Holocene Vegetation Dynamics Revealed by a High-Resolution Pollen Record from Lake Yangzonghai in Central Yunnan, SW China
Abstract
:1. Introduction
2. Location and Setting
3. Materials and Methods
3.1. Lake Coring and Pollen Analysis
3.2. The REVEALS Model
4. Results and Discussion
4.1. Stratigraphy and Chronology of Core YZH-1
4.2. Pollen Record from Lake YZH
4.3. Holocene Plant Abundance in the Lake YZH Catchment
4.4. Holocene Forest Types in the Lake YZH Catchment
4.5. Holocene Regional Vegetation Dynamics in the Lake YZH Catchment
4.6. Holocene Regional Vegetation Dynamics in Response to Climate Change and Human Activities in the Lake YZH Catchment
5. Conclusions
- Regional vegetation over the past 13,400 years in the Lake YZH catchment experienced five successional stages and four major transitions. The Younger Dryas Chron (13,400–11,400 cal. a BP) witnessed various vegetation types, including EBFs, DBFs, pine forests, hemlock forests, fir/spruce forests, grass meadows, and marshes. The early Holocene (11,400–9000 cal. a BP) saw significant expansions of pine, alder, and sweetgum forests. The mid-Holocene (9000–4200 cal. a BP) witnessed a great expansion of sweetgum forest to its maximum of the past 13,400 years. Pine forest expanded to its maximum, and sweetgum forest shrank to nearly disappear during the late Holocene (4200–800 cal. a BP). The last 800 years saw great deforestation and a big expansion of grass meadows and marshes.
- During the past 13,400 years, three abrupt centennial vegetation shift events occurred in the lake catchment around 12,300, 6500, and 300 cal. a BP when regional vegetation composition changed significantly, suggesting possible centennial-scale abnormal climatic and human-induced events.
- Regional vegetation dynamics in the Lake YZH catchment were associated with hydrothermal conditions during the lateglacial and early–mid Holocene, and with human activities mainly during the late Holocene, especially after about 800 cal. a BP.
- As a large lake, the pollen source of Lake YZH is complex. Although plant abundances estimated from the REVEALS model provided useful help in regional vegetation interpretation of fossil pollen records, certain uncertainties were still not negligible in estimated plant abundances of regional vegetation composition.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Maarel, E.; Franklin, J. Vegetation Ecology; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Strandberg, G.; Lindström, J.; Poska, A.; Zhang, Q.; Fyfe, F.; Githumbi, E.; Kjellstrm, E.; Mazier, F.; Nielsen, A.B.; Sugita, S.; et al. Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land-cover. Quat. Sci. Rev. 2022, 281, 107431. [Google Scholar] [CrossRef]
- Tang, L.; Shen, C.; Lu, H.; Li, C.; Ma, Q. Fifty years of Quaternary palynology in the Tibetan Plateau. Sci. China Earth Sci. 2021, 64, 1825–1843. [Google Scholar] [CrossRef]
- Shen, J.; Xue, B.; Wu, J.; Wu, Y.; Liu, X.; Yang, X.; Liu, J.; Wang, S. Lake Sedimentation and Environmental Evolution; Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Birks, H.J.B.; Birks, H.H. Quaternary Palaeoecology; Edward Arnold: London, UK, 1980. [Google Scholar]
- Smol, J.P.; Birks, H.J.B.; Last, W.M. (Eds.) Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators; Kluwer Academic Publishers: New York, NY, USA, 2001; Volume 3. [Google Scholar]
- Wang, S. The Holocene Climate Change; China Meteorological Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Li, B.; Zhang, W.; Fyfe, R.; Fan, B.; Wang, S.; Xu, Q.; Zhang, N.; Ding, G.; Yang, J.; Li, Y. High-resolution quantitative vegetation reconstruction in the North China Plain during the early-to-middle Holocene using the REVEALS model. Catena 2024, 234, 107577. [Google Scholar] [CrossRef]
- Alley, R.B.; Meese, D.A.; Shuman, C.A.; Gow, A.J.; Taylor, K.C.; Grootes, P.M.; Whitell, J.W.C.; Ram, M.; Waddingto, E.D.; Mayewski, P.A.; et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 1993, 362, 527–529. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Dansgaard, W. Ice core evidence of abrupt climatic changes. In Abrupt Climatic Change: Evidence and Implications; Berger, W.H., Labeyria, D.L., Eds.; D. Reidel Publishing Company: New York, NY, USA, 1987; pp. 223–233. [Google Scholar]
- Alley, R.B.; Mayewski, P.; Sowers, T.; Stuiver, M.; Taylor, K.C.; Clark, P.U. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 1997, 25, 486–583. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T. Possible role of the “Holocene event 3” on the collapse of Neolithic cultures around the central plain of China. Quat. Int. 2004, 117, 153–166. [Google Scholar]
- Wang, B.; LinHo. Rainy Season of the Asian-Pacific Summer Monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Chen, J.; Zhou, A.; Wu, D.; Tang, L.; Zhang, X.; Huang, X.; Yu, J. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, southwest China. J. Quat. Sci. 2014, 29, 661–674. [Google Scholar] [CrossRef]
- Xiao, X.; Haberle, S.G.; Li, Y.; Liu, E.; Shen, J.; Zhang, E.; Yin, J.; Wang, S. Evidence of Holocene climatic change and human impact in northwestern Yunnan Province: High-resolution pollen and charcoal records from Chenghai Lake, southwestern China. Holocene 2017, 28, 127–139. [Google Scholar] [CrossRef]
- Jiang, W.; Leroy, S.A.G.; Yang, S.; Zhang, E.; Wang, L.; Yang, X.; Rioual, P. Synchronous strengthening of the Indian and East Asian Monsoons in response to global warming since the last Deglaciation. Geophys. Res. Lett. 2019, 46, 3944–3952. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Huang, K.; Yang, X.; Tian, L. Sensitivity of altitudinal vegetation in southwest China to changes in the Indian summer monsoon during the past 68000 years. Quat. Sci. Rev. 2020, 239, 106359. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Q.; Yan, H. A Study on the Impact of Climate Change on Forests in China; Popular Science Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Wang, M.; Meng, H.; Huang, L.; Sun, Q.; Zhang, H.; Shen, C. Vegetation succession and forest fires over the past 13 000 years in the catchment of Yangzonghai Lake, Yunnan. Quat. Sci. 2020, 40, 175–189. (In Chinese) [Google Scholar]
- Wang, S.; Du, H. Annals of Lakes in China; Science Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Yang, L.; Li, H. (Eds.) Wetlands of Yunnan; China Forestry Publishing House: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Wu, Z.; Zhu, Y.; Jiang, H. (Eds.) Vegetation of Yunnan; Science Press: Beijing, China, 1987. (In Chinese) [Google Scholar]
- Zhu, Y. Study on environment background of Yangzonghai Lake basin. Environ. Sci. Surv. 2008, 27, 75–78. (In Chinese) [Google Scholar]
- Faegri, K.; Iversen, J. Textbook of Pollen Analysis; Macmillan: New York, NY, USA, 1975. [Google Scholar]
- Stockmar, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 1971, 13, 615–621. [Google Scholar]
- Grimm, E.C. TILIA and TILIA.GRAPH: PC spreadsheet and graphics software for pollen data. (Version 2.0.b.4.). INQUA Comm. Study Holocene Work.-Group Data Handl. Methods Newsl. 1990, 4, 5–7. [Google Scholar]
- Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Jacobson, G.L., Jr.; Grimm, E.C. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 1986, 67, 958–966. [Google Scholar] [CrossRef]
- Theuerkauf, M.; Couwenberg, J.; Kuparinen, A.; Liebscher, V. A matter of dispersal: REVEALSinR introduces state-of-the art dispersal models to quantitative vegetation reconstruction. Veg. Hist. Archaeobotany 2016, 25, 541–553. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 26 December 2023).
- Hellman, S.; Gaillard, M.; Broström, A.; Sugita, S. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: Validation in southern Sweden. J. Quat. Sci. 2008, 23, 21–42. [Google Scholar] [CrossRef]
- Wan, Q.; Huang, K.; Chen, C.; Tang, Y.; Zhang, X.; Zhang, Z.; Zheng, Z. Relative pollen productivity estimates for major plant taxa in middle subtropical China. Land 2023, 12, 1337. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Q.; Zhang, S.; Sun, Y.; Wang, M.; Zhou, Z. Relative pollen productivity estimates of subtropical evergreen and deciduous broadleaved mixed forest in Ta-pieh Mountains. Quat. Sci. 2019, 39, 469–482. (In Chinese) [Google Scholar]
- Zhang, Y.; Marquer, L.; Cui, Q.; Zheng, Z.; Zhao, Y.; Wan, Q.; Zhou, A. Holocene vegetation changes in the transition zone between subtropical and temperate ecosystems in Eastern Central China. Quat. Sci. Rev. 2021, 253, 106768. [Google Scholar] [CrossRef]
- Wieczorek, M.; Herzschuh, U. Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics. Earth Syst. Sci. Data 2020, 12, 3515–3528. [Google Scholar] [CrossRef]
- Wan, Q.C.; Zhang, Y.Z.; Huang, K.Y.; Sun, Q.W.; Zhang, X.; Gaillard, M.J.; Xu, Q.H.; Li, F.R.; Zheng, Z. Evaluating quantitative pollen representation of vegetation in the tropics: A case study on the Hainan Island, tropical China. Ecol. Indic. 2020, 114, 106297. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal ka BP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from Large Sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Sugita, S.; Parshall, T.; Calcote, R.; Walker, K. Testing the landscape reconstruction algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat. Res. 2010, 74, 289–300. [Google Scholar] [CrossRef]
- Serge, M.A.; Mazier, F.; Fyfe, R.; Gaillard, M.-J.; Klein, T.; Lagnoux, A.; Galop, D.; Githumbi, E.; Mindrescu, M.; Nielsen, A.B.; et al. Testing the effect of relative pollen productivity on the REVEALS model: A validated reconstruction of Europe-wide Holocene vegetation. Land 2023, 12, 986. [Google Scholar] [CrossRef]
- Briks, H.J.B.; Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis; Academic Press: London, UK, 1985. [Google Scholar]
- Yunnan Forest Writing Committee. Forests of Yunnan; Yunnan Science and Technology Press & China Forestry Publishing House: Kunming, China, 1986. (In Chinese) [Google Scholar]
- Matthias, I.; Giesecke, T. Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments. Quat. Sci. Rev. 2014, 87, 12–23. [Google Scholar] [CrossRef]
- Xiao, X.; Yao, A.; Hillman, A.; Shen, J.; Haberle, S.G. Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quat. Sci. Rev. 2020, 236, 106279. [Google Scholar] [CrossRef]
- Sun, Q. Spatio-Temporal Changes of Vegetation, Climate, and Forest Fire Since the Last Glacial Maximum and Their Driving Mechanisms in Typical Lake Basins of Yunnan. Ph.D. Thesis, Yunnan Normal University, Kunming, China, 2023. (In Chinese). [Google Scholar]
- Chen, X.; Wu, D.; Huang, X.; Lv, F.; Brenner, M.; Jin, H.; Chen, F. Vegetation response in subtropical southwest China to rapid climate change during the Younger Dryas. Earth-Sci. Rev. 2020, 201, 103080. [Google Scholar] [CrossRef]
- Wu, J.; Shen, C.; Yang, H.; Shi, Q.; Xie, S.C. Holocene temperature variability in China. Quat. Sci. Rev. 2023, 312, 107184. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- Zou, Q.; Miao, W. Chinese Population (Yunnan Province); China Financial and Economic Publishing House: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Shi, Q.; Shen, C.; Meng, H.; Huang, L.; Sun, Q. A 1640-Year vegetation and fire history of the Lake Haixihai catchment in northwestern Yunnan, Southwest China. Forests 2023, 14, 990. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Liu, J.; Cao, X.; Hou, J.; Zhu, L.; Xu, X.; Liu, X.; Wang, M.; Wu, D.; et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 2020, 243, 106444. [Google Scholar] [CrossRef]
- Li, X.; Walker, D. The plant geography of Yunnan Province, southwest China. J. Biogeogr. 1986, 13, 367–397. [Google Scholar]
- Fu, L.-G. A study of Ulmus in China. J. Northeast. Forest. Inst. 1980, 3, 3–42. (In Chinese) [Google Scholar]
- Shen, J.; Xiao, X. Evolution of the South Asian monsoon during the last 20 ka recorded in lacustrine sediments from Southwestern China. Quat. Sci. 2018, 38, 799–820. (In Chinese) [Google Scholar]
- Shen, C. Millennial-Scale Variations and Centennial-Scale Events in the Southwest Aian Monsoon: Pollen Evidence from Tibet. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2003. [Google Scholar]
- Bond, G.; Broecker, W.; Johnsen, S.; McManus, J.; Labeyrie, L.; Jouzel, J.; Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 1993, 365, 143–147. [Google Scholar] [CrossRef]
- Hicks, S.; Hyvärinen, H. Pollen influx values measured in different sedimentary environments and their palaeoecological implications. Grana 1999, 38, 228–242. [Google Scholar] [CrossRef]
- Dong, X.; Wu, Y. Vicissitudes of Lake Dianchi: Millennium Environmental History Perspective; Intellectual Property Publishing House: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Fitzgerald, C.D. The Southern Expansion of the Chinese People; Australian National University Press: Canberra, Australia, 1972. [Google Scholar]
Pollen Taxa | RPPs ± SE | FSP(m/s) | References |
---|---|---|---|
Tsuga | 3.75 ± 0.5 | 0.056 | [37] |
Pinus | 34.3 ± 3.09 | 0.041 | [37] |
Picea/Abies | 2.55 ± 0.44 | 0.056 | [36] |
Deciduous Quercus | 4.27 ± 0.04 | 0.025 | [36] |
Evergreen Quercus | 5.19 ± 0.07 | 0.019 | [36] |
Castanopsis-type | 10.67 ± 0.29 | 0.01 | [37,38] |
Ulmus | 5.29 ± 0.8 | 0.027 | [36] |
Alnus | 9.86 ± 0.09 | 0.021 | [36] |
Betula | 10.26 ± 0.12 | 0.019 | [36] |
Pterocarya | 8.07 ± 0.08 | 0.03 | [35] |
Liquidambar/Altingia | 0.768 ± 0.029 | 0.036 | [35] |
Poaceae | 1 ± 0.1 | 0.028 | [36] |
Artemisia | 15.11 ± 0.37 | 0.012 | [36] |
Ranunculaceae | 7.86 ± 2.65 | 0.01 | [37] |
Cyperaceae | 4.17 ± 0.09 | 0.029 | [36] |
Depth (cm) | 14C Dates (14C a BP) | Calibrated Age * (cal. a BP) | Range § (cal. a BP) | Dating Material |
---|---|---|---|---|
77 | 1190 ± 30 | 1120 | 1005–1230 | Leaves |
341 | 3740 ± 30 | 4110 | 3985–4230 | Leaves |
428 | 4350 ± 30 | 4940 | 4850–5030 | Wood |
531 | 7030 ± 30 | 7870 | 7800–7940 | Leaves |
738 | 8790 ± 30 | 9900 | 9680–10,110 | Leaves |
966 | 10,470 ± 40 | 12,350 | 12,140–12,560 | Wood |
1003 | 11,550 ± 30 | 13,400 | 13,305–13,460 | Leaves |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Sun, Q.; Meng, H.; Huang, L.; Li, H.; Zhang, H.; Shen, C. Holocene Vegetation Dynamics Revealed by a High-Resolution Pollen Record from Lake Yangzonghai in Central Yunnan, SW China. Land 2024, 13, 782. https://doi.org/10.3390/land13060782
Wang M, Sun Q, Meng H, Huang L, Li H, Zhang H, Shen C. Holocene Vegetation Dynamics Revealed by a High-Resolution Pollen Record from Lake Yangzonghai in Central Yunnan, SW China. Land. 2024; 13(6):782. https://doi.org/10.3390/land13060782
Chicago/Turabian StyleWang, Min, Qifa Sun, Hongwei Meng, Linpei Huang, Huayong Li, Hucai Zhang, and Caiming Shen. 2024. "Holocene Vegetation Dynamics Revealed by a High-Resolution Pollen Record from Lake Yangzonghai in Central Yunnan, SW China" Land 13, no. 6: 782. https://doi.org/10.3390/land13060782
APA StyleWang, M., Sun, Q., Meng, H., Huang, L., Li, H., Zhang, H., & Shen, C. (2024). Holocene Vegetation Dynamics Revealed by a High-Resolution Pollen Record from Lake Yangzonghai in Central Yunnan, SW China. Land, 13(6), 782. https://doi.org/10.3390/land13060782