. [Google Scholar] [CrossRef]
- Kruckeberg, A.R.; Rabinowitz, D. Biological aspects of endemism in higher plants. Annu. Rev. Ecol. Syst. 1985, 16, 447–479. [Google Scholar] [CrossRef]
- Baumbach, L.; Niamir, A.; Hickler, T.; Yousefpour, R. Regional adaptation of European beech (Fagus sylvatica) to drought in Central European conditions considering environmental suitability and economic implications. Reg. Environ. Change 2019, 19, 1159–1174. [Google Scholar] [CrossRef]
- Kölling, C.; Falk, W.; Walentowski, H. Standörtliche Möglichkeiten für den Anbau der Tanne (Abies alba und Abies grandis) in Bayern. LWF Wissen 2011, 66, 11–19. [Google Scholar]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Yousefpour, R.; Hanewinkel, M.; Le Moguédec, G. Evaluating the suitability of management strategies of pure Norway spruce forests in the Black Forest area of Southwest Germany for adaptation to or mitigation of climate change. Environ. Manag. 2010, 45, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; de Winter, W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef]
- Reyer, C.P.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R.P.; Bonfante, A.; De Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Change Biol. 2013, 19, 75–89. [Google Scholar] [CrossRef] [PubMed]
Bios # | Bioclimatic Variable |
---|---|
BIO1 | Annual Mean Temperature |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) |
BIO3 | Isothermality (BIO2/BIO7) (×100) |
BIO4 | Temperature Seasonality (standard deviation ×100) |
BIO5 | Max Temperature of Warmest Month |
BIO6 | Min Temperature of Coldest Month |
BIO7 | Temperature Annual Range (BIO5-BIO6) |
BIO8 | Mean Temperature of Wettest Quarter |
BIO9 | Mean Temperature of Driest Quarter |
BIO10 | Mean Temperature of Warmest Quarter |
BIO11 | Mean Temperature of Coldest Quarter |
BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month |
BIO14 | Precipitation of Driest Month |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
BIO16 | Precipitation of Wettest Quarter |
BIO17 | Precipitation of Driest Quarter |
BIO18 | Precipitation of Warmest Quarter |
BIO19 | Precipitation of Coldest Quarter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Ali, H.; Baharanchi, O.G.; Sher, H.; Yousefpour, R. Investigating Endemic Species Conservation Hotspots Based on Species Distribution Models in Swat Region, Hindu Kush Pakistan. Land 2024, 13, 737. https://doi.org/10.3390/land13060737
Ali S, Ali H, Baharanchi OG, Sher H, Yousefpour R. Investigating Endemic Species Conservation Hotspots Based on Species Distribution Models in Swat Region, Hindu Kush Pakistan. Land. 2024; 13(6):737. https://doi.org/10.3390/land13060737
Chicago/Turabian StyleAli, Shawkat, Haidar Ali, Omid Ghadirian Baharanchi, Hassan Sher, and Rasoul Yousefpour. 2024. "Investigating Endemic Species Conservation Hotspots Based on Species Distribution Models in Swat Region, Hindu Kush Pakistan" Land 13, no. 6: 737. https://doi.org/10.3390/land13060737
APA StyleAli, S., Ali, H., Baharanchi, O. G., Sher, H., & Yousefpour, R. (2024). Investigating Endemic Species Conservation Hotspots Based on Species Distribution Models in Swat Region, Hindu Kush Pakistan. Land, 13(6), 737. https://doi.org/10.3390/land13060737