Evaluation of Rice–Crayfish Field Fragmentation Based on Landscape Indices: A Case Study of Qianjiang City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Determining Evaluation Units
2.3.2. Construct an Evaluation System
2.3.3. Calculating the RCFF
2.3.4. Spatial Analysis of the RCFF
3. Results
3.1. Spatial Distribution Characteristics of Indices
3.2. Comparison of Elements’ Contribution
3.3. RCFF Evaluation Results
3.4. Spatial Characteristics Analysis of the RCFF
4. Discussion
4.1. Quantitative Evaluation of the RCFF
4.2. Ecological Significance of the Evaluation
4.3. Future Prospects and Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mavroeidis, A.; Roussis, L.; Kakabouki, L. The role of alternative crops in an upcoming global food crisis: A concise review. Foods. 2022, 11, 3584. [Google Scholar] [CrossRef] [PubMed]
- Laurett, R.; Pao, A.; Mainardes, E.W. Sustainable development in agriculture and its antecedents, barriers and consequences—An exploratory study. Sustain. Prod. Consump. 2021, 27, 298–311. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 7 November 2023).
- Alexandratos, N.; Bruinsm, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; ESA: Rome, Italy, 2012; p. 3. [Google Scholar]
- Jeffrey, A.M.; Sara, J.S. Common Ground, Common Future: How Ecoagriculture Can Help Feed the World and Save Wild Biodiversity. Available online: https://portals.iucn.org/library/node/8854 (accessed on 7 November 2023).
- Wan, N.F.; Li, S.X.; Li, T.; Cavalieri, A.; Weiner, J.; Zheng, X.Q.; Ji, X.Y.; Zhang, J.Q.; Zhang, H.L.; Zhang, H.; et al. Ecological intensification of rice production through rice-fish co-culture. J. Clean. Prod. 2019, 234, 1002–1012. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.L.; Tang, J.J.; Wu, X.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, 19851–19852. [Google Scholar] [CrossRef]
- Li, Q.M.; Xu, L.; Xu, L.J.; Qian, Y.G.; Jiao, Y.; Bi, Y.H.; Zhang, T.L.; Zhang, W.; Liu, Y.J. Influence of consecutive integrated rice–crayfish culture on phosphorus fertility of paddy soils. Land Degrad. Dev. 2018, 29, 3413–3422. [Google Scholar] [CrossRef]
- Hou, J.; Styles, D.; Cao, Y.X.; Ye, X.X. The sustainability of rice-crayfish coculture systems: A mini review of evidence from Jianghan plain in China. J. Sci. Food Agric. 2021, 101, 3843–3853. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Guo, H.L.; Duo, Z.; Gao, H.; Zhang, H.C. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 2021, 319, 128883. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, X.Y.; Gong, S.L.; Li, C.W.; Zhu, R.; Zhu, B.; Liu, Z.Y.; Wang, X.L.; Cao, P. Changes in paddy cropping system enhanced economic profit and ecological sustainability in central China. J. Integr. Agric. 2022, 21, 566–577. [Google Scholar] [CrossRef]
- Cao, C.G.; Jiang, Y.; Wang, J.P.; Yuan, P.L.; Chen, S.W. “Dual character” of rice-crayfish culture and strategies for its sustainable development. Chin. J. Eco-Agric. 2017, 25, 1245–1253. [Google Scholar] [CrossRef]
- Wang, Q.D.; Cheng, L.; Liu, J.S.; Li, Z.J.; Xie, S.Q.; De Silva, S.S.; Wang, Q.D.; Cheng, L.; Liu, J.S.; Li, Z.J. Freshwater aquaculture in PR China: Trends and prospects. Rev. Aquacult. 2015, 7, 283–302. [Google Scholar] [CrossRef]
- Hou, J.; Wang, X.L.; Xu, Q.; Cao, Y.X.; Zhang, D.Y.; Zhu, J.Q. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environ. Sci. Pollut. Res. 2021, 28, 22913–22926. [Google Scholar] [CrossRef] [PubMed]
- Si, G.H.; Peng, C.L.; Yuan, J.F.; Xu, X.Y.; Zhao, S.J.; Xu, D.B.; Wu, J.S. Changes in soil microbial community composition and organic carbon fractions in an integrated rice–crayfish farming system in subtropical China. Sci. Rep. 2017, 7, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.Y.; Khoshnevisan, B.; Zhu, J.Q.; Wang, W.W.; Liu, Y.L.; Pan, J.T.; Fan, X.P.; Zhang, D.Y.; Wu, M.Q.; Liu, H.B. Comprehensive assessment of integrated rice-crayfish farming system as a new paradigm to air-water-food nexus sustainability. J. Clean. Prod. 2022, 377, 134247. [Google Scholar] [CrossRef]
- Xu, Q.; Dai, L.X.; Zhou, Y.; Dou, Z.; Gao, W.Y.; Yuan, X.C.; Gao, H.; Zhang, H.C. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. Sci. Total. Environ. 2023, 905, 167629. [Google Scholar] [CrossRef]
- Yuan, P.L.; Wang, J.P.; Guo, C.; Guo, Z.Y.; Guo, Y.; Cao, C.G. Sustainability of the rice—Crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province. China J. Integr. Agric. 2022, 21, 1203–1214. [Google Scholar] [CrossRef]
- Chen, S.W.; Jiang, Y.; Wang, J.P.; Cao, C.G. Situation and countermeasures of integrated rice-crayfish farming in Hubei Province. J. Huazhong Agric. Univ. 2020, 39, 1–7. [Google Scholar] [CrossRef]
- Xia, T.; Wu, J.Y.; Zhu, Y.Y.; Yu, L.; Zhao, X.M.; Wan, M.; Ye, Y.W. Spatio-temporal Evolution and Regional Development Model of Rice-Crayfish Fields in Main Agricultural Production Regions of Central China. Econ. Geogr. 2023, 43, 183–191. [Google Scholar] [CrossRef]
- Xia, T.; Fang, H.N.; Ji, W.W.; Li, H.T.; Yan, H.; Wu, W.B. Spatiotemporal characteristics of cropland in Qianjiang City under the development of rice-crayfish integrated. Resour. Environ. Yangtze Basin 2020, 29, 2709–2718. [Google Scholar]
- Cheng, L.; Xia, N.; Jiang, P.H.; Zhong, L.S.; Pian, Y.Z.; Duan, Y.W.; Huang, Q.H.; Li, M.C. Analysis of farmland fragmentation in China modernization demonstration zone since “Reform and Openness”: A case study of south Jiangsu Province. Sci. Rep. 2015, 5, 11797. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Gu, T.; Chen, W.; Liang, J.; Pan, S.; Ye, X. Identifying the driving forces of cultivated land fragmentation in China. Environ. Sci. Pollut. Res. 2023, 30, 105275–105292. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Meng, S.X.; Lu, X.H. Effect of different modes of property rights adjustment in rural land consolidation on cultivated land fragmentation. J. Agro-For. Econ. Manag. 2023, 22, 527–534. [Google Scholar] [CrossRef]
- Latruffe, L.; Piet, L. Does land fragmentation affect farm performance? A case study from Brittany. Agric. Syst. 2013, 129, 68–80. [Google Scholar] [CrossRef]
- Hao, W.; Hu, X.D.; Wang, J.M.; Zhang, Z.X.; Shi, Z.Z.; Zhou, H. The impact of farmland fragmentation in China on agricultural productivity. J. Clean. Prod. 2023, 425, 138962. [Google Scholar] [CrossRef]
- Tan, S.H.; Heerink, N.; Kruseman, G.; Qu, F.T. Do fragmented landholdings have higher production costs? Evidence from rice farmers in Northeastern Jiangxi province, P.R. China. China Econ. Rev. 2008, 19, 347–358. [Google Scholar] [CrossRef]
- Qiu, L.F.; Zhu, J.X.; Pan, Y.; Wu, S.H.; Yang, H. The positive impacts of landscape fragmentation on the diversification of agricultural production in Zhejiang Province, China. J. Clean. Prod. 2019, 251, 119722. [Google Scholar] [CrossRef]
- Milne, G.; Byrne, A.W.; Campbell, E.; Graham, J.; McGrath, J.; Kirke, R.; McMaster, W.; Zimmermann, J.; Adenuga, A.H. Quantifying land fragmentation in Northern Irish cattle enterprises. Land 2022, 11, 402. [Google Scholar] [CrossRef]
- Fazlolah, A.M.; Bubak, S. Effect of landscape fragmentation on soil quality and ecosystem services in land use and landform types. Environ. Earth Sci. 2022, 81, 330. [Google Scholar] [CrossRef]
- Gashaw, T.A.; Zewdu, B.A.; Assefa, A.B. Effects of land fragmentation on productivity in Northwestern Ethiopia. Adv. Agric. 2017, 2017, 4509605. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Hawthorne, P.L.; Miteva, D.A.; Baumgarten, L.; Kei, S.C.; Matsumoto, M.; Evans, J.S.; Polasky, S.; Hamel, P.; Vieira, E.M. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol. Conserv. 2016, 204, 221–230. [Google Scholar] [CrossRef]
- Wang, X. Changes in cultivated land loss and landscape fragmentation in China from 2000 to 2020. Land 2022, 11, 684. [Google Scholar] [CrossRef]
- Wu, Z.H.; Chen, Y.Y.; Yang, Z.; Zhu, Y.L.; Han, Y.R. Mapping soil organic carbon in low-relief farmlands based on stratified heterogeneous relationship. Remote Sens. 2022, 14, 3575. [Google Scholar] [CrossRef]
- Fu, G.; Wang, W.; Li, J.S.; Xiao, N.W.; Qi, Y. Prediction and selection of appropriate landscape metrics and optimal scale ranges based on multi-scale interaction analysis. Land 2021, 10, 1192. [Google Scholar] [CrossRef]
- Feng, Y.X.; Luo, G.P.; Lu, L.; Zhou, D.C.; Han, Q.F.; Xu, W.Q.; Yin, C.Y.; Zhu, L.; Dai, L.; Li, Y.Z.; et al. Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang, China. Environ. Earth Sci. 2011, 64, 2067–2077. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Liu, Y.J. Changes in quantity, quality, and pattern of farmland in a rapidly developing region of China: A case study of the Ningbo region. Landsc. Ecol. Eng. 2019, 15, 323–336. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yan, Q.Q.; Xie, F.F.; Ma, S.C. Evaluation and prediction of landscape ecological security based on a CA-Markov Model in overlapped area of crop and coal production. Land 2023, 12, 207. [Google Scholar] [CrossRef]
- Wu, Z.H.; Wang, B.Z.; Huang, J.L.; An, Z.H.; Jiang, P.; Chen, Y.Y.; Liu, Y.F. Estimating soil organic carbon density in plains using landscape metric-based regression Kriging model. Soil Tillage Res. 2019, 195, 104381. [Google Scholar] [CrossRef]
- Chen, W.B.; Xiao, D.N.; Li, X.C. Classification, application, and creation of landscape indices. Chin. J. Appl. Ecol. 2002, 12, 121–125. [Google Scholar]
- Mcgarigal, K. Fragstats Help Version 4.2 [WWW Document]. Available online: https://www.fragstats.org/index.php/documentation (accessed on 7 November 2023).
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Huang, Q.P.; Huang, J.J.; Zhan, Y.J.; Cui, W.; Yuan, Y.B. Using landscape indicators and Analytic Hierarchy Process (AHP) to determine the optimum spatial scale of urban land use patterns in Wuhan, China. Earth Sci. Inform. 2018, 11, 567–578. [Google Scholar] [CrossRef]
- Wei, L.; Luo, Y.; Wang, M.; Su, S.L.; Pi, J.L.; Li, G.E. Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing. China Agric. Syst. 2020, 182, 102833. [Google Scholar] [CrossRef]
- Zhou, L.L.; Shi, Y.S.; Cao, X.Y. Evaluation of land intensive use in Shanghai Pilot Free Trade Zone. Land 2019, 8, 87. [Google Scholar] [CrossRef]
- Arthur, G.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Atsuyuki, O.; Toshiaki, S.; Kokichi, S. A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 2009, 23, 7–32. [Google Scholar] [CrossRef]
- Hu, N.J.; Liu, C.H.; Chen, Q.; Zhu, L.Q. Life cycle environmental impact assessment of rice-crayfish integrated system: A case study. J. Clean. Prod. 2021, 280, 124440. [Google Scholar] [CrossRef]
- Yuan, P.L.; Wang, J.P.; Li, C.F.; Xiao, Q.Q.; Liu, Q.J.; Sun, Z.C.; Wang, J.H.; Cao, C.G. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain, China using a minimum data set. Soil Tillage Res. 2020, 204, 104732. [Google Scholar] [CrossRef]
- Wang, D.J.; Yang, H.; Hu, Y.M.; Zhu, A.X.; Mao, X.Y. Analyzing spatio-temporal characteristics of cultivated land fragmentation and their Iinfluencing factors in a rapidly developing region: A case study in Guangdong Province, China. Land 2022, 11, 1750. [Google Scholar] [CrossRef]
- Xu, M.Y.; Niu, L.; Wang, X.B.; Zhang, Z.F. Evolution of farmland landscape fragmentation and its driving factors in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2023, 418, 138031. [Google Scholar] [CrossRef]
- Wu, X.; Xie, J.; Chen, X.; Chen, J. Edge effect of trench-pond pattern on rice grain and economic benefit in rice-fish co-culture. Chin. J. Eco-Agric. 2010, 18, 995–999. [Google Scholar] [CrossRef]
- Bashir, M.A.; Liu, J.; Geng, Y.C.; Wang, H.Y.; Pan, J.T.; Zhang, D.; Rehim, A.; Aon, M.; Liu, H.B. Co-culture of rice and aquatic animals: An integrated system to achieve production and environmental sustainability. J. Clean. Prod. 2020, 249, 119310. [Google Scholar] [CrossRef]
- Ning, K.; Ji, L.; Zhang, L.; Zhu, X.; Wei, H.M.; Han, M.Z.; Wang, Z. Is rice-crayfish co-culture a better aquaculture model: From the perspective of antibiotic resistome profiles. Environ. Pollut. 2022, 292, 118450. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, X.; Guo, H.L.; Che, Y.; Dou, Z.; Xing, Z.P.; Hou, J.; Styles, D.; Gao, H.; Zhang, H.C. Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustain. Prod. Consump. 2022, 29, 14–24. [Google Scholar] [CrossRef]
- Yuan, P.L.; Wang, J.P.; Chen, S.W.; Guo, Y.; Cao, C.G. Certified rice–crayfish as an alternative farming modality in waterlogged land in the Jianghan Plain region of China. Agron. J. 2021, 113, 4568–4580. [Google Scholar] [CrossRef]
- Sun, Z.C.; Guo, Y.; Li, C.F.; Cao, C.G.; Yuan, P.L.; Zou, F.L.; Wang, J.H.; Jia, P.G.; Wang, J.P. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 2019, 26, 11710–11718. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Hartvigsen, M. Land reform and land fragmentation in Central and Eastern Europe. Land Use Policy 2014, 36, 330–341. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 2020, 13, 12752. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Ns, L.I.S.B.; Burel, F.; Crist, T.O.; Fuller, R.J.; Sirami, C.E.L.; Siriwardena, G.M.; Martin, J. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Wu, S.M.; Ye, Y.M.; Zhang, C.Z.; Wen, G.H. Impacts of different modes of rural land consolidation on cultivated land fragmentation and its regional differences: Empirical evidence from Jianghan Plain and Wuling Mountain Area in Hubei Province. China Land Sci. 2021, 35, 98–106. [Google Scholar] [CrossRef]
- Xue, L.; Cao, P.; Xu, D.Z.; Guo, Y.; Wang, Q.F.; Zheng, X.F.; Han, R.J.; You, A.Q. Agricultural land suitability analysis for an integrated rice–crayfish culture using a fuzzy AHP and GIS in central China. Ecol. Indic. 2023, 148, 109837. [Google Scholar] [CrossRef]
Evaluation Unit Type | Evaluation Unit Name | Code | Evaluation Unit Area/km2 | Ratio of Rice–Crayfish Fields/% |
---|---|---|---|---|
Subdistrict | Yangshi Subdistrict 1 | YS-S 1 | 37.02 | 0.26 |
Yangshi Subdistrict 2 | YS-S 2 | 68.42 | 1.94 | |
Gaochang Subdistrict | GC-S | 16.15 | 22.96 | |
Guanghua Subdistrict 1 | GH-S 1 | 39.41 | 11.27 | |
Guanghua Subdistrict 2 | GH-S 2 | 6.35 | 28.02 | |
Yuanlin Subdistrict | YL-S | 43.51 | 1.79 | |
Zhouji Subdistrict 1 | ZJ-S 1 | 42.09 | 9.52 | |
Zhouji Subdistrict 2 | ZJ-S 2 | 42.72 | 3.07 | |
Town | Gaoshibei Town | GSB-T | 120.83 | 3.82 |
Haokou Town | HK-T | 175.55 | 32.21 | |
Jiyukou Town | JYK-T | 107.76 | 33.58 | |
Laoxin Town | LX-T | 125.58 | 30.40 | |
Longwan Town | LW-T | 135.73 | 44.13 | |
Wangchang Town | WC-T | 106.39 | 1.71 | |
Xiongkou Town | XK-T | 101.81 | 33.93 | |
Yuyang Town 1 | YY-T 1 | 14.66 | 41.98 | |
Yuyang Town 2 | YY-T 2 | 130.99 | 13.99 | |
Zhangjin Town | ZJ-T | 154.36 | 26.36 | |
Zhugentan Town | ZGT-T | 95.07 | 0.21 | |
Zhouji Farm 1 | ZJ-T 1 | 0.87 | 6.47 | |
Zhouji Farm 2 | ZJ-T 2 | 16.46 | 7.29 | |
Farm | Bailuhu Farm | BLH-F | 54.48 | 52.22 |
Houhu Farm | HH-F | 71.49 | 30.74 | |
Xiongkou Farm 1 | XK-F 1 | 8.69 | 65.78 | |
Xiongkou Farm 2 | XK-F 2 | 16.04 | 44.21 | |
Xiongkou Farm 3 | XK-F 3 | 17.88 | 59.48 | |
Yunlianghu Farm | YLH-F | 47.89 | 69.63 | |
Zongkou Farm | ZK-F | 113.67 | 24.85 |
Index | Formula | Explanation | Index Direction |
---|---|---|---|
RCAR | RCAR = CA/DA | RCAR is equal to the rice–crayfish field area (CA) divided by the district area (DA). | - |
RCPD | RCPD = NP/DA | RCPD is equal to the number of rice–crayfish field patches (NP) divided by the district area (DA). | + |
PARA_MN | PARA_MN is equal to the average perimeter– area ratio of rice–crayfish field patches, reflecting the regularity of the shape of the rice–crayfish fields. | + | |
PLADJ | % | PLADJ reflects the adjacency of rice–crayfish field patches. | - |
RCCI | ×100% | RCCI is equal to the rice–crayfish field area (CA) multiplied by CONTAG, reflecting the aggregation of rice–crayfish field patches. | - |
Target Layer | Element Layer | Index Layer | Unit |
---|---|---|---|
RCFF | Area and Edge metrics | RCAR | % |
Shape metrics | PARA_MN | None | |
Aggregation metrics | PLADJ | % | |
RCPD | Number per 1 square meter | ||
RCCI | None |
RCAR | RCPD | PARA_MN | PLADJ | RCCI | |
---|---|---|---|---|---|
Level I district | 4.50–6.99 | 0.02–0.28 | 72.66–194.41 | 99.17–99.68 | 135.73–175.55 |
Level II district | 2.59–4.50 | 0.28–1.01 | 194.41–356.32 | 98.77–99.17 | 95.07–135.73 |
Level III district | 1.41–2.51 | 1.01–1.59 | 356.32–502.90 | 97.96–98.77 | 54.48–95.07 |
Level IV district | 0.33–1.41 | 1.59–4.04 | 502.90–656.10 | 97.28–97.96 | 17.88–54.48 |
Evaluation Element | Evaluation Element Weight | Evaluation Index | Evaluation Index Weight |
---|---|---|---|
Area and Edge Metrics | 0.1292 | RCAR | 0.1292 |
Shape Metrics | 0.1416 | PARA_MN | 0.1416 |
Aggregation Metrics | 0.7292 | PLADJ | 0.2178 |
RCPD | 0.3951 | ||
RCCI | 0.1163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; He, X.; Hu, B.; Li, J.; Yu, L. Evaluation of Rice–Crayfish Field Fragmentation Based on Landscape Indices: A Case Study of Qianjiang City, China. Land 2024, 13, 1001. https://doi.org/10.3390/land13071001
Shi L, He X, Hu B, Li J, Yu L. Evaluation of Rice–Crayfish Field Fragmentation Based on Landscape Indices: A Case Study of Qianjiang City, China. Land. 2024; 13(7):1001. https://doi.org/10.3390/land13071001
Chicago/Turabian StyleShi, Lei, Xu He, Bo Hu, Jiuwei Li, and Lei Yu. 2024. "Evaluation of Rice–Crayfish Field Fragmentation Based on Landscape Indices: A Case Study of Qianjiang City, China" Land 13, no. 7: 1001. https://doi.org/10.3390/land13071001
APA StyleShi, L., He, X., Hu, B., Li, J., & Yu, L. (2024). Evaluation of Rice–Crayfish Field Fragmentation Based on Landscape Indices: A Case Study of Qianjiang City, China. Land, 13(7), 1001. https://doi.org/10.3390/land13071001