Exploring the Long-Term Changes in Visual Attributes of Urban Green Spaces Using Point Clouds
Abstract
:1. Introduction
- How can we identify long-term changes in the visual attributes of urban green spaces?
- What trends do the visual attributes of urban green spaces have?
- What is the relationship between the change in the visual attributes of urban green spaces and their initial attributes?
2. Materials and Methods
2.1. Workflow
2.2. Study Area
2.3. Data Collection and Processing
2.4. Visual Indicator Calculation
2.5. Statistical Analysis
3. Results
3.1. Comparison of Point Cloud Models before and after Five Years
3.2. Changes in Visual Attributes before and after Five Years
- (1)
- Changes in openness (OP)
- (2)
- Changes in depth variance (DV)
- (3)
- Changes in green view ratio (GVR)
- (4)
- Changes in sky view ratio (SVR)
- (5)
- Changes in skyline complexity (SC)
3.3. Correlation of the Changed and Initial Values of Indicators
4. Discussion
4.1. Confirming the Long-Term Changes in Visual Attributes of Urban Green Spaces
4.2. Potential for Predicting Long-Term Changes in Visual Attributes of Urban Green Spaces
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, W.W.Y.; Loo, B.P.Y.; Mahendran, R. Neighbourhood environment and depressive symptoms among the elderly in Hong Kong and Singapore. Int. J. Health Geogr. 2020, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Rutherford, G.W.; James, J.; Razani, N. Association of neighborhood parks with child health in the United States. Prev. Med. 2020, 141, 106265. [Google Scholar] [CrossRef] [PubMed]
- Vassos, E.; Agerbo, E.; Mors, O.; Pedersen, C.B. Urban–rural differences in incidence rates of psychiatric disorders in Denmark. Br. J. Psychiatry 2016, 208, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lang, W.; Li, X. Exploring the impact of urban green space on residents’ health in Guangzhou, China. J. Urban Plan. Dev. 2020, 146, 05019022. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Y.; Fan, C.; Xia, B.; de Groot, R. Perception of urban environmental risks and the effects of urban green infrastructures (UGIs) on human well-being in four public green spaces of Guangzhou, China. Environ. Manag. 2018, 62, 500–517. [Google Scholar] [CrossRef] [PubMed]
- Madureira, H.; Nunes, F.; Oliveira, J.V.; Cormier, L.; Madureira, T. Urban residents’ beliefs concerning green space benefits in four cities in France and Portugal. Urban For. Urban Green. 2015, 14, 56–64. [Google Scholar] [CrossRef]
- Alcock, I.; White, M.P.; Wheeler, B.W.; Fleming, L.E.; Depledge, M.H. Longitudinal Effects on Mental Health of Moving to Greener and Less Green Urban Areas. Environ. Sci. Technol. 2014, 48, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, T.; Xie, X.; Marusic, B.G. What Attracts People to Visit Community Open Spaces? A Case Study of the Overseas Chinese Town Community in Shenzhen, China. Int. J. Environ. Res. Public Health 2016, 13, 644. [Google Scholar] [CrossRef]
- Polat, A.T.; Akay, A. Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban For. Urban Green. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Appleton, J. The Experience of Landscape; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Landsc. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Tveit, M.; Ode, Å.; Fry, G. Key concepts in a framework for analysing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Purcell, A.T.; Lamb, R.J. Preference and naturalness: An ecological approach. Landsc. Urban Plan. 1998, 42, 57–66. [Google Scholar] [CrossRef]
- Susaki, J.; Kubota, S. Automatic Assessment of Green Space Ratio in Urban Areas from Mobile Scanning Data. Remote Sens. 2017, 9, 215. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes. Water Res. 2021, 191, 116811. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lin, E.S.; Yok Tan, P.; Chun Man Ho, R.; Sia, A.; Olszewska-Guizzo, A.; Zhang, X.; Waykool, R. Development and application of 3D spatial metrics using point clouds for landscape visual quality assessment. Landsc. Urban Plan. 2022, 228, 104585. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Wu, J.; Shu, S.; Liang, H.; Liu, M.; Badenko, V.; Fedotov, A.; Yao, S.; Yu, B. Mapping 3D visibility in an urban street environment from mobile LiDAR point clouds. GIScience Remote. Sens. 2020, 57, 797–812. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, J.; Wu, G.; Hu, X. Exploring the interactive influence on landscape preference from multiple visual attributes: Openness, richness, order, and depth. Urban For. Urban Green. 2021, 65, 127363. [Google Scholar] [CrossRef]
- Sugiyama, T.; Thompson, C.W. Older people’s health, outdoor activity and supportiveness of neighbourhood environments. Landsc. Urban Plan. 2007, 83, 168–175. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, F.; Bao, Z.; Nan, X. A study on the impact of Visible Green Index and vegetation structures on brain wave change in residential landscape. Urban For. Urban Green. 2021, 64, 127299. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, E.S.; Tan, P.Y.; Qi, J.; Waykool, R. Assessment of visual landscape quality of urban green spaces using image-based metrics derived from perceived sensory dimensions. Environ. Impact Assess. Rev. 2023, 102, 107200. [Google Scholar] [CrossRef]
- Clark, P.E.; Hardegree, S.P. Quantifying Vegetation Change by Point Sampling Landscape Photography Time Series. Rangel. Ecol. Manag. 2005, 58, 588–597. [Google Scholar] [CrossRef]
- Kienast, F.; Frick, J.; van Strien, M.J.; Hunziker, M. The Swiss Landscape Monitoring Program—A comprehensive indicator set to measure landscape change. Ecol. Model. 2015, 295, 136–150. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Ode, Å.; Tveit, M.S.; Fry, G. Advantages of using different data sources in assessment of landscape change and its effect on visual scale. Ecol. Indic. 2010, 10, 24–31. [Google Scholar] [CrossRef]
- Smardon, R.C. Perception and aesthetics of the urban environment: Review of the role of vegetation. Landsc. Urban Plan. 1988, 15, 85–106. [Google Scholar] [CrossRef]
- Rotzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total. Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Vaz Monteiro, M.; Levanič, T.; Doick, K.J. Growth rates of common urban trees in five cities in Great Britain: A dendrochronological evaluation with an emphasis on the impact of climate. Urban For. Urban Green. 2017, 22, 11–23. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Zhang, J.; Lu, H.; Hauer, R.J. Allometric Growth of Common Urban Tree Species in Qingdao City of Eastern China. Forests 2023, 14, 472. [Google Scholar] [CrossRef]
- Speak, A.F.; Salbitano, F. The impact of pruning and mortality on urban tree canopy volume. Urban For. Urban Green. 2023, 79, 127810. [Google Scholar] [CrossRef]
- Duryea, M.L.; Blakeslee, G.M.; Hubbard, W.G.; Vasquez, R.A. Wind and trees: A survey of homeowners after Hurricane Andrew. J. Arboric. 1996, 22, 44–50. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, L.; Li, X.; Peng, L.; Wang, P.; Wang, Z.; Jiao, L.; Wang, H. Residents’ Preference for Urban Green Space Types and Their Ecological-Social Services in China. Land 2022, 11, 2239. [Google Scholar] [CrossRef]
- Walz, U. Monitoring of landscape change and functions in Saxony (Eastern Germany)—Methods and indicators. Ecol. Indic. 2008, 8, 807–817. [Google Scholar] [CrossRef]
- Bayr, U. Quantifying historical landscape change with repeat photography: An accuracy assessment of geospatial data obtained through monoplotting. Int. J. Geogr. Inf. Sci. 2021, 35, 2026–2046. [Google Scholar] [CrossRef]
- Walz, U.; Hoechstetter, S.; Drăguţ, L.; Blaschke, T. Integrating time and the third spatial dimension in landscape structure analysis. Landsc. Res. 2015, 41, 279–293. [Google Scholar] [CrossRef]
- Larkin, A.; Hystad, P. Evaluating street view exposure measures of visible green space for health research. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 447–456. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Yang, H.; Yang, L.; Gou, Z. Impact of the quality and quantity of eye-level greenery on park usage. Urban For. Urban Green. 2021, 60, 127061. [Google Scholar] [CrossRef]
- Tang, L.; He, J.; Peng, W.; Huang, H.; Chen, C.; Yu, C. Assessing the visibility of urban greenery using MLS LiDAR data. Landsc. Urban Plan. 2023, 232, 104662. [Google Scholar] [CrossRef]
- Urech PR, W.; Dissegna, M.A.; Girot, C.; Grêt-Regamey, A. Point cloud modeling as a bridge between landscape design and planning. Landsc. Urban Plan. 2020, 203, 103903. [Google Scholar] [CrossRef]
- Xiao, W.; Cao, H.; Tang, M.; Zhang, Z.; Chen, N. 3D urban object change detection from aerial and terrestrial point clouds: A review. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103258. [Google Scholar] [CrossRef]
- Yijing, W.; Yuning, C. Construction and analysis of 3D scene model of landscape space based on UAV oblique photography and 3D laser scanner. J. Digit. Landsc. Archit. 2018, 3, 283–290. [Google Scholar]
- Yokoya, N.; Nakazawa, S.; Matsuki, T.; Iwasaki, A. Fusion of hyperspectral and LiDAR data for landscape visual quality assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2419–2425. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, W.; Lu, T. Landscape characteristics of university campus in relation to aesthetic quality and recreational preference. Urban For. Urban Green. 2021, 66, 127389. [Google Scholar] [CrossRef]
- Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based on mobile lidar data. ISPRS J. Photogramm. Remote. Sens. 2022, 184, 203–214. [Google Scholar] [CrossRef]
- Huang, J.; Liang, J.; Yang, M.; Li, Y. Visual Preference Analysis and Planning Responses Based on Street View Images: A Case Study of Gulangyu Island, China. Land 2022, 12, 129. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, Z.; Zeng, X.; Zhuo, Z.; Ye, B.; Fang, L.; Huang, Q.; Lai, P. The impact of landscape complexity on preference ratings and eye fixation of various urban green space settings. Urban For. Urban Green. 2021, 66, 127411. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, M.; Chen, M.; Zhang, Y.; Zhang, S.; Wang, L. How does urban green space feature influence physical activity diversity in high-density built environment? An on-site observational study. Urban For. Urban Green. 2021, 62, 127129. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Mangone, G.; Dopko, R.L.; Zelenski, J.M. Deciphering landscape preferences: Investigating the roles of familiarity and biome types. Landsc. Urban Plan. 2021, 214, 104189. [Google Scholar] [CrossRef]
- Hammond, W.M.; Stone ME, B.; Stone, P.A. Picture worth a thousand words: Updating repeat photography for 21st century ecologists. Ecol. Evol. 2020, 10, 14113–14121. [Google Scholar] [CrossRef]
- Li, X. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View images and deep learning. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 2039–2054. [Google Scholar] [CrossRef]
- Cerney, D.L. The use of repeat photography in contemporary geomorphic studies: An evolving approach to understanding landscape change. Geogr. Compass 2010, 4, 1339–1357. [Google Scholar] [CrossRef]
- Millington, J.A.; Booth, C.A.; Fullen, M.A.; Moore, G.M.; Trueman, I.C.; Worsley, A.T.; Richardson, N.; Baltrenaite, E. The role of long-term landscape photography as a tool in dune management. J. Environ. Eng. Landsc. Manag. 2009, 17, 253–260. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Fagerholm, N. Key factors to enhance efficacy of 3D digital environments for transformative landscape and urban planning. Landsc. Urban Plan. 2024, 244, 104978. [Google Scholar] [CrossRef]
- Lange, E.; Hehl-Lange, S. Making visions visible for long-term landscape management. Futures 2010, 42, 693–699. [Google Scholar] [CrossRef]
- Yu, H.; Wu, M.M.; He, H.S. Developing platform of 3-D visualization of forest landscape. Environ. Model. Softw. 2022, 157, 105524. [Google Scholar] [CrossRef]
- Zhang, Z.; Papaik, M.J.; Wang, X.; Hao, Z.; Ye, J.; Lin, F.; Yuan, Z. The effect of tree size, neighborhood competition and environment on tree growth in an old-growth temperate forest. J. Plant Ecol. 2017, 10, 970–980. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Yang, G.; Qiu, H.; Lei, K.; Yang, T.; Liu, Y.; Zuo, Y.; Wang, J.; Cui, Z. Visual Simulation Research on Growth Polymorphism of Chinese Fir Stand Based on Different Comprehensive Grade Models of Spatial Structure Parameters. Forests 2023, 14, 617. [Google Scholar] [CrossRef]
- Roman, L.A.; Fristensky, J.P.; Eisenman, T.S.; Greenfield, E.J.; Lundgren, R.E.; Cerwinka, C.E.; Hewitt, D.A.; Welsh, C.C. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography. Environ. Manag. 2017, 60, 1042–1061. [Google Scholar] [CrossRef]
Indicator | Reference | Description of Indicators | Equation | Note |
---|---|---|---|---|
Openness (OP) | [18] | OP is the average distance of elements within a person’s visual field, indicating the person’s perception of the visual scale. | n is the number of pixels in the panorama, and di is the depth value of each pixel. | |
Depth variance (DV) | [22] | DV is the variance of the depth values of the elements within a person’s visual field, describing the complexity of the space in the longitudinal direction. | OP is the openness, n is the number of pixels in the panorama, and di is the depth value of each pixel. | |
Green view ratio (GVR) | [21] | GVR is the proportion of vegetation in a person’s visual field, describing the degree of naturalness of the space. | SV is the area of vegetation in the panoramic image, and Sw is the area in the panoramic image. | |
Sky view ratio (SVR) | [44] | SVR is the proportion of the area of the sky in a person’s visual field, describing the visual scale of the space. | Ss is the area of the sky in the panoramic image, and Sw is the area of the panoramic image. | |
Skyline complexity (SC) | [45] | SC is the ratio of the length of the skyline to the width of the visual interface, indicating the vertical complexity of spatial elements. | Ls is the length of the skyline, and Lw is the width of the panoramic image the panoramic image. |
OP | DV | GVR | SVR | SC | |
---|---|---|---|---|---|
d_OP | 0.489 (0.064 *) | 0.371 (0.173) | −0.282 (0.308) | 0.329 (0.232) | −0.275 (0.321) |
d_DV | 0.496 (0.060 *) | 0.382 (0.160) | −0.286 (0.302) | 0.332 (0.226) | −0.3 (0.277) |
d_GVR | −0.389 (0.152) | −0.225 (0.420) | 0.518 (0.048 **) | −0.611 (0.016 **) | 0.025 (0.930) |
d_SVR | 0.229 (0.413) | 0.086 (0.761) | −0.279 (0.315) | 0.421 (0.118) | 0.000 (1.000) |
d_SC | −0.013 (0.965) | 0.009 (0.975) | 0.036 (0.899) | 0.084 (0.766) | −0.545 (0.036 **) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Fang, Y.; Zhang, G.; Cheng, S. Exploring the Long-Term Changes in Visual Attributes of Urban Green Spaces Using Point Clouds. Land 2024, 13, 884. https://doi.org/10.3390/land13060884
Zhang X, Fang Y, Zhang G, Cheng S. Exploring the Long-Term Changes in Visual Attributes of Urban Green Spaces Using Point Clouds. Land. 2024; 13(6):884. https://doi.org/10.3390/land13060884
Chicago/Turabian StyleZhang, Xiaohan, Yuhao Fang, Guanting Zhang, and Shi Cheng. 2024. "Exploring the Long-Term Changes in Visual Attributes of Urban Green Spaces Using Point Clouds" Land 13, no. 6: 884. https://doi.org/10.3390/land13060884
APA StyleZhang, X., Fang, Y., Zhang, G., & Cheng, S. (2024). Exploring the Long-Term Changes in Visual Attributes of Urban Green Spaces Using Point Clouds. Land, 13(6), 884. https://doi.org/10.3390/land13060884