Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Design and Methods
2.3.1. Transfer Matrix Modeling
2.3.2. Land Use Quantity Demand Approach
- Coefficients for the economic value and carbon emissions of land use
- Objective function construction and scenarios’ setting
- Constraints’ setting
2.3.3. Spatial Optimization Models
2.3.4. Landscape Pattern Index
3. Results and Analysis
3.1. Spatial and Temporal Characteristics of Land Use Change
3.2. Quantitative Land Use Requirements under Different Objectives and Scenarios
3.3. Optimization Results of Land Use Structure and Layout
3.4. Evaluation of Landscape Pattern Indices
4. Discussion
5. Conclusions
6. Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurlimann, A.C.; Moosavi, S.; Browne, G.R. Climate change transformation: A definition and typology to guide decision making in urban environments. Sustain. Cities Soc. 2021, 70, 102890. [Google Scholar] [CrossRef]
- Howarth, C.; Robinson, E.J. Effective climate action must integrate climate adaptation and mitigation. Nat. Clim. Chang. 2024, 14, 300–301. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Lan, M.; Su, Z.; Wang, K. Climate change and economic policy uncertainty: Evidence from major countries around the world. Econ. Anal. Policy 2024, 81, 1045–1060. [Google Scholar] [CrossRef]
- Osman, M.B.; Tierney, J.E.; Zhu, J.; Tardif, R.; Hakim, G.J.; King, J.; Poulsen, C.J. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 2021, 599, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Liu, S.; Chang, M.; Lin, H.; Lv, T.; Zhang, Y.; Zeng, C. Spatial Optimization of Land Use Pattern toward Carbon Mitigation Targets—A Study in Guangzhou. Land 2023, 12, 1903. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A. Limate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; p. 384. [Google Scholar]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Schleussner, C.F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, B.; Hu, F. Spatial characteristics of CO2 emissions of prefecture-level cities in Xinjiang. China Popul. Resour. Environ. 2017, 27, 15–21. [Google Scholar]
- Wu, R.; Zhang, J.; Huang, M.; Bao, Y. The industrial CO2 emissions and its characteristics in Inner Mongolia. J. Arid Land. Res. Environ. 2015, 29, 74–79. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Hao, J.; Sun, P.; Liu, C.; Zheng, W. Progress Review on Land Use Functions Evaluation and Its Prospects. China. Land. Sci. 2017, 31, 304–309. [Google Scholar]
- Zhou, J.; Wang, Y.; Liu, X.; Shi, X.; Cai, C. Spatial Temporal Differences of Carbon Emissions and Carbon Compensation in China Based on Land Use Change. Sci. Geogr. Sin. 2019, 39, 1955–1961. [Google Scholar]
- Ji, X.; Liu, H.; Zhang, Y. Spatiotemporal Evolution and Driving Factors of Spatial Correlation Network Structure of China’s Land-use Carbon Emission. Econ. Geogr. 2023, 43, 190–200. [Google Scholar]
- Zhao, C.X.; Liu, Y.L.; Yan, Z.X. Effects of land-use change on carbon emission and its driving factors in Shaanxi Province from 2000 to 2020. Environ. Sci. Pollut. Res. 2023, 30, 68313–68326. [Google Scholar] [CrossRef]
- Fu, M.Z.; Yan, F.Y.; Lin, J.T. Study on spatial evolution and development of Northern Zhejiang rural settlements driven by human-land relationship. Areal Res. Dev. 2019, 38, 152–157. [Google Scholar]
- Qu, W.; Huang, Z. Forming the Spatial Planning System of China Based on the Ideology of System Theory. China Land. Sci. 2009, 23, 22–27+68. [Google Scholar]
- Xie, G.; Zhang, C.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Yang, Q.; Wang, L.; Li, Y.; Qin, X. Land use spatial equilibrium from the perspective of supply and demand matching: A case study of Jiangsu Province. Resour. Sci. 2021, 43, 932–943. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, X.; Ou, M.; Guo, J. Optimization of land use planning under multi-objective demand—The case of Changchun City, China. Environ. Sci. Pollut. Res. 2024, 31, 9512–9534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Luan, C.X.; Liu, R.Z.; Zhang, Q.Y.; Sun, J.; Liu, J. Multi-objective land use optimization based on integrated NSGA–II–PLUS model: Comprehensive consideration of economic development and ecosystem services value enhancement. J. Clean. Prod. 2024, 434, 140306. [Google Scholar] [CrossRef]
- Zheng, W.; Ke, X.; Xiao, B.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case study in Wuhan, China. J. Environ. Manag. 2019, 248, 109306. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Szabó, G. A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land 2021, 10, 1398. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Tan, K.; Xie, P.F.; Chen, B.; Pu, J. Multiobjective Land-Use Optimization Allocation in Eucalyptus—Introduced Regions Based on the GMDP-ACO Model. J. Urban Plan. Dev. 2021, 147, 05021004. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, H. Optimization of land use structure for low-carbon targets in Haidong City, Qinghai Plateau. Resour. Sci. 2015, 37, 2010–2017. [Google Scholar]
- Dong, Y.; Niu, H.; Guo, J.; Zhao, S.; Fan, L. Carbon Storage change analysis and emission reduction suggestions under land use transition: A case study of Henan Province, China. Int. J. Environ. Res. Public Health 2021, 18, 1844. [Google Scholar] [CrossRef]
- You, H.; Zhang, J.; Xia, S. Structure and Layout Optimization of Multi-objective Land Use Based on Carbon Emission Efficiency: A Case Study of Xiaoshan District in Hangzhou City. China Land. Sci. 2023, 37, 74–83. [Google Scholar]
- Xie, X.; Deng, H.; Li, S.; Gou, Z. Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province. Land 2024, 13, 97. [Google Scholar] [CrossRef]
- Hong, D.; Huang, F.Z.; Xue, L.; Qian, Z.; Jian, C.; Ling, G.; Ning, L. Path of carbon emission reduction through land use pattern optimization under future scenario of multi-objective coordination. Front. Environ. Sci. 2022, 10, 1065140. [Google Scholar]
- Wu, R.; Lan, H.; Cao, Y.; Li, P. Optimization of low-carbon land use in Chengdu based on multi-objective linear programming and the future land use simulation model. Front. Environ. Sci. 2022, 10, 989747. [Google Scholar] [CrossRef]
- Asif, M.; Kazmi, J.H.; Tariq, A.; Zhao, N.; Guluzade, R.; Soufan, W.; Almutairi, K.F.; Sabagh, A.E.; Aslam, M. Modelling of land use and land cover changes and prediction using CA-Markov and Random Forest. Geocarto Int. 2023, 38, 2210532. [Google Scholar] [CrossRef]
- Xiang, L.; Jiang, F.; Dong, J.; Lin, G.; Cao, C. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar]
- Xie, B.; Wei, W.; Liu, C.; Zhou, J.; Zhou, L. Optimal allocation for land in an arid inland basin in northwest China: Framework and application based on CLUE-S and MCR models. Environ. Sci. Pollut. Res. 2023, 30, 95758–95772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, D. Urban carbon emission scenario prediction and multi-objective land use optimization strategy under carbon emission constraints. J. Clean. Prod. 2023, 430, 139684. [Google Scholar] [CrossRef]
- Deng, Z.; Song, S.; Jiang, N.; Pang, R. Sustainable development in China? A nonparametric decomposition of economic growth. China Econ. Rev. 2023, 81, 102041. [Google Scholar] [CrossRef]
- Xia, X.; Ren, P.; Wang, X.; Liu, D.; Chen, X.; Dan, L.; He, B.; He, H.L.; Ju, W.M.; Yuan, W.; et al. The carbon budget of China: 1980–2021. Sci. Bull. 2024, 69, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, F.; Yang, Y.; Chen, Y. Evaluating provincial carbon emission characteristics under China’s carbon peaking and carbon neutrality goals. Ecol. Indic. 2023, 156, 111146. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Streets, D.G.; Wang, C. Can new-type urbanization realize low-carbon development? A spatiotemporal heterogeneous analysis in 288 cities and 18 urban agglomerations in China. J. Clean. Prod. 2023, 420, 138426. [Google Scholar] [CrossRef]
- He, J.; Yan, S.; Guan, J. Knowledge Mapping of New Urbanization Research in China for 10 Years: Evolution, Hotspots, Frontiers and Future Trend. Econ. Geogr. 2020, 40, 70–81. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, C.; Zhang, L. Analysis of the coupling coordinated development of the Population–Water–Ecology–Economy system in urban agglomerations and obstacle factors discrimination: A case study of the Tianshan North Slope Urban Agglomeration, China. Sust. Cities Soc. 2023, 90, 104359. [Google Scholar] [CrossRef]
- Tong, Y.; Lei, J.; Zhang, S.; Zhang, X.; Rong, T.; Fan, L.; Duan, Z. Analysis of the spatial and temporal variability and factors influencing the ecological resilience in the urban agglomeration on the Northern Slope of Tianshan Mountain. Sustainability 2023, 15, 4828. [Google Scholar] [CrossRef]
- Airiken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. 2022, 29, 12282–12299. [Google Scholar] [CrossRef]
- He, W.; Su, X.; Ma, Y.; Wang, B. Study on Land Use Efficiency and Spatial—Temporal Differentiation of Urban Agglomeration on Northern Slope of Tianshan Mountains. China Agric. Resour. Reg. 2017, 38, 63–73. [Google Scholar]
- Zhang, S.; Lei, J.; Tong, Y.; Zhang, X.; Lu, D.; Fan, L.; Duan, Z. Temporal and spatial responses of ecological resilience to climate change and human activities in the economic belt on the northern slope of the Tianshan Mountains, China. J. Arid. Land 2023, 15, 1245–1268. [Google Scholar] [CrossRef]
- Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Qiao, W.; Sheng, Y.; Fang, B.; Wang, Y. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geogr. Res. 2013, 32, 1497–1507. [Google Scholar]
- Hu, X.; Lian, E.; Cai, Z. Optimization of Land Use Structure and Spatial Layout of Sanjiangyuan National Park. Qinghai J. Ethnol. 2022, 33, 190–199. [Google Scholar]
- Min, J.; Hu, H. Calculation of Greenhouse Gases Emission from Agricultural Production in China. China Popul. Resour. Environ. 2012, 22, 21–27. [Google Scholar]
- Tian, Y.; Chen, C. Effectiveness Evaluation of Carbon Emission Reduction in China, Identification of Backward Areas and Path Optimization. Bus. Manag. J. 2019, 41, 22–37. [Google Scholar]
- Zhang, G.; Wang, S. China’s Agricultural Carbon Emission: Structure, Efficiency and Its Determinants. Issues Agric. Econ. 2014, 35, 18–26+110. [Google Scholar]
- Lee, J.M.; Yin, X.J.; Zhu, H.H.; Zheng, X. Geographical Detector-Based Research of Spatiotemporal Evolution and Driving Factors of Oasification and Desertification in Manas River Basin, China. Land 2023, 12, 1487. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Li, J. On Drivening Group of New Low-carbon Path to the Western City of Urbanization. J. North. Normal Univ. (Phil. Social. Sci.) 2015, 71–76. [Google Scholar]
- Ding, X.Q.; Wu, Q.; Liu, X.N.; Tan, L.; Wang, J. Coupling and coordination degree of land use, high-quality economic development, and carbon emissions and influencing factors in China: An empirical study of 282 prefecture level cities. Res. Sci. 2022, 44, 2233–2246. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Li, M.; Zhang, H.; Li, M.; Qiu, X.; Zhou, C. Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China. Ecol. Indic. 2023, 147, 109950. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Y.Y.; Ke, X.L.; Hao, J.; Chen, A. Spatial optimization of land use based on the objective of coordinated ecological protection and economic development in Zhengzhou City. Res. Sci. 2019, 41, 717–728. [Google Scholar]
Data Type * | Data | Time Range | Resolution | Source | Description |
---|---|---|---|---|---|
Basic data | Land use | 2000, 2010, 2020 | 30 m | https://www.webmap.cn/commres.do?method=globeIndex | Land use types, area |
Driver data | DEM | 2019 | 90 m | https://www.gscloud.cn/ | Spatial grid data describing the elevation and slope |
Slope | 2019 | 90 m | Calculated by DEM | ||
Annual precipitation | 2020 | 1 km | https://worldclim.org/data/index.html | Spatially interpolated datasets describing annual precipitation, annual mean temperature, and annual mean wind speed in the study area | |
Average annual temperature | 2020 | 1 km | |||
Average annual wind speed | 2020 | 1 km | https://www.resdc.cn/ | ||
Population density | 2020 | 1 km | Spatial distributed grid datasets describing the population and GDP | ||
Average land GDP | 2019 | 1 km | |||
Highway | 2020 | - | https://www.webmap.cn/main.do?method=index | Spatial distributed datasets describing highway, railway, and water system | |
Railroads | 2020 | - | |||
Water system | 2020 | ||||
Statistical data | Agriculture, forestry, animal husbandry and fishery output, etc. | 2000–2020 | - | https://tjj.xinjiang.gov.cn/tjj/zhhvgh/list_nj1.shtml | Temporal datasets describing the socio-economic level of the study area |
Research Target | Type | Definition |
---|---|---|
Cultivated land | Cultivated land | The land is used for agriculture, horticulture, and gardens. |
Forest | Forest | Land with tree cover and more than 30% canopy cover, and open forest land with 10–30% canopy cover. |
Shrub land | Land with shrub cover and more than 30% scrub cover, and desert scrub with more than 10% cover in desert areas. | |
Grassland | Grassland | Land with natural herbaceous vegetation covers more than 10% of the land. |
Water | Water bodies | Areas covered by land-wide liquid water, including rivers, lakes, etc. |
Construction land | Artificial surfaces | Surfaces formed by man-made construction activities. |
Unused land | Bare land | Land with a natural cover of less than 10% vegetation. |
Tundra | Land covered by lichens, mosses, perennial hardy herbaceous and shrubby vegetation in boreal and alpine environments. | |
Wetland | It is located in the boundary zone between land and water. | |
Permanent snow and ice | Land covered by permanent snow, glaciers, and ice caps. |
Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|
Economic value coefficient (104 Ұ·hm−2) | 3.82 | 1.10 | 0.39 | 0.51 | 265.67 | 0.1 |
Carbon emission coefficients (t·hm−2) | 65.27 | 0.03 | 0.39 | 0.72 | 3501 | 0.1 |
Target Type | Scenario Setting | Economic/Carbon Constraints | Macro-Goal Constraints | Situational Constraints |
---|---|---|---|---|
Economic target | Low-carbon development | 70% reductionin carbon | (1) Total area constraints: the total area of each land use type is 19,394,160.03 ha; | Cultivated land area: X1 ≥ CUAC; X1 ≤ CUAN; Construction land area: X5 ≥ COAC; X5 ≤ 1.2*COAC; Unused land area: X6 ≥ 0.95*UAC |
Coordinated development | 60% reductionin carbon | Cultivated land area: X1 ≥ CUAC; X1 ≤ 1.2*CUAC; Construction land area: X5 ≥ COAC; X5 ≤ 1.2*COAC; Unused land area: X6 ≥ 0.925*UAC | ||
Economic development | 65% reductionin carbon | Cultivated land area: X1 ≥ CUAC; X1 ≤ 1.3*CUAN; Construction land area: X5 ≥ COAC; Unused land area: X6 ≥ 0.90*UAC | ||
Low-carbon goal | Low-carbon development | 20% increasein GDP | (2) Ecological protection: Forest, grasslands, and waters are not lower than the current values. (X2 ≥ FAC; X3 ≥ GAC; X4 ≥ WAC) | Cultivated land area: X1 ≥ CUAC; X1 ≤ CUAN; Construction land area: X5 ≥ COAC; X5 ≤ 1.2*COAC; Unused land area: X6 ≥ 0.95*UAC |
Coordinated development | 25% increasein GDP | Cultivated land area: X1 ≥ CUAC; X1 ≤ 1.2*CUAC; Construction land area: X5 ≥ COAC; X5 ≤ 1.2*COAC; Unused land area: X6 ≥ 0.925*UAC | ||
Economic development | 22.5% increasein GDP | Cultivated land area: X1 ≥ CUAC; X1 ≤ 1.3*CUAN; Construction land area; X5 ≥ COAC; Unused land area: X6 ≥ 0.90*UAC |
2020 2010 | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | Transfer Out |
---|---|---|---|---|---|---|---|
Cultivated land | 18,743.94 | 0.03 | 344.39 | 2.93 | 371.69 | 2.67 | 721.71 |
Diversion rate | — | 0.005% | 47.7% | 0.4% | 51.5% | 0.4% | 100% |
Forest | 40.35 | 2582.21 | 6.13 | 1.70 | 2.34 | 1.21 | 51.72 |
Diversion rate | 78.0% | — | 11.9% | 3.3% | 4.5% | 2.3% | 100% |
Grassland | 2865.75 | 11.54 | 58,505.10 | 109.50 | 538.06 | 57.74 | 3582.59 |
Diversion rate | 80.0% | 0.3% | — | 3.1% | 15.0% | 1.6% | 100% |
Water | 12.98 | — | 43.89 | 1603.69 | 19.70 | 55.60 | 132.18 |
Diversion rate | 9.8% | 0% | 33.2% | — | 14.9% | 42.1% | 100% |
Construction land | 0.41 | — | 0.05 | 0.0009 | 2159.77 | — | 0.46 |
Diversion rate | 88.4% | 0% | 11.4% | 0.2% | — | 0% | 100% |
Unused land | 821.53 | 1.64 | 114.62 | 36.17 | 305.32 | 104,578.95 | 1279.27 |
Diversion rate | 64.2% | 0.13% | 9.0% | 2.8% | 23.9% | — | 100% |
Target | Scenario Setting | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Economic target | Low-carbon development | 23.53 | 6.11 | 59.01 | 1.75 | 4.08 | 99.46 |
Economic development | 28.23 | 2.60 | 59.01 | 1.75 | 8.12 | 94.23 | |
Coordinated development | 26.98 | 3.96 | 59.01 | 1.75 | 5.38 | 96.84 | |
Low-carbon goal | Low-carbon development | 22.48 | 3.11 | 59.01 | 1.75 | 3.40 | 104.18 |
Economic development | 28.23 | 3.11 | 59.01 | 1.75 | 3.40 | 98.43 | |
Coordinated development | 23.53 | 3.11 | 59.01 | 1.75 | 3.40 | 103.14 |
Target | Scenario Setting | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land | Total Economic Benefits/108 Ұ | Total Carbon Emissions/108 t |
---|---|---|---|---|---|---|---|---|---|
Economic target | Low-carbon development | 26.98 | 2.61 | 59.01 | 1.75 | 5.38 | 98.21 | 1.57 | 20.67 |
Economic development | 28.23 | 2.59 | 59.01 | 1.75 | 8.12 | 94.23 | 2.30 | 30.34 | |
Coordinated development | 26.98 | 2.60 | 59.01 | 1.75 | 5.38 | 98.21 | 1.57 | 20.67 | |
Low-carbon goal | Low-carbon development | 22.48 | 2.61 | 58.93 | 1.75 | 3.40 | 104.77 | 1.03 | 13.42 |
Economic development | 28.23 | 2.59 | 55.43 | 1.75 | 3.40 | 102.55 | 1.05 | 13.80 | |
Coordinated development | 23.53 | 2.74 | 59.01 | 1.75 | 3.40 | 103.52 | 1.03 | 13.49 | |
2020 | 23.53 | 2.59 | 57.21 | 1.73 | 4.49 | 104.40 | 1.32 | 17.30 | |
Natural development | 22.48 | 2.60 | 59.01 | 1.75 | 3.40 | 104.70 | 1.03 | 13.42 |
Target | Scenario Setting | Patch Density | Mean PatchFractal Dimension | Aggregation Index | Shannon’s Diversity Index |
---|---|---|---|---|---|
Economic target | Low-carbon development | 1.33 | 1.06 | 97.68 | 0.66 |
Economic development | 1.68 | 1.05 | 97.28 | 0.68 | |
Coordinated development | 1.33 | 1.06 | 97.68 | 0.66 | |
Low-carbon goal | Low-carbon development | 0.11 | 1.08 | 99.03 | 0.62 |
Economic development | 1.07 | 1.06 | 98.08 | 0.64 | |
Coordinated development | 0.46 | 1.07 | 98.72 | 0.63 | |
2020 | 0.08 | 1.09 | 99.06 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yin, X.; Zhu, H. Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration. Land 2024, 13, 892. https://doi.org/10.3390/land13060892
Lee J, Yin X, Zhu H. Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration. Land. 2024; 13(6):892. https://doi.org/10.3390/land13060892
Chicago/Turabian StyleLee, Jinmeng, Xiaojun Yin, and Honghui Zhu. 2024. "Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration" Land 13, no. 6: 892. https://doi.org/10.3390/land13060892
APA StyleLee, J., Yin, X., & Zhu, H. (2024). Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration. Land, 13(6), 892. https://doi.org/10.3390/land13060892