Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Conservation Service
2.3. Water Retention Service
2.4. Overall Workflow
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Id | City | Population | Watershed Name | Watershed Area (km2) |
---|---|---|---|---|
1 | Athens | 3,608,000 | Asopou | 150.56 |
2 | Filis | 113.08 | ||
3 | Group of Gullies East Hymettus | 197.35 | ||
4 | Group of Gullies West Hymettus | 82.31 | ||
5 | Kifissou | 406.51 | ||
6 | Lauriou | 251.69 | ||
7 | Martathonos | 293.63 | ||
8 | Rafinas | 161.74 | ||
9 | Prelesion | 71.56 | ||
10 | Chania | 62,040 | Chanion | 91.90 |
11 | Soudas | 156.44 | ||
12 | Ioannina | 64,500 | Kranoulas | 67.90 |
13 | Marmaron | 58.08 | ||
14 | Irakleio | 138,600 | Gazanou | 294.79 |
15 | Giofiriou | 175.12 | ||
16 | Karterou | 230.66 | ||
17 | Kalamata | 52,500 | Eleochoriou | 54.53 |
18 | Nedona | 132.18 | ||
19 | Xirila | 114.54 | ||
20 | Katerini | 57,200 | Gerakari | 55.48 |
21 | Mavroneriou | 613.29 | ||
22 | Tsiamanti | 45.75 | ||
23 | Kavala | 46,800 | Chalkerou | 56.47 |
24 | Group of torrents between Iraklitsa-Kavala | 54.19 | ||
25 | Kokkinoxomatos | 22.32 | ||
26 | Larisa | 144,000 | Sikouriou | 99.90 |
27 | Patras | 156,000 | Charadrou | 20.54 |
28 | Elekistrtas | 12.90 | ||
29 | Finikos | 127.84 | ||
30 | Glafkou | 76.75 | ||
31 | Milichou | 25.83 | ||
32 | Romanou | 12.80 | ||
33 | Selemnou | 17.75 | ||
34 | Serres | 57,000 | Agion Anargiron | 80.63 |
35 | Anatolikou Christou | 6.38 | ||
36 | Anatolikou Lefkonos | 21.21 | ||
37 | Ditikou Christou | 27.45 | ||
38 | Ditikou Lefkonos | 10.90 | ||
39 | Eleonos | 26.76 | ||
40 | Eptamilon | 11.79 | ||
41 | Kamenikion | 38.23 | ||
42 | Thessaloniki | 1,062,000 | Dendropotamou | 99.66 |
43 | Pilaias | 34.64 | ||
44 | Thermis | 51.52 | ||
45 | Trikala | 51,000 | Lithaiou | 211.28 |
46 | Volos | 77,000 | Aligarorematos | 20.07 |
47 | Anavrou | 10.40 | ||
48 | Arkoudorematos | 19.77 | ||
49 | Krausidona | 30.52 | ||
50 | Seskouliti | 32.97 | ||
51 | Xiria | 73.95 | ||
52 | Xanthi | 60,000 | Kimerion | 48.62 |
53 | Kosinthou | 240.63 | ||
54 | Laspopotamou | 53.09 |
References
- United Nations Department of Economic and Social Affairs & Population Division. World Urbanization Prospects: The 2018 Revision; United Nations Department of Economic and Social Affairs & Population Division: New York, NY, USA, 2019; p. 799. Available online: https://population.un.org/wup/Publications (accessed on 30 January 2024).
- Chen, M.; Zhang, H.; Liu, W.; Zhang, W. The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE 2014, 9, e103799. [Google Scholar] [CrossRef]
- García-Nieto, A.P.; Geijzendorffer, I.R.; Baró, F.; Roche, P.K.; Bonneau, A.; Cramer, W. Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecol. Indic. 2018, 91, 589–606. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Mallinis, G.; Boutsis, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2014, 490, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Euliss, N.H.; Smith, L.M.; Liu, S.; Feng, M.; Mushet, D.M.; Auch, R.F.; Loveland, T.R. The need for simultaneous evaluation of ecosystem services and land use change. Environ. Sci. Technol 2010, 44, 7761–7763. [Google Scholar] [CrossRef]
- Maring, L.; Blauw, M. Asset management to support urban land and subsurface management. Sci. Total Environ. 2018, 615, 390–397. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, C.; Eleuterio, A.A.; Amaya, J.D.; Montoya, J.; Kendal, D. The benefits of urban and peri-urban forestry. Unasylva 2018, 69, 22–29. [Google Scholar]
- Proutsos, N.D.; Solomou, A.D.; Petropoulou, M.; Chatzipavlis, N.E. Micrometeorological and Hydraulic Properties of an Urban Green Space on a Warm Summer Day in a Mediterranean City (Attica–Greece). Land 2022, 11, 2042. [Google Scholar] [CrossRef]
- Livesley, S.J.; Escobedo, F.J.; Morgenroth, J. The biodiversity of urban and peri-urban forests and the diverse ecosystem services they provide as socio-ecological systems. Forests 2016, 7, 291. [Google Scholar] [CrossRef]
- Berglihn, E.C.; Gómez-Baggethun, E. Ecosystem services from urban forests: The case of Oslomarka, Norway. Ecosyst. Serv. 2021, 51, 101358. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E. Assessing the potential of regulating ecosystem services as nature-based solutions in urban areas. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Springer: Berlin/Heidelberg, Germany, 2017; pp. 139–158. [Google Scholar]
- García-Gómez, H.; Aguillaume, L.; Izquieta-Rojano, S.; Valino, F.; Avila, A.; Elustondo, D.; Santamaría, J.M.; Alastuey, A.; Calvete-Sogo, H.; González-Fernández, I.; et al. Atmospheric pollutants in peri-urban forests of Quercus ilex: Evidence of pollution abatement and threats for vegetation. Environ. Sci. Pollut. Res. 2016, 23, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Seitz, J.; Escobedo, F. Urban Forests in Florida: Trees Control Stormwater Runoff and Improve Water Quality. Edis 2008, 5, 1–4. [Google Scholar] [CrossRef]
- Ramírez-Agudelo, N.A.; Porcar Anento, R.; Villares, M.; Roca, E. Nature-based solutions for water management in peri-urban areas: Barriers and lessons learned from implementation experiences. Sustainability 2020, 12, 9799. [Google Scholar] [CrossRef]
- Paletto, A.; Guerrini, S.; De Meo, I. Exploring visitors’ perceptions of silvicultural treatments to increase the destination attractiveness of peri-urban forests: A case study in Tuscany Region (Italy). Urban For. Urban Green. 2017, 27, 314–323. [Google Scholar] [CrossRef]
- Dou, Y.; Zhen, L.; De Groot, R.; Du, B.; Yu, X. Assessing the importance of cultural ecosystem services in urban areas of Beijing municipality. Ecosyst. Serv. 2017, 24, 79–90. [Google Scholar] [CrossRef]
- Kraxner, F.; Aoki, K.; Kindermann, G.; Leduc, S.; Albrecht, F.; Liu, J.; Yamagata, Y. Bioenergy and the city—What can urban forests contribute? Appl. Energy 2016, 165, 990–1003. [Google Scholar] [CrossRef]
- Cariñanos, P.; Calaza, P.; Hiemstra, J.; Pearlmutter, D.; Vilhar, U. The role of urban and peri-urban forests in reducing risks and managing disasters. Unasylva 2018, 69, 53–58. [Google Scholar]
- Li, Z.; Ning, K.; Chen, J.; Liu, C.; Wang, D.; Nie, X.; Hu, X.; Wang, L.; Wang, T. Soil and water conservation effects driven by the implementation of ecological restoration projects: Evidence from the red soil hilly region of China in the last three decades. J. Clean. Prod. 2020, 260, 121109. [Google Scholar] [CrossRef]
- Grima, N.; Corcoran, W.; Hill-James, C.; Langton, B.; Sommer, H.; Fisher, B. The importance of urban natural areas and urban ecosystem services during the COVID-19 pandemic. PLoS ONE 2020, 15, e0243344. [Google Scholar] [CrossRef] [PubMed]
- Kolimenakis, A.; Solomou, A.D.; Proutsos, N.; Avramidou, E.V.; Korakaki, E.; Karetsos, G.; Kontogianni, A.B.; Kontos, K.; Georgiadis, C.; Maroulis, G.; et al. Public Perceptions of the Socioeconomic Importance of Urban Green Areas in the Era of COVID-19: A Case Study of a Nationwide Survey in Greece. Land 2022, 11, 2290. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 2012, 114, 13–822. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Forests and Water: International Momentum and Action; FAO: Rome, Italy, 2013. [Google Scholar]
- Springgay, E. Headwater Catchments: Foundation Pillars for Ecosystem Services. In Ecosystem Services of Headwater Catchments, 1st ed.; Křeček, J., Haigh, M., Hofer, T., Kubin, E., Promper, C., Eds.; Capital Publishing Company: New Delhi, India, 2017; pp. 3–6. [Google Scholar]
- Meng, Q.; Zhang, L.; Wei, H.; Cai, E.; Xue, D.; Liu, M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yize River Basin, Central China. Land 2021, 10, 843. [Google Scholar] [CrossRef]
- Bekri, E.S.; Kokkoris, I.P.; Skuras, D.; Hein, L.; Dimopoulos, P. Ecosystem accounting for water resources at the catchment scale, a case study for the Peloponnisos, Greece. Ecosyst. Serv. 2024, 65, 101586. [Google Scholar] [CrossRef]
- Vatitsi, K.; Ioannidou, N.; Mirli, A.; Siachalou, S.; Kagalou, I.; Latinopoulos, D.; Mallinis, G. LULC Change Effects on Environmental Quality and Ecosystem Services Using EO Data in Two Rural River Basins in Thrace, Greece. Land 2023, 12, 1140. [Google Scholar] [CrossRef]
- An, Y.; Zhao, W.; Li, C.; Ferreira, C.S.S. Temporal changes on soil conservation services in large basins across the world. Catena 2022, 209, 105793. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Bezak, N.; Ballabio, C.; Mikoš, M.; Petan, S.; Borrelli, P.; Panagos, P. Reconstruction of past rainfall erosivity and trend detection based on the REDES database and reanalysis rainfall. J. Hydrol. 2020, 590, 125372. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses, a Guide to Conservation Planning; U.S. Department of Agriculture: Washington, DC, USA, 1978; Volume 537, p. 62.
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 2022, 17, 024016. [Google Scholar] [CrossRef]
- Meadows, M.; Jones, S.; Reinke, K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments. Int. J. Digit. Earth 2024, 17, 2308734. [Google Scholar] [CrossRef]
- Pilesjö, P.; Hasan, A. A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model. Trans. GIS 2014, 18, 108–124. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 30, 1387–1396. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I.; Mallinis, G. National scale land cover classification for ecosystem services mapping and assessment, using multitemporal Copernicus EO data and google earth engine. Remote Sens. 2020, 12, 3303. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E.; Papanikolaou, I.; Soulis, K.X.; Borrelli, P.; Panagos, P. A new high resolution object-oriented approach to define the spatiotemporal dynamics of the cover-management factor in soil erosion modelling. Catena 2022, 213, 106149. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- SCS (Soil Conservation Service). SCS National Engineering Handbook, Section 4: Hydrology; Soil Conservation Service: Washington, DC, USA, 1972; pp. 1–44.
- Efstratiadis, A.; Koukouvinos, A.; Michaelidi, E.; Galiouna, E.; Tzouka, K.; Koussis, A.D.; Mamassis, N.; Koutsoyiannis, D. Description of Regional Approaches for the Estimation of Characteristic Hydrological Quantities, DEUCALION—Assessment of Flood Flows in Greece under Conditions of Hydroclimatic Variability: Development of Physically-Established Conceptual-Probabilistic; Department of Water Resources and Environmental Engineering—National Technical University of Athens, National Observatory of Athens: Athens, Greece, 2014. [Google Scholar]
- Savvidou, E.; Efstratiadis, A.; Koussis, A.D.; Koukouvinos, A.; Skarlatos, D. The curve number concept as a driver for delineating hydrological response units. Water 2018, 10, 194. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Kokkoris, I.P.; Drakou, E.G.; Maes, J.; Dimopoulos, P. Ecosystem services supply in protected mountains of Greece: Setting the baseline for conservation management. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 45–59. [Google Scholar] [CrossRef]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A.; et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 2015, 115, 11–21. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and Invest models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Schuster, R.; Jacob, A.L.; Hanna, D.E.; Dallaire, C.O.; Raudsepp-Hearne, C.; Bennett, E.; Lehner, B.; Chan, K.M. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 2021, 16, 014038. [Google Scholar] [CrossRef]
- Maes, M.J.; Jones, K.E.; Toledano, M.B.; Milligan, B. Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environ. Sci. Policy 2019, 93, 181–188. [Google Scholar] [CrossRef]
- Rozas-Vásquez, D.; Spyra, M.; Jorquera, F.; Molina, S.; Caló, N.C. Ecosystem Services Supply from Peri-Urban Landscapes and Their Contribution to the Sustainable Development Goals: A Global Perspective. Land 2022, 11, 2006. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mahjouri, N. Sensitivity and fuzzy uncertainty analyses in the determination of SCS-CN parameters from rainfall–runoff data. Hydrol. Sci. J. 2018, 63, 457–473. [Google Scholar] [CrossRef]
- Kumar, M.; Sahu, A.P.; Sahoo, N.; Dash, S.S.; Raul, S.K.; Panigrahi, B. Global-scale application of the RUSLE model: A comprehensive review. Hydrol. Sci. J. 2022, 67, 806–830. [Google Scholar] [CrossRef]
- Qiu, D.; Xu, R.; Wu, C.; Mu, X.; Zhao, G.; Gao, P. Vegetation restoration improves soil hydrological properties by regulating soil physicochemical properties in the Loess Plateau, China. J. Hydrol. 2022, 609, 127730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanidis, S.; Proutsos, N.; Alexandridis, V.; Mallinis, G. Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention. Land 2024, 13, 765. https://doi.org/10.3390/land13060765
Stefanidis S, Proutsos N, Alexandridis V, Mallinis G. Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention. Land. 2024; 13(6):765. https://doi.org/10.3390/land13060765
Chicago/Turabian StyleStefanidis, Stefanos, Nikolaos Proutsos, Vasileios Alexandridis, and Giorgos Mallinis. 2024. "Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention" Land 13, no. 6: 765. https://doi.org/10.3390/land13060765
APA StyleStefanidis, S., Proutsos, N., Alexandridis, V., & Mallinis, G. (2024). Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention. Land, 13(6), 765. https://doi.org/10.3390/land13060765