Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Sample Collection
2.3. Chemical Analyses of Soil and WW Samples
2.4. Data Analyses
3. Results
3.1. WW Volumes and Loading Rates
3.2. Properties of Soils under WW Irrigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WWAP. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017. [Google Scholar]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Chapman, J.A.; Correll, R.L.; Ladd, J.N. Removal of soluble organic carbon from winery and distillery wastewaters by application to soil. Aust. J. Grape Wine Res. 1995, 1, 39–47. [Google Scholar] [CrossRef]
- Duarte, E.; Oliveira, M. Guidelines for the Management of Winery Wastewaters; Winetech: Auckland, New Zealand, 2010. [Google Scholar]
- Welz, P.J.; Holtman, G.; Haldenwang, R.; le Roes-Hill, M. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: Implications for biological wastewater treatment and land application. Water Sci. Technol. 2016, 74, 2036–2050. [Google Scholar] [CrossRef] [PubMed]
- Gabzdylova, B.; Raffensperger, J.F.; Castka, P. Sustainability in the New Zealand wine industry: Drivers, stakeholders and practices. J. Clean. Prod. 2009, 17, 992–998. [Google Scholar] [CrossRef]
- Gray, C. Survey of Soil Properties at Some Sites Receiving Winery Wastewater in Marlborough; Marlborough District Council: Blenheim, New Zealand, 2012.
- Laurenson, S.; Houlbrooke, D. Review of Guidelines for the Management of Winery Wastewater and Grape Marc; AgResearch: Hamilton, New Zealand, 2012. [Google Scholar]
- Laurenson, S.; Houlbrooke, D. Winery Wastewater Irrigation—The Effect of Sodium and Potassium on Soil Structure; AgResearch: Hamilton, New Zealand, 2011. [Google Scholar]
- New Zealand Winegrowers. New Zealand Winegrowers Statistics Annual 2020; New Zealand Winegrowers Inc.: Auckland, New Zealand, 2020; p. 46. [Google Scholar]
- Jones, J.; McLaren, S.; Chen, Q.; Seraj, M. Repurposing Grape Marc; Massey University: Palmerston North, New Zealand, 2020. [Google Scholar]
- Howell, C.L.; Myburgh, P.A.; Lategan, E.L.; Hoffman, J.E. Effect of Irrigation Using Diluted Winery Wastewater on the Chemical Status of a Sandy Alluvial Soil, With Particular Reference to Potassium and Sodium. S. Afr. J. Enol. Vitic. 2018, 39, 1–13. [Google Scholar] [CrossRef]
- Howell, C.L.; Myburgh, P.A. Management of winery wastewater by re-using it for crop irrigation—A review. S. Afr. J. Enol. Vitic. 2018, 39, 116–131. [Google Scholar] [CrossRef]
- Mosse, K.P.M.; Patti, A.F.; Christen, E.W.; Cavagnaro, T.R. Review: Winery wastewater quality and treatment options in Australia. Aust. J. Grape Wine Res. 2011, 17, 111–122. [Google Scholar] [CrossRef]
- Kumar, A.; Kookana, R. Impact of Winery Wastewater on Ecosystem Health—An Introductory Assessment; CSIRO: Canberra, Australia, 2006. [Google Scholar]
- Kumar, V.; Wati, L.; FitzGibbon, F.; Nigam, P.; Banat, I.M.; Singh, D.; Marchant, R. Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnol. Lett. 1997, 19, 311–314. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a Changing World. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- McDonough, L.K.; Santos, I.R.; Andersen, M.S.; O’Carroll, D.M.; Rutlidge, H.; Meredith, K.; Oudone, P.; Bridgeman, J.; Gooddy, D.C.; Sorensen, J.P.R.; et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 2020, 11, 1279. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Laurenson, S.; Bolan, N.S.; Smith, E.; McCarthy, M. Review: Use of recycled wastewater for irrigating grapevines. Aust. J. Grape Wine Res. 2012, 18, 1–10. [Google Scholar] [CrossRef]
- Howell, C.L.; Myburgh, P.A.; Lategan, E.L.; Hoffman, J.E. Seasonal variation in composition of winery wastewater in the breede River Valley with respect to classical water quality parameters. S. Afr. J. Enol. Vitic. 2016, 37, 31–38. [Google Scholar] [CrossRef]
- Marlborough District Council. Rural Winery Wastewater and Grape Marc Monitoring—Compliance Snapshot; Marlborough District Council: Blenheim, New Zealand, 2020.
- Marlborough District Council. Rural Winery Wastewater and Grape Marc Monitoring—Compliance Snapshot; Marlborough District Council: Blenheim, New Zealand, 2022.
- Sheridan, C.M.; Bauer, F.F.; Burton, S.; Lorenzen, L. A critical process analysis of wine production to improve cost, quality and environmental performance. Water Sci. Technol. 2005, 51, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Hirzel, D.R.; Steenwerth, K.; Parikh, S.J.; Oberholster, A. Impact of winery wastewater irrigation on soil, grape and wine composition. Agric. Water Manag. 2017, 180, 178–189. [Google Scholar] [CrossRef]
- Arienzo, M.; Christen, E.W.; Quayle, W.; Kumar, A. A review of the fate of potassium in the soil–plant system after land application of wastewaters. J. Hazard. Mater. 2009, 164, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R. The General Relationship Between Potassium, Sodium and pH in Grape Juice and Wine. Am. J. Enol. Vitic. 1980, 31, 182–186. [Google Scholar] [CrossRef]
- Buelow, M.C.; Steenwerth, K.; Silva, L.C.R.; Parikh, S.J. Characterization of Winery Wastewater for Reuse in California. Am. J. Enol. Vitic. 2015, 66, 302. [Google Scholar] [CrossRef]
- Laurenson, S.; Houlbrooke, D.; Styles, T. Determination of Soil Dispersion in Response to Changes in Soil Salinity under Winery Wastewater Irrigation; AgResearch: Hamilton, New Zealand, 2012. [Google Scholar]
- Bond, W.J. Effluent irrigation—An environmental challenge for soil science. Soil Res. 1998, 36, 543–556. [Google Scholar] [CrossRef]
- ANZECC. Australia and New Zealand Guidelines for Fresh and Marine water Quality; Environment Australia: Canberra, Australia, 2000.
- Quirk, J. The significant of the threshold and turbidity concentrations in relation to sodicity and microstructure. Soil Res. 2001, 39, 1185–1217. [Google Scholar] [CrossRef]
- Essington, M.E. Soil and Water Chemistry: An Integrative Approach; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hillel, D. 15–Surface Runoff and Water Erosion. In Introduction to Environmental Soil Physics; Hillel, D., Ed.; Academic Press: Burlington, MA, USA, 2003; pp. 283–295. [Google Scholar] [CrossRef]
- Dehotin, J.; Breil, P.; Braud, I.; de Lavenne, A.; Lagouy, M.; Sarrazin, B. Detecting surface runoff location in a small catchment using distributed and simple observation method. J. Hydrol. 2015, 525, 113–129. [Google Scholar] [CrossRef]
- Malandra, L.; Wolfaardt, G.; Zietsman, A.; Viljoen-Bloom, M. Microbiology of a biological contactor for winery wastewater treatment. Water Res. 2003, 37, 4125–4134. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, R.; Rajinikanth, R.; Thanikal, J.V.; Ramanujam, R.A.; Torrijos, M. Anaerobic treatment of winery wastewater in fixed bed reactors. Bioprocess. Biosyst. Eng. 2010, 33, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Mulidzi, A.; Clarke, C.; Myburgh, P. Effect of Irrigation with Diluted Winery Wastewater on Phosphorus in Four Differently Textured Soils. S. Afr. J. Enol. Vitic. 2016, 37, 79–84. [Google Scholar] [CrossRef]
- Christen, E.W.; Quayle, W.C.; Marcoux, M.A.; Arienzo, M.; Jayawardane, N.S. Winery wastewater treatment using the land filter technique. J. Environ. Manag. 2010, 91, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Chappell, P.R. The Climate and Weather of Marlborough; NIWA Science and Technology: Auckland, New Zealand, 2016; p. 40. [Google Scholar]
- Whenua, M. S-Map Online—The Digital Soil Map for New Zealand; Manaaki Whenua Landcare Research: Lincoln, New Zealand, 2019. [Google Scholar]
- Soils, N. Soils of NZ: By USDA Classification. 2011. Available online: http://www.nzsoils.org.nz/PageFiles/233/SoilsOfNZ%20By%20USDA%20Classification.pdf (accessed on 21 May 2024).
- USDA [United States Department of Agriculture], Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA, 1999.
- Hewitt, A.; Balks, M.; Lowe, D. The Soils of Aotearoa New Zealand; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- McNeill, S.J.; Lilburne, L.R.; Carrick, S.; Webb, T.H.; Cuthill, T. Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. Geoderma 2018, 326, 96–110. [Google Scholar] [CrossRef]
- Marlborough District Council. Marlborough District Council, Online GIS; Marlborough District Council: Blenheim, New Zealand, 2023.
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Method for chemical analysis of soils. N. Z. Soil Bur. Sci. Rep. 1987, 80, 71–76. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Chamkhi, I.; El Omari, N.; Balahbib, A.; El Menyiy, N.; Benali, T.; Ghoulam, C. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J. Biol. Sci. 2022, 29, 1246–1259. [Google Scholar] [CrossRef]
- Bueno, P.C.; Martín Rubí, J.A.; García Giménez, R.; Jiménez Ballesta, R. Impacts caused by the addition of wine vinasse on some chemical and mineralogical properties of a Luvisol and a Vertisol in La Mancha (Central Spain). J. Soils Sediments 2009, 9, 121–128. [Google Scholar] [CrossRef]
- McLaren, R.G.; Cameron, K.C. Soil Science: Sustainable Production and Environmental Protection, 2nd ed.; Oxford University Press: Auckland, New Zealand, 1996. [Google Scholar]
- Sparling, G.P.; Schipper, L.A.; Russell, J.M. Changes in soil properties after application of dairy factory effluent to New Zealand volcanic ash and pumice soils. Soil Res. 2001, 39, 505–518. [Google Scholar] [CrossRef]
- Laurenson, S. The Influence of Recycled Water Irrigation on Cation Dynamics in Relation to the Structural Stability of Vineyard Soils/Seth Laurenson. Ph.D. Thesis, University of South Australia, Adelaide, Australia, 2010. [Google Scholar]
- Mosse, K.P.M.; Patti, A.F.; Christen, E.W.; Cavagnaro, T.R. Winery wastewater inhibits seed germination and vegetative growth of common crop species. J. Hazard. Mater. 2010, 180, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Warrington, D.; Shainberg, I.; Agassi, M.; Morin, J. Slope and Phosphogypsum’s Effects on Runoff and Erosion. Soil Sci. Soc. Am. J. 1989, 53, 1201–1205. [Google Scholar] [CrossRef]
- Gardiner, D.T.; Sun, Q. Infiltration of wastewater and simulated rainwater as affect by polyacrylamide. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 1061–1067. [Google Scholar] [CrossRef]
- Chapman, J.A.; Correll, R.L.; Ladd, J.N. The removal of soluble organic carbon from synthetic winery wastewater by repeated application to soil. Aust. J. Grape Wine Res. 1995, 1, 76–85. [Google Scholar] [CrossRef]
- Lu, X.; Vitousek, P.M.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Turner, B.L.; Zhou, G.; Mo, J. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2020790118. [Google Scholar] [CrossRef]
- Shaker, A.M.; Komy, Z.R.; Heggy, S.E.; El-Sayed, M.E. Kinetic study for adsorption humic acid on soil minerals. J. Phys. Chem. A 2012, 116, 10889–10896. [Google Scholar] [CrossRef] [PubMed]
- Dungait, J.A.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Andrades, M.S.; Rodriguez-Cruz, M.S.; Sanchez-Martin, M.J.; Sanchez-Camazano, M. Effect of the Addition of Wine Distillery Wastes to Vineyard Soils on the Adsorption and Mobility of Fungicides. J. Agric. Food Chem. 2004, 52, 3022–3029. [Google Scholar] [CrossRef]
- Strong, P.J.; Burgess, J.E. Treatment Methods for Wine-Related and Distillery Wastewaters: A Review. Bioremediat. J. 2008, 12, 70–87. [Google Scholar] [CrossRef]
- Bergin, D.O. Planting and Managing Native Trees: Technical Handbook; Tãne’s Tree Trust: Hamilton, New Zealand, 2011. [Google Scholar]
- Wardle, P. Environmental influences on the vegetation of New Zealand. N. Z. J. Bot. 1985, 23, 773–788. [Google Scholar] [CrossRef]
- Melamane, X.; Tandlich, R.; Burgess, J. Anaerobic digestion of fungally pre-treated wine distillery wastewater. Afr. J. Biotechnol. 2007, 6, 17. [Google Scholar] [CrossRef]
- Thannheiser, D.; Holland, P. The Plant Communities of New Zealand Salt Meadows. Glob. Ecol. Biogeogr. Lett. 1994, 4, 107–115. [Google Scholar] [CrossRef]
- Shields, M.W.; Tompkins, J.M.; Saville, D.J.; Meurk, C.D.; Wratten, S. Potential ecosystem service delivery by endemic plants in New Zealand vineyards: Successes and prospects. PeerJ 2016, 4, e2042. [Google Scholar] [CrossRef]
Analyte | Mean Concentration | Range | Nutrient Loading Rate (kg ha−1 yr−1) |
---|---|---|---|
pH | 7.1 (0.5) | 5.5–8.2 | - |
Electrical conductivity (dS/m) | 2.2 (0.3) | 1.2–3.1 | - |
Total organic carbon (mg/L) | 597 (178) | 91–1020 | 4000 |
P (mg/L) | 0.1 (0.1) | 0–1.1 | 0.7 |
Na (mg/L) | 265 (21.1) | 108–433 | 1776 |
Mg (mg/L) | 2.8 (0.4) | 0.4–5.5 | 19 |
Al (mg/L) | 10.0 (1.0) | 3.1–19.8 | 67 |
K (mg/L) | 163 (19.5) | 74.5–280.0 | 1092 |
Ca (mg/L) | 16.3 (2.0) | 3.9–29.7 | 109 |
Sodium Adsorption Ratio (mmolc L−1) | 16 | 14.1–19.2 | - |
Potassium Adsorption Ratio (mmolc L−1) | 5.8 | 5.7–7.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nightingale-McMahon, M.; Robinson, B.; Malcolm, B.; Clough, T.; Whitehead, D. Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon. Land 2024, 13, 751. https://doi.org/10.3390/land13060751
Nightingale-McMahon M, Robinson B, Malcolm B, Clough T, Whitehead D. Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon. Land. 2024; 13(6):751. https://doi.org/10.3390/land13060751
Chicago/Turabian StyleNightingale-McMahon, Max, Brett Robinson, Brendon Malcolm, Tim Clough, and David Whitehead. 2024. "Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon" Land 13, no. 6: 751. https://doi.org/10.3390/land13060751
APA StyleNightingale-McMahon, M., Robinson, B., Malcolm, B., Clough, T., & Whitehead, D. (2024). Effects of Winery Wastewater to Soils on Mineral Properties and Soil Carbon. Land, 13(6), 751. https://doi.org/10.3390/land13060751